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Anatomical structure found on panoramic radio-
graphs

Figure 1: The figure shows important structures such as the mental foramen
and cortical bone.
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1 Introduction

Processing digital images is critical for detecting, examining, and assisting spe-
cialists in determining a patient’s condition, disease, or illness. Different pro-
cessing techniques are used in different fields, whether they are used to process
image data or improve images for human interpretation. The latter is frequently
used in clinical settings, including dentistry. Since the mineral content of the cor-
tical bone of the mandible is thought to be correlated with that of the skeleton,
routine panoramic radiographs of the mouth can provide important information
to use in identifying those at risk for osteoporosis [1, 2]. A number of measures,
such as the mandibular cortical width (MCW), the panoramic mandibular in-
dex (PMI), and the mandibular ratio (M/M), have been designed to evaluate
jawbone mass and observe signs of resorption. Throughout this paper, we will
focus on the MCW. Essentially, osteoporosis is a condition in which bones be-
come fragile due to a loss of bone mass, leading to pain, fractures, disability,
and a greater inability to perform daily activities. Osteoporosis is not only a
considerable cause of fractures; it also ranks highly among diseases that can
render individuals bedridden with serious complications [3]. Elderly individuals
may be at risk of life-threatening complications from these conditions [4]. Early
detection of osteoporosis may thus reduce the risk of fractures and improve the
quality of life for many individuals.

2 Diagnosis

In accordance with the WHO criteria, osteoporosis is defined as a bone mineral
density (BMD) that is 2.5 standard deviations or more below that of a average,
young, healthy women (a T-score of < −2.5 SD) [4]. BMD is most commonly
assessed by dual-energy X-ray absorption (DXA), which is the most widely
validated method. The primary problem with the sole use of BMD tests is
that DXA is not readily available and is commonly used for research purposes
because of its high capital costs.

Studies suggest that routine dental radiographs could be an important tool
for identifying individuals at risk for osteoporosis and refer them for bone min-
eral density testing. On the basis of dental radiographs, there are several sig-
nificant predictors of mandibular stability. Among these are the mandibular
cortical width proposed by Horner and Devlin [5], the panoramic mandibular
index (PMI) presented by Benson et al. [6], and the Klemetti index [7].
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2.1 Mandibular cortical width

The mandibular cortical width (MCW) is defined as the measurement of the
cortical thickness of the mandible taken below the mental foramen (figure 2).
Several studies [8, 9, 10, 11, 12] have shown that MCW, as measured on dental
panoramic radiographs, can help identify postmenopausal women with low bone
mineral density or osteoporosis. Therefore, dentists can differentiate osteoporo-
sis suspects based on minor findings on dental panoramic radiographs without
the additional cost of DEXA and refer them for BMD analysis. Yet, it is not
ideal to measure cortical width on dental panoramic radiographs to identify in-
dividuals with low skeletal mass, due to the bone’s unclear borders, which can
lead to varying measurements between dentists.

Figure 2: The figure demonstrates how to measure the mandibular cortical
width.

2.2 Klemetti index

As mentioned, the klemmeti index [7] is aslo used for establishing low BMD by
classifying bone erosion in three groups by the following criteria:

C1: Normal cortex, even and sharp endosteal1 margin on the both sides

1located within bone
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C2: Mildly-to-moderately eroded cortex, some endosteal cortical residues
(semilunar defects) on one or both sides.

C3: Severely eroded cortex, heavy endosteal cortical residues, cortex is clearly
porous.

Taguchi et al. investigated whether the Klemetti index and mandibular cor-
tical width could predict osteoporosis in postmenopausal Japanese women. The
authors concluded that postmenopausal women with changes to the mandible
may have an increased risk of low vertebral BMD or osteoporosis. Study par-
ticipants with severely eroded cortex (C3) had a 14.0% greater likelihood of
having vertebral osteoporosis, and participants with both thin cortical width
and severely eroded cortex had a 23.0% greater probability [13]. This may
suggest that the Klemetti index could assist in predicting osteoporosis.

Figure 3: The figure shows three cases of classifying bone erosion by the Klemetti
index.
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2.3 Disadvantages of panoramic radiographs

Indeed panoramic radiographs are prudent, yet there are drawbacks. They are
generally complex because of artificial structures, imprecise edges of skeletal
structures, ghost images from the spine, jawbones with uneven curves and in-
tensity levels, and unsuitable positioning of the patient.

If a patient is poorly positioned, it is difficult to determine the magnification
rate, a consequence of panoramic radiography. The position of an object in re-
lation to both the x-ray source and its receptor (film) determines the degree of
magnification. Imagine a patient is positioned correctly within the panoramic
unit and the object of interest is located within the focal area. We then de-
termine the magnification rate from the panoramic machine manual (usually
about 15-25%). As the x-ray beam passes around the patient’s head, some
anatomical structures are projected twice on the receptor, resulting in ghost
images overlapping with critical anatomical structures. It is possible that the
angle between the horizontal plane and the central x-ray beam will ascend dur-
ing the exposure cycle, causing distortion in the object’s shape and in spatial
relationships between anatomical structures. All of these pitfalls need to be
considered when interpreting panoramic radiographs, and linear measurements
taken from panoramic radiographs need to be considered cautiously. As well,
the mental foramen can have irregular shapes and unclear borders. Usually, the
MF is located below the premolar tooth [14] (tooth five from front to back), but
irregular tooth alignments or missing pieces make it more difficult to determine
where the MF is located. It is most common for there to be only one MF [15],
increasing the difficulty of detection.
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3 Theory

All the image processing techniques discussed in this chapter are implemented
in the spatial domain. Spatial filters are fundamental in image processing appli-
cations. Spatial filtering modifies an image by replacing each pixel value with
a function of the pixel values and their neighbors. If the function is linear, the
filter is called linear spatial filtering; otherwise, it is a nonlinear spatial filter.
A linear spatial filter performs a sum-of-products operation between an image
f and a filter kernel, w. The neighborhood of operation is defined by the kernel
size, which is an array whose coefficients determine the filter’s character [16].
The convolution of a kernel w of size m × n with an image f(x, y), denoted
(w ∗ f)(x, y), is defined as

(w ∗ f)((x, y) =

a∑
s=−a

b∑
t=−b

w(s, t)f(x− s, y − t) (1)

3.1 Pre-processing

3.1.1 Region extraction

The mental foramen is one of two openings located on the anterior surface
of the mandible (jawbone). However, the area around the mental foramen is
suffered with low contrast and dark color. Hence we stretched the appropriate
range of intensity values corresponding to the area of interest. Because the
original panoramic radiographs had very high resolution, a region of interest was
extracted for fast and straightforward computing. They were cropped manually
on the right and left sides with assistance from two experts determining if the
region was appropriate. The area (300× 500 pixels) captures the lower border
of the mandibular cortex below the mental foramen.
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Figure 4: The figure displays how the region of interest is placed on every
panoramic radiograph.

3.1.2 Normalization and standardization

As the radiographic images are 16-bit images, they can take on pixel values
ranging from 0 to 216. However, they never span the entire range, making them
cumbersome to work with while recognizing their bright or dark pixel values.
Therefore normalization (2) is applied, addressing pixel values ranging from
0 to 1, meaning zero is darkest and one is brightest, which is more intuitive.
Standardization (3) is also utilized so that the relative differences between the
images are maintained. This process is practical when analyzing the statistic
for an image, e.g., in texture analysis, where the variance is used.

zi =
xi −min(x)

max(x)−min(x)
(2)

where xi is image i, min(xi) is the minimum value of the image and max(xi)
is the maximum value of the image.

z =
x− µ
σ

(3)

where x is the data set, µ is the mean value of the data set and σ is the standard
deviation of the data set.
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3.2 Image processing

3.2.1 Histograms and intensities

Histogram manipulation and intensity transformations are fundamental tools
in image processing. The latter is based on the expression o(x, y) = T [i(x, y)],
where i(x, y) is the input image and o(x, y) is the output image after the operator
T is applied on the input over a neighborhood of points (x, y) or the whole image.
We will later see the negative of an image with intensity levels in the range
[0, L − 1], acquired using the negative transformation function s = L − 1 − r.
Here r denotes input intensity levels and s output intensity levels.

3.2.2 Histogram equalization

Histogram equalization is a technique for adjusting image intensities to enhance
contrast globally, mainly when close contrast values represent the valuable data
of the image. The method is adequate in images with backgrounds and fore-
grounds that are both bright or dark.

Let f be a given image represented as an m × n matrix of integer pixel
intensities on the range r = [0, L − 1]. L is the number of possible intensity
values, in this case, 216. Let p denote the normalized image histogram of f with
a bin for each possible intensity. So

pn =
number of pixels with intensity n

MN
n = 0, 1, ..., L− 1.

where MN is the total number of pixels.
The histogram equalized image g will be defined by

gi,j = floor

(
(L− 1)

fi,j∑
n=0

pn

)
(4)

where floor() rounds down to the nearest integer. This is equivalent to
transforming the pixel intensities k, of f by the function

T (k) = floor

(
(L− 1)

k∑
n=0

pn

)
k = 0, 1, 2, ..., L− 1. (5)

3.2.3 Smoothing

Smoothing (or averaging) spatial filters are commonly used to reduce sharp
transitions in intensity. There are numerous applications where smoothing is
appropriate, such as reducing noise, reducing aliasing, and blurring false con-
tours. Smoothing is also a method to reduce unnecessary detail in an image,
where ”unnecessary ” refers to small pixel regions compared to the filter’s ker-
nel size. Smoothing filters can additionally be used in combination with other
techniques.
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Gaussian kernels are an attractive choice because of their circular symmetry
(isotropic), and they are separable. Meaning the Gaussian blur can be applied
to a two-dimensional image as two independent one-dimensional calculations.

In two dimensions the formula for a Gaussian function is the product of two,
one in each dimension

w(s, t) = G(s, t) = Ke−
s2+t2

2σ2 (6)

where K =
1

2πσ2
(7)

By letting r = [s2 + t2]1/2 we can rewrite the above expression as

G(r) = Ke−
r2

2σ2

where variable r is the distance from the center to any point on function G.

Another smoothing filter is the median filter; it is in the class of nonlinear
spatial filters whose response is based on ordering the pixels in the area contained
by the filter. The median filter replaces the center pixel’s value with the median
of the intensity values in the neighborhood of that center pixel. This filter is
probably the most famous for its effectiveness in the presence of salt-and-pepper
noise. The median x̃, of a set of values is such that half the values in the set are
less than or equal to x̃, and half are greater than or equal to x̃ [16]. Essentially
the midpoint in a list of ordered values. In a 3× 3 neighborhood the median is
the 5th largest value.

Figure 5: Image (a) shows the ROI, image (b) shows (a) smoothed with a
Gaussian filter with kernel size 7, and (c) shows histogram equalization applied
to (b).
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3.2.4 Global Otsu

Otsu’s method is used to achieve automatic image thresholding; in the simplest
case, it partitions the image into two classes, foreground, and background. The
method is optimum because it maximizes the between-class (intensity) variance,
or equivalently, minimizing intra-class variances, defined as a weighted sum
of the classes’ variances. Otsu’s method is a one-dimensional discrete analog
of Fisher’s discriminant analysis since it is performed on the 1-D histogram
array. The principle is that the pixels’ intensity values between classes should
be distinct for a properly thresholded image; a threshold resulting in the best
partition between classes in terms of their intensity values would be optimum
[16].

The method works as follows; compute the normalized histogram, which has
components pi = ni/MN for an image represented as a m×n matrix, where ni
denotes the number of pixels with intensity i, from which it follows that

L−1∑
i=0

pi = 1 pi ≥ 0

If we select a threshold T (k) = k, 0 < k < L − 1, and use it to separate an
image into two classes, c1 and c2, with respect to the pixel intensities

g(x, y) =

{
c1, for pixels in range [0, k]
c2, for pixels in range [k + 1, L− 1]

Then the probability that a pixel is assigned to class c1 is given by the
cumulative sum

P1(k) =

k∑
i=0

pi (8)

similarly, for class c2 occuring

P2(k) =

L−1∑
i=k+1

pi = 1− P1(k) (9)

Following, the mean intensity value of a pixel in c1 is

m1(k) =

k∑
i=0

iP (i/c1)
Bayes′

=

k∑
i=0

iP (c1/i)P (i)/P (c1)

=
1

P1(k)

k∑
i=0

ipi (10)
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the mean intensity value of the pixel assigned to c2 is, similarly

m2(k) =

L−1∑
i=k+1

iP (i/c2) (11)

=
1

P2(k)

L−1∑
i=k+1

ipi (12)

The cumulative mean up to level k is given by

m(k) =

k∑
i=0

ipi (13)

The global mean is given by

mG =

L−1∑
i=0

ipi (14)

clearly, the probabilities must sum to one, which also leads to the following

P1 + P2 = 1 (15)

P1m1 + P2m2 = mG (16)

We have omitted the ks tentatively in favor of notational simplicity.
To assess the effectiveness of the threshold about level k, we use the normal-

ized, dimensionless measure

ν =
σ2
B

σ2
G

(17)

where σ2
G is the global variance

σ2
G =

L−1∑
i=0

(i−mG)2pi (18)

and σ2
B is the between-class variance, defined as

σ2
B = P1(m1 −mG)2 + P2(m2 −mG)2 (19)

= P1P2(m1 −m2)2 (20)

=
(mGP1 −m)2

P1(1− P2)
(21)
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From line (20), we perceive that the more significant gap between means
m1 and m2, the large σ2

B will be, implying that the between-class variance is a
measure of separability between classes.

Reintroducing k, we get:

ν(k) =
σ2
B(k)

σ2
G

(22)

and σ2
B(k) =

[mGP1(k)−m(k)]2

P1(k)[1− P2(k)]
(23)

Then, the best threshold is the value, k∗, that maximizes σ2
B(k):

σ2
B(k∗) = max

0≤k≤L−1
σ2
B(k)

one k∗ is obtained, the input image is segmented as before

g(x, y) =

{
1, if f(x, y) > k∗

0, if f(x, y) ≤ k∗

Figure 6: The figure illustrates how a threshold obtained by Otsu’s method can
produce a binary mask.

3.2.5 Laplacian of a Gaussian

Blod detection is a method that aims to detect regions in an image that differ in
characteristics, such as intensity, size, shape, or color, compared to surrounding
regions. For example, the mental foramen can be considered a blob. Unofficially,
a blob is a region where attributes are constant, meaning every point within a
blob is alike.

There are several methods to detect blobs; here, we will cover and later apply
the Marr-Hildreth algorithm. The latter consists of convolving the Laplacian of
a Gaussian (LoG) kernel with an input image [16]

g(x, y) = [∇2G(x, y)] ∗ f(x, y) (24)
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we have already covered the Gaussian kernel G, but for now, we are only
interested in the general shape

G(x, y) = e−
x2+y2

2σ2 (25)

Applying the Laplacian we obtain an expression for ∇2G(x, y)

∇2G(x, y) =
∂G(x, y)

∂x2
+
∂G(x, y)

∂y2
(26)

=
∂

∂x

(
−x
σ2

e−
x2+y2

2σ2

)
+

∂

∂y

(
−y
σ2
e−

x2+y2

2σ2

)
(27)

=

(
x2

σ4
− 1

σ2

)
e−

x2+y2

2σ2 +

(
y2

σ4
− 1

σ2

)
e−

x2+y2

2σ2 (28)

=

(
x2 + y2 − 2σ2

σ2

)
e−

x2+y2

2σ2 (29)

We have stated that the Gaussian operator blurs the image, reducing noise
and intensities of structures at scales much smaller than σ. The Laplacian
has the critical advantage of being isotropic, responding equally to changes in
intensity in any kernel direction. This is a more attractive option over using
first derivatives, which are directional operators requiring multiple kernels; see
Sobel operators [17].

3.2.6 Ridge detection

Ridge detection is a valuable tool for obtaining ridge-like structures like vessels,
wrinkles and rivers in an image. Note that a ridge is not the same as an edge;
the boundary between two regions is an edge, while a ridge is a line lighter
or darker than their neighborhood. Frangi et al. [18] introduced a filter for
vessel extractions which is frequently applied for retinal vessel detection [19, 20].
Choon-Ching Ng et al. [21] have proposed a method for wrinkle detection, that
is hybrid Hessian filter (HHF).

The concept behind such a filter is based on second-order partial deriva-
tives, where the eigenvalues of the Hessian matrix are used to obtain the prin-
cipal directions in which the local second-order structure of the image can be
decomposed [22].

3.2.7 Hough transform

The classical Hough transform was concerned with recognizing lines in an im-
age. Later the Hough transform has been extended to identifying arbitrary
shapes. The technique aims to find objects within a distinct class of shapes by
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a voting scheme. This voting scheme is carried out in parameter space. Object
candidates are obtained as local maxima in an accumulator space assembled by
the Hough transform algorithm. Assume we want to find subsets of points in
an image with n points, which lie on straight lines. Instead of finding all lines
determined by every pair of points and then finding all subsets of points near
particular lines, Hough suggested an alternative approach, commonly referred to
as the Hough transform. Let (x, y) denote a point in the xy-plane and consider
the equation of a straight line

yi = axi + b (30)

Infinitely many lines pass through (xi, yi), and for varying values of a and b,
they all satisfy equation (30).

Writing this equation as:

b = −xia+ yi (31)

and considering the ab-plane (parameter space) produces the equation of an
individual line for a fixed point (xi, yi). A second point (xj , yj) will also have
a single line in parameter space associated with it, and it will intersect the line
associated with (xi, yi) at some point (a′, b′) in parameter space, where a′ and
b′ is the slope and the intercept, respectfully, of the line including both (xi, yi)
and (xj , yj) in the xy-plane. All points on this line will have lines in parameter
space that intersect at (a′, b′).

The lines in parameter space corresponding to all points (xk, yk) in the xy-
plane could be plotted. The main lines in the xy-plane could be determined by
identifying points in the parameter space where numerous parameter-space lines
intersect, hence the voting scheme. However, a challenge with this procedure is
that the slope of the line can approach infinity. To overcome this problem, one
can use the normal representation of a line:

xcosθ + ysinθ = ρ (32)

Subdividing the parameter space into accumulator cells gives rise to the
attractiveness of the Hough transform. Accumulator values A(i, j) at cell (i, j)
corresponds to the square associated with parameter values (θj , ρj). For each
foreground point (xk, yk) in the threshold image, we let θj equal all possible
θ values and we solve for ρ using equation (32). Then we round ρ to the
closest cell value, ρq, and increment A(i, j) until the procedure is finished. A
value of A(i, j) = P means that P points in the xy-space lie on the line ρj =
xcosθj + ysinθj . Hence the voting scheme.
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Figure 7: kan man bruke denne?

4 Experiments

The experiments in this section are concerned with two separate tasks. First, we
will try to identify the mental foramen, as it is common practice to measure the
bone below it. After, we will seek to measure the bone. Henceforward, the ROI
is used, and the contrast is stretched, so it is within the 5% and 95% percentiles.
Because pixels under 5% are considered background variation, above 95% are
assigned as the teeth and ghost image from the spine. The latter can be a severe
problem if illuminated.

Figure 8: Figure column (a) displays the original low contrast image, and column
(b) displays the image after the contrast has been stretched to fill the intensity
range. Column (c) displays the contrast stretched as proposed.
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4.1 Identify the mental foramen

Two methods have been tested for the identification. Up first, we have adapted
the method proposed by Aliaga et al. [23]; second, we will try a different method
using image enhancing techniques. Aliaga et al. suggested, in order:

1. Apply median filter to the original ROI with a square kernel of size 5.

2. Apply histogram equalization.

3. Apply gray-scale erosion to enhance dark ares

4. Apply a multilevel image thresholding, based on Otsu’s method requesting
15 thresholds.

5. For each threshold obtain a binary image, followed by region labeling and
compute various properties.

We followed until step 4 since computing 15 thresholds are computationally
expensive and time-consuming, and impractical for a more extensive data set.
Alternatively, we have used five thresholds. This should enable us to separate
the mental foramen, given it is sufficiently visible. Then we pick the 2nd darkest
threshold; the darkest will always be the black background. Hopefully, the MF
will be the only or smallest segment in this binary image. Then, we easily obtain
the contours in this image, select the largest one, and fit a bounding box around
it.

Figure 9: Figure column (a) shows the ROI, column (b) shows (a) after his-
togram equalization, column (c) shows (b) after gray-scale erosion.
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Figure 10: Figure column (c) the shows the gray-scale eroded image, then we see
the histogram with three obtain thresholds. Far-right, the thresholded image is
observed.

Figure 11: Figure column (d) shows the binary image obtained from threshold
two, column (e) shows the (d) inverted, column (f) shows (d) after regions
meeting the border has been removed.
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Figure 12: The figure shows the resulting contour and bounding box around the
smallest region from figure 11f.

The problem with this technique is that it does not scale well. The reason
is that the MF, most often, is not distinct; therefore, the threshold will cover
both the MF and its surrounding area. Another common obstacle is that the
wrong region is detected.

(a) (b)

Figure 13: The figure presents two situations where the proposed method dis-
appoints.

Another option is to try blob detection as the MF’s intensity level is about
constant. In this work, we do the following

1. Apply a median filter with kernel size 7 to the original.
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2. Apply Otsu’s method to obtain a binary mask (threshold) that separates
the background from the foreground. Multiply the mask with the median
filtered image to remove the background.

3. Follow with histogram equalization, and obtain the inverse image, so the
MF is white rather than black making it easier to distinguish for the
human eye.

4. Define various parameters for blobs to be detected; color, minimum circu-
larity, minimum convexity, maximum and minimum area.

5. Apply blob-finding algorithm.

The reason behind step 2 is that we do not want to detect blobs inside
artifacts. The various parameters are found by experimentation. The color
parameter is set to detect white regions, and the minimum circularity is set to
0.3. Minimum convexity is set to 0.4, and the maximum and minimum area is
set to 500 and 20, respectfully.

Figure 14: Image (a) shows the ROI, image (b) shows (a) after a median filter
is applied, and image (c) shows a binary mask obtained from Otsu’s method,
image (d) shows image (b) multiplied with (c), image (e) shows (d) inverted,
exposing the MF, image (f) shows the output after blob detection.

The figure above (14) shows that blob detection manages to find the MF
where the previous method disappointed (figure 13 b). However, we see that
the wrong region also has been recognized, forcing us to decide which one to
use. This is unfortunate if several blobs are detected, which seems to be the
typical case. Since both methods have significant issues, we cant employ them

25



without supervision. Therefore, we continue trying to measure the bone without
the discovery of the MF. Meaning we have to choose the appropriate place to
measure ourselves.

4.2 Measuring the bone

Again, two methods have been tested for measuring the width of the bone. First,
we have adapted the method proposed by Aliaga et al. [23] to fit our images;
second, we will try a different method using image enhancing techniques and
the hybrid hessian filter. Aliaga et al. suggested, in order

1. Select a region of intrest, compute a local varaince image (texture descrip-
tion) on an 8-neighbourhood for each pixel.

2. Follow by global histogram equalization, obtaining an image Iv.

3. Apply a mean filter to image Iv with kernel set to 11, obtaing image Im

4. Calculate the binary image Ib

Ib =

{
1, if Im − Iv ≥ st
0, otherwise

where st is the standard deviation of Iv

Here, we follow the same approach with minor adjustments. First, a median
filter with kernel size set to 11 is applied to the ROI before computing the
variance image. Here, the variance is computed on an 8-neighborhood also; then,
global histogram equalization is applied, obtaining image Iv. After utilizing
histogram equalization, obtaining image Im, we employing a uniform filter with
kernel size also set to 11. We compute the binary image in a different way

Ib =

{
1, if Im − Iv ≤ σ2

0, otherwise

where σ2 is the variance of Iv. While no formal definition of texture exists, in-
tuitively, such descriptors measure properties as smoothness, coarseness, grainy,
and regularity. The variance is significant in texture description. It is a mea-
sure of intensity contrast that can further build descriptors of relative intensity
smoothness [16]. Here we are interested in examining how homogeneous the jaw
bone is. Implementing what we stated yield the results seen in figure 15.
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Figure 15: Image (a) displays the ROI, image (b) shows the variance image
obtained after (a) is filtered with a median filter, image (c) shows (b) after
histogram equalization, and image (d) shows the binary image Ib.

A key observation is that the bone appears almost entirely white but with
dark spots along the upper edges, becoming more prominent further left in the
bone. The ghost image from the spine partly causes the dark spots seen to the
far left, but that is not too worrying as we are interested in the region below
the MF. In this region, the spots are connected with the porosity of the bone.
In figure 16 below, one can see three different cases of deterioration of the bone.
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Figure 16: Figure column (a) shows an image and the resulting binary image of
a Klemmti index C1, in the same manner (b) shows a case of C2, and column
(c) displays a state of C3.

Before any measurements can be made, the lower boundary of the bone must
be established. To do so, we further embrace the work done by Aliaga et al.
Therefore, we apply a gray-scale dilation with a disk structure element of size 7
to all positive values, causing bright/dark areas to be emphasized. The dilation
is applied to the variance image computed over a neighborhood of 5 pixels. The
variance image is computed after employing a median filter with size 11 to the
ROI. After gray-scale dilation, we employ multilevel image thresholding, based
on Otsu, again, but we are requesting simply three thresholds.

A binary image is obtained with the three regions corresponding to pixels
above the matching threshold, i.e., all pixels are set to binary values of 0, 1,
or 2. We follow up with region labeling, and compute the following properties
for each labeled region: area, major and minor axis length. Candidate regions
should contain a relevant number of pixels, and therefore first select regions
with an area greater than 4% of the total ROI area (6000 pixels). Which leads
to small areas like teeth and blobs are discarded. Major and minor axis lengths
are associated with an ellipse, so imagine an ellipse was fitted to every region.
We choose those with major and minor axis lengths greater than 350 and 30
pixels, respectfully. One could go further and calculate the orientation and other
properties of the regions, but what we have announced now is satisfactory.
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Figure 17: Image (a) displays the median filtered ROI, image (b) shows the
result of gray-scale dilation applied to the variance image of (a), (c) presents
the binary image with thee thresholds, image (d) shows the contour of the
candidate region after region labeling.

From figure 17 d, we see the contour from the candidate region. The upper
left corner of the ROI is the origin of the coordinates, with the y-axis down and
the x-axis pointing right. Selecting points with the maximum y-value of the
y-coordinate obtains the lowest line of the contour, which is the input for the
Hough [24, 25], transform [16]. To convert the Hough parameters (ρ, θ) to the
parameter space (slope, intercept) of the image, we use

m = − cosθ
sinθ

, d =
ρ

sin θ
(33)

where m is the slope of the straight line and d is the intercept. When several
lines are identified in the Hough polar space, which determines several m and
d parameters associated with the lines, we must pick the most promising line
regarding its objective (tangent to the bone below the MF).
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Figure 18: Here we see the input line, which is a part of the lowest contour of
the candidate region, and the resulting lines after classical Hough transform.

After picking the best line, we select a segment consisting of 100 points, e.g.,
a segment from x = 50 to x = 150. Placing this segment on the binary image,
we are set for the following scheme:

1. place the initial line on the binary image as shown in 15d

2. Calculate the percentage of white pixels the line overlap

3. Set a percentage threshold of 0.5

4. Move the line upwards by decreasing the intercept value (y-axis points
down) until the threshold is met, resulting in a new line

5. Calculate the distance between the parallel lines (initial and final)

(a) initial line (b) final line

Figure 19: The figure displays an example of the initial and final state of the
scheme.
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Figure 20: The figure displays both the initial and final line from which we
measure the mandibular cortical width.

Figure 20 shows a promising result of the stated scheme. The method is
somewhat extensive and requires many computations. Nevertheless, it does
an excellent job from the looks of it. We will try another surprisingly simple
method to measure the bone.

We have previously stated that the hybrid hessian filter (HHF) can detect
ridge-like structures like veins and rivers. The bone can be regarded as a river
in this context, and hence we will test the HHF as well. To do this, we apply the
HHF to a blurred ROI then morphological operations to create a binary mask
of the bone. When this is achieved, a contour and bounding box can easily be
obtained. As the lowest edge of the bounding box will be tangent to the bone,
a point corresponding to the MF must be determined. A line perpendicular to
the tangent line drawn from our point will be used to measure the width of the
bone.

Results after utilizing the HHF is seen in figure (21).
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Figure 21: Figure image (a) displays ROI exposed to a Gaussian blur with kernel
size 5, image (b) shows the Frangi filter response of image (a), image (c) shows
the HHF response of image (a).

Filling the small openings in the binary image from figure (21c), finding the
contour, and preserving the bounded regions results in a binary mask of the
bone seen in figure (22).

Figure 22: Figure image (a) displays a binary mask after a closing operation
is applied to figure (21c), image (b) shows the most prominent contour and
associated bounding box found in the image (a), image (c) shows a binary mask
of the region bounded by the contour.

Using the image seen in (22c) and drawing a line between an appropriate
point perpendicular to the bounding box, we can count the number of pixels on
the line overlapping the binary mask and calculate the bone width.
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Figure 23: Image (a) shows a suitable line overlapping the binary mask, whereas
(b) shows the same composition in the non-binary setting.

4.3 Results and discussion

The results of the measurements can be found in the appendix in table (4). Table
(1) shows the correlation of inter-observer reliability for the mean mandibular
cortical width for the experts and our experiments. Note that the correlation
between the two experts is 0.908%, although this value is high, it cannot be
regarded as ”ground truth”. In addition, we observe that algorithm 1 from the
first experiment has a much higher correlation with both experts than algorithm
2 from the second experiment, which included the HHF. Due to the stopping
criteria (threshold set at 50% ”porosity”), the first experiment was more suc-
cessful than the second. The latter failed to recognize the appropriate edge
of the bone and overextended. In addition, it failed several times to identify
the bone without including the ghost image of the spine, therefore, it was not
sufficiently robust. It is important to keep in mind that both schemes might
not measure at the correct location, since the mental foramen was not iden-
tified. Nevertheless, the first scheme involved measuring between lines wider
than the mental foramen, thus making it more likely that it had taken place at
the correct location. While we cannot be certain which method is more precise,
even though this can be inferred from a correlation table, we can infer from the
practice of utilizing these two methods that method 1 was more effective.

Table 1: Interobserver reliability for mean MCW

Inter-Item Correlation Matrix

Mean
Algo 1

Mean
Algo 2

Mean
Expert 1

Mean
Expert 2

Mean
Algo 1

1.000 .378 .922 .956

Mean
Algo 2

.378 1.000 .370 .483
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Mean
Expert 1

.922 .370 1.000 .908

Mean
Expert 2

.956 .483 .908 1.000
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Table 2: Statistics for algo 1

Intraclass Correlation Coefficient

Intraclass
Correlationb

95% Confidence
Interval

F-Test with
True value 0

Lower
Bound

Upper
Bound

Value df1 df2 Sig

Single
Measures

0.875a 0.772 0.931 28.197 45 90 0.000

Average
Measures

0.955c 0.910 0.976 28.197 45 90 0.000

Two-way mixed effects model where people effects are random
and measures effects are fixed.
a. The estimator is the same, whether the interaction effect is present or not.
b. Type A intraclass correlation coefficients using an absolute agreement definition.
c. This estimate is computed assuming the interaction effect is absent,
because it is not estimable otherwise.

Table 3: Statistics for algo 2

Intraclass Correlation Coefficient

Intraclass
Correlationb

95% Confidence
Interval

F-Test with
True value 0

Lower
Bound

Upper
Bound

Value df1 df2 Sig

Single
Measures

0.458a 0.162 0.723 3.400 17 34 0.001

Average
Measures

0.717c 0.367 0.887 3.400 17 34 0.001

Two-way mixed effects model where people effects are random
and measures effects are fixed.
a. The estimator is the same, whether the interaction effect is present or not.
b. Type A intraclass correlation coefficients using an absolute agreement definition.
c. This estimate is computed assuming the interaction effect is absent,
because it is not estimable otherwise.
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4.4 Classification?

5 Concluding remarks

In this study, we have investigated the properties of the mental foramen and
the jawbone in panoramic radiographs. As part of this process, we employed a
range of spatial and algorithmic filters in order to generate a sense of how we
could measure anatomical structures from radiographs. Due to the increasing
sophistication and importance of medical images for diagnostic purposes, it is
essential that we are aware of their characteristics and the pitfalls of working
with them. For the position of the mental foramen, we experimented with two
schemes, but unfortunately, our results were not satisfactory. Thus, we shifted
our focus to measuring the bone. We conducted our experiment in two different
ways and each yielded positive results. However, one of them proved to be
more reliable than the other. Our efforts to produce this body of work have
allowed us to gain an understanding of the inherent complexity of panoramic
radiographs and the techniques required in order to overcome the associated
obstacles. Additionally, we have a better understanding of the leading causes
of variability in panoramic images. Beneficial methods for bone measurement
have been observed, one of which being strong enough to overcome the challenge
of an unclear bone edge. A dentist could benefit from this kind of knowledge
as measuring anatomical structures is a time-consuming and challenging task.
It is increasingly necessary and desirable to provide an automated system for
handling such tasks, and we hope to further develop this methodology in the
future.

5.1 Future work

We have gained a solid understanding of relevant image processing techniques
through this project, and we have seen and experienced the challenges associ-
ated with radiograph analysis. It is intended that the next step in this work is
to implement a fully automated measurement procedure. A task of this scope
will not be trivial due to the complex nature of the radiographs. A possible
option would be to have several schemes work together in order to find the best
solution. Recent advances [26, 27, 28, 29] in machine learning have enabled ar-
tificial intelligence (AI) to perform impressively in complex data environments
where humans are unable to identify high-dimensional relationships. An exam-
ple of such a field is the field of osteoporosis, despite the technical and clinical
challenges in applying machine learning methods. Consequently, using AI is
also considered a viable option for achieving a completely automated process.
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5.2 Appendix

Table 4: The table shows left and right measurements of the mandibular cortical
width estimated by two experts and two algorithms. Absent results express that
the width has not been measured. If the measurement was not successful, it’s
labeled as ”no”.

Left
Expert 1

Right
Expert 1

Left
Expert 2

Right
Expert 2

Left
Algo 1

Right
Algo 1

Left
Algo 2

Right
Algo 2

0.46 0.46 0.46 0.48 no no no 0.623

0.64 0.58 0.66 0.57 0.605 0.579 0.633 0.514

0.54 0.56 0.49 0.52 no no 0.435 0.465

0.48 0.46 0.49 0.52 0.501 0.464 no no

0.27 0.33 0.23 0.36 no 0.269 no no

0.5 0.36 0.46 0.42 0.357 0.383 0.405 0.385

0.29 0.35 0.35 0.37 0.308 0.336 0.376 no

0.12 0.15 0.52 0.51 no no 0.494 0.376

0.36 0.39 no 0.395

0.48 0.53 0.59 0.53 0.455 0.532 0.494 no

0.16 0.29 0.37 0.39 0.256 0.318 no no

0.38 0.28 no 0.25 0.474 0.277

0.24 0.37 0.29 0.4 0.28 0.421 no 0.524

no no no no

0.41 0.43 0.39 0.38 no 0.375 no 0.445

0.42 0.55 0.42 0.41 0.371 0.412 0.415 no

0.61 0.52 0.57 0.58 0.58 0.48 0.553 no

0.38 0.45 0.35 0.41 0.394 no no no

0.5 0.5 0.58 0.54 no 0.523 no 0.484

0.22 0.22 0.18 0.22 no no no no

0.46 0.47 0.46 0.46 0.417 0.399 0.385 0.395

0.28 0.4 0.35 0.4 0.268 0.418 0.336 0.544

0.6 0.3 0.38 0.4 0.375 0.387 0.346 0.326

0.5 0.7 0.55 0.61 0.468 no 0.435 0.544

0.48 0.43 0.51 0.48 0.431 0.418 0.376 0.514
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0.2 no 0.21 0.22 0.2 0.204 no 0.178

0.13 no no no

0.19 0.16 0.23 0.166 0.168 0.37

0.38 0.3 0.3 0.36 0.334 0.3 no no

0.47 0.45 0.42 0.41 0.474 0.384 no no

0.26 0.4 0.27 no 0.366 no

no 0.16 0.18 0.15 0.165 0.191 0.277 no

no 0.44 0.41 0.4 0.37 0.34 0.445 no

0.69 0.64 0.65 0.6 0.639 0.55 0.672 no

0.36 0.35 0.34 0.38 0.369 0.359 0.346 0.326

0.46 0.42 0.46 0.43 0.417 no no 0.385

0.52 0.52 0.41 0.39 0.407 0.466 0.366 0.306

0.42 no 0.36 0.32 0.369 0.336 0.366 0.326

0.58 0.46 0.52 0.55 0.54 0.491 no no

no no no no

no no no no

0.56 0.52 0.54 0.51 0.439 0.539 no 0.563

0.46 0.42 0.45 0.44 0.439 0.42 0.553 0.395

0.58 0.5 0.52 0.55 0.473 0.521 0.573 no

no no 0.42 0.35 0.341 0.363 no 0.415

0.38 0.38 0.429 0.348 0.385 0.385

0.25 0.25 0.46 0.49 0.321 0.356 0.346 0.504

0.49 0.46 0.55 0.46 0.406 0.4 no no

0.58 0.52 0.55 0.48 0.57 0.467 no no

0.56 0.56 0.54 0.56 0.591 0.548 0.741 0.583

0.32 0.32 0.34 0.33 0.246 0.246 0.306 no

no 0.46 0.47 0.46 0.399 0.387 0.346 0.356

no 0.5 0.49 0.48 0.415 0.362 0.336 0.425

0.46 0.42 0.46 0.41 0.373 0.439 0.455 no

no no no no no no

0.42 0.42 0.37 0.4 0.417 0.371 0.316 0.395
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0.48 0.56 no no no no

0.34 0.52 0.51 0.49 0.398 0.437 no no

no no no no no no

no 0.27 0.28 0.3 no 0.278 no 0.346

0.44 0.48 0.498 no no no

0.48 0.45 0.405 0.433 0.366 0.356

0.5 0.59 no 0.44 no no

0.47 0.51 no no no no

0.51 0.48 no 0.456 0.366 0.405

0.6 0.57 0.56 0.592 no 0.544

0.54 0.55 no 0.52 no no

0.4 0.41 0.369 0.452 0.336 0.474

0.41 0.36 0.389 0.359 0.465 0.356

0.34 0.39 0.316 0.36 0.326 no

0.51 0.48 0.534 0.475 0.474 no

0.52 0.41 0.46 0.47 0.399 0.307 0.573 0.474

0.4 0.44 0.355 0.387 no 0.494

0.42 0.4 0.395 0.35 no 0.356

0.36 0.35 0.306 no no no

0.42 0.47 0.406 0.416 0.425 no

0.19 0.25 0.19 0.23 0.186 0.186 no no

0.41 0.47 0.45 0.42 0.45 0.441 no no

0.4 0.45 0.41 no 0.405 0.356

0.41 0.48 0.42 0.52 no no 0.385 no

0.38 0.44 0.329 0.39 0.474 no

0.52 0.51 0.498 0.463 no 0.376

0.59 0.49 0.55 0.49 0.435 0.504

0.38 0.38 0.383 0.356 0.405 0.356

0.58 0.52 no 0.46 no 0.553

0.38 0.24 0.414 0.174 no no

0.4 0.47 0.364 0.46 0.326 0.336
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0.59 0.61 0.62 0.488 0.623 0.534

0.18 0.22 0.252 0.249 0.376 0.385

0.5 0.51 0.495 0.488 0.455 no

0.47 0.4 0.431 0.382 0.376 0.316

0.52 0.39 0.475 0.35 0.524 0.356

0.35 0.36 no 0.344 no no

0.4 0.46 0.485 0.422 0.514 no

0.59 0.52 0.536 0.514 no no

0.46 0.53 no no no 0.267

0.5 0.47 0.446 0.446 0.376 no

0.45 0.37 0.404 0.331 0.395 0.287

0.41 0.38 0.403 0.394 no 0.484

0.41 0.38 no no no no

0.57 0.53 no 0.351 0.346 no

0.56 0.57 0.472 0.492 0.474 0.435

0.48 0.59 0.46 0.532 no no

0.62 0.56 0.57 0.572 0.573 0.593

0.61 0.54 0.538 0.539 no 0.474

0.5 0.57 0.427 0.529 0.425 no

0.57 0.62 no no no no

0.56 0.51 0.484 0.409 0.455 no

0.55 0.57 0.557 0.468 0.563 0.455

0.48 0.49 0.479 0.427 no 0.405

0.61 0.55 0.462 0.378 0.39 0.395

0.58 0.67 0.579 0.627 0.504 0.593

0.58 0.62 no 0.63 no no
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