Calculations

Volumetric cerebral blood flow was calculated as follows:

Equation 1: ICA or VA flow (mL/min) =
$$\left(\frac{1}{2} \cdot \text{Peak Envelope Velocity}\right) \times \left(\pi \left(\frac{1}{2} \cdot \text{diameter}\right)^2\right) \times 60$$

Global CBF (gCBF) was calculated as twice the sum of our unilateral ICA and VA measurements, acknowledging potential limitations ¹:

Equation 2: $gCBF(mL/min) = 2 \times (ICA flow + VA flow).$

CVR was determined by the slope of the relationships between gCBF and $PaCO_2$ (repeated with MCAv and PCAv). Shear stress was calculated as the product of shear rate and whole blood viscosity measured at 225 s⁻¹:

Equation 3: shear stress $(dyne/cm^2) = shear rate (s^{-1}) \cdot (whole blood viscosity (cP) / 100).$

To account for cerebral perfusion pressure (CPP = MAP - jugular venous pressure) in our analyses of the CBF responses, cerebrovascular conductance (CVC) was subsequently calculated:

Equation 4: CVC
$$(mL/min \cdot mm Hg^{-1}) = \frac{gCBF (mL/min)}{CPP (mm Hg)}$$

CVR of CVC was determined by the slope of the relationship between CVC and PaCO₂. Oxygen extraction fraction (OEF) - defined as the fraction of O_2 extracted from the arterial blood - is expressed as a percentage, where an increase can reflect either elevated O_2 consumption, diminished O_2 delivery, or both, and conversely a decrease of OEF can reflect either reduced O_2 consumption, increased O_2 delivery, or both:

Equation 5:
$$OEF(\%) = \frac{CaO_2 (mL/dL) - CvO_2 (mL/dL)}{CaO_2 (mL/dL)} \cdot 100$$

Cerebral delivery of oxygen (CDO₂):

Equation 6: $CDO_2 (mL/min) = \frac{gCBF (mL/min)}{1000} \cdot [CaO_2 (mL/dL) \cdot 10]$

Cerebral metabolic rate of oxygen consumption (CMRO₂) was calculated:

Equation 7:
$$CMRO_2 (mL/min) = \frac{gCBF (mL/min)}{1000} \cdot \{[CaO_2 (mL/dL) - CvO_2 (mL/dL)] \cdot 10\}$$

 CO_2 in blood is transported in three main modes; freely dissolved (i.e. that which is measured as PCO₂), and bound as both bicarbonate (HCO₃⁻), and as carbamate to Hb (HbCO₂), and it is the latter two by which the majority of CO₂ is carried ^{2–6}. As such, isovolumic haemodilution would certainly cause not only reduced CaO₂, but also the reduction of total CO₂ carrying capacity due to reduced [HCO₃⁻] and both erythrocyte-bound and cell-free Hb. Furthermore, at sites such as the capillaries where CO₂ diffuses freely across the vascular wall the appropriate measure is surely as a partial pressure, however, since dehydration and rehydration of CO₂ is catalytically accelerated by carbonic anhydrase to ~2 milliseconds ⁴, at sites such as large vessels where blood is conveyed away from tissues and diffusional areas, the partial pressure of CO₂ represents only a fraction of the total CO₂ being transported. As such, we assessed cerebral CO₂ parameters by calculating total arterial and cerebral venous CO₂ content (CCO₂) per Douglas *et al.* (1988) for comprehensive blood gas interpretation of the changes incurred by haemodilution. First, we calculated the plasma content of CO₂ (PCCO₂):

Equation 8: PaCCO₂ or PvCCO₂ =
$$2.226 \cdot s \cdot PCO_2 \cdot (1 + 10^{pH-pK})$$

Where *s* is the solubility coefficient of CO_2 and pK^t is the apparent pK [both calculated per Kelman (1967), with the assumption that core temperature was 37.5°C and unchanged with haemodilution]. PCCO₂ was calculated for both arterial (PCaCO₂) and jugular venous (PCjvCO₂) blood using arterial pH, PCO₂, and pK^t for PCaCO₂ and jugular venous pH, PCO₂, and pK^t for PCaCO₂. Then, CCO₂:

Equation 9:
$$CaCO_2 \text{ or } CvCO_2 = PCCO_2 \cdot \frac{(1 - 0.0289 \cdot [Hb])}{(3.352 - 0.456 \times SO_2) \cdot (8.142 - pH)}$$

Where SO_2 is O_2 saturation. CCO_2 was calculated for both arterial (CaCO₂) and jugular venous (CjvCO₂) blood, using arterial Hb, SO₂, and pH for CaCO₂ and jugular venous Hb, SO₂, and pH for CjvCO₂. Then, manipulation of the Fick equation with substitution of CaO₂ and CjvO₂ with CjvCO₂ and CaCO₂, respectively, allowed for the calculation of the CO₂ insertion fraction (CO₂IF), defined here as the CO₂ deposited into the jugular venous blood from the cerebral tissues, expressed as a percentage (analogous and inverse to oxygen extraction fraction). An increase in CO₂IF can reflect either elevated CO₂ production,

diminished CO_2 washout, or both; and, conversely, a decrease of CO_2IF can reflect either reduced CO_2 production, increased CO_2 washout, or both:

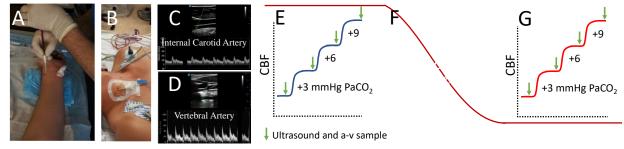
Equation 10:
$$\text{CO}_2\text{IF}(\%) = \frac{\text{CjvCO}_2(\text{mL/dL}) - \text{CaCO}_2(\text{mL/dL})}{\text{CjvCO}_2(\text{mL/dL})} \cdot 100$$

We also calculated cerebral CO_2 washout [in the supine position, jugular venous flow represents ~95% of total cerebral outflow ^{9,10}; as such, we used arterial gCBF (mL/min) in place of global cerebral venous blood flow]:

Equation 11: CO₂ washout (mL/min) = $\frac{\text{gCBF}(\text{mL/min})}{1000} \cdot [\text{CjvCO}_2 (\text{mL/dL}) \cdot 10]$

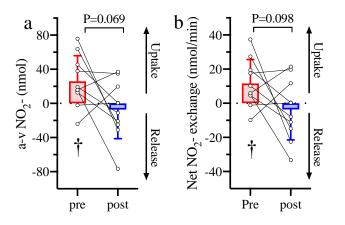
As well as the cerebral metabolic rate of CO₂ production (CMRCO₂):

Equation 12:
$$\text{CMRCO}_2(\text{mL/min}) = \frac{\text{gCBF}(\text{mL/min})}{1000} \cdot \{[\text{CjvCO}_2(\text{mL/dL}) - \text{CaCO}_2(\text{mL/dL})] \cdot 10\}$$

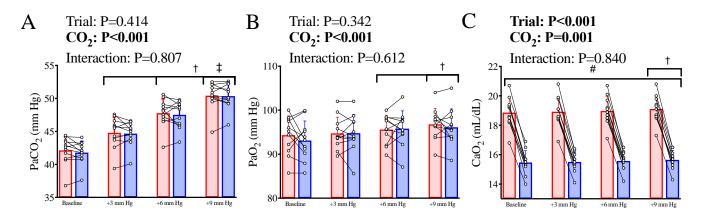

As another indicator of cerebral CO₂ status, we took CjvCO₂ to be an index of cerebral tissue CO₂. Although the majority of work published to date has utilized PCO₂ values [whether jugular venous, the cerebral a-v difference, or the arithmetic mean+1¹¹] as indicators of cerebral tissue or cerebrospinal fluid CO₂, given that cerebral tissue CO₂ status will change not only with PaCO₂, but also with CBF, intracellular [H⁺], [HCO₃-], and tissue metabolism, and also for the reasons given above for calculation of CO₂ content, we believe that CO₂ content in the cerebral effluent is a suitable marker of cerebral tissue CO₂ in this particular setting.

Given the previous work demonstrating changes in [Hb] may influence NO bioavailability / signal transduction $^{12-14}$, we also calculated trans-cerebral exchange of plasma NO₂⁻:

Equation 13: Plasma NO₂⁻ exchange (nmol/min) = $\frac{\text{gCBF}(\text{mL/min})}{1000} \cdot (1 - \frac{\text{Hct}}{100}) \cdot [\text{arterial NO}_2^- (\text{nM}) - \text{jugular}$ venous NO₂ (nM)]


Where positive values indicate cerebral net *uptake*, and negative values indicate net *release*.

Supplemental figures:


Supplemental Figure 1. Protocol schematic

A, B, C, and D represent aspects of instrumentation and measurement (A, placement of radial arterial catheter, B placement of internal jugular venous bulb catheter, C and D are screen captures of internal carotid artery and vertebral artery respectively). E, F, and G represent the protocol; i.e., cerebrovascular reactivity to CO₂ (3 stages of elevated PaCO₂) followed by haemodilution via blood removal and replacement with Albumin, targeting a ~20% reduction of blood volume, followed by post-haemodilution CVR. Aspects of the diagram have been reproduced with permission from ¹⁵.

Supplemental Figure 2. Trans-cerebral plasma nitrite exchange prior to and following haemodilution.

Panel A depicts the arterial-to-jugular venous (a-v) difference for plasma nitrite (NO_2^-) , while Panel B depicts the cerebral net exchange for plasma NO_2^- . An obelisk (†) symbol reflects a significant a-v difference or net exchange of plasma NO_2^- (one-sided t-test). Pre- to post-haemodilution comparisons were conducted with paired t-tests. N=10.

Supplemental Figure 3. Blood gases during hypercapnia prior to and following haemodilution.

Pre-haemodilution mean and standard deviation data presented in red, post-haemodilution mean and standard deviation data presented in blue, with individual data overlaid for both. A, partial pressure of arterial CO₂ (PaCO₂), B, partial pressure of arterial O₂ (PaO₂), C, arterial O₂ content (CaO₂). Comparisons conducted using linear mixed-model analyses with Bonferroni adjustments for post-hocs. Asterisk (*) symbols indicate a difference from baseline (P<0.05) in both trials, obelisk (†) symbols indicate a difference from the +3 mm Hg stage (P<0.05) in both trials, and double dagger (‡) symbols indicate a difference from the +6 mm Hg stage (P<0.05) in both trials. While hash symbols (#) indicate a difference (P<0.05) between pre and post haemodilution in all CVR stages. N=11

- 1. Friend AT, Rogan M, Rossetti GMK, et al. Bilateral regional extracranial blood flow regulation to hypoxia and unilateral duplex ultrasound measurement error. *Exp Physiol* 2021; 106: 1535–1548.
- 2. Margaria R. The contribution of hemoglobin to acid-base equilibrium of the blood in health and disease. *Clinical chemistry* 1957; 3: 306.
- 3. Margaria R. On the state of CO2 in blood and haemoglobin solutions, with an appendix on some osmotic properties of glycine in solution. *J Physiol* 1931; 73: 311.
- 4. Geers C, Gros G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. *Physiol Rev* 2000; 80: 681–715.
- 5. Roughton FJW. RECENT WORK ON CARBON DIOXIDE THE BLOOD TRANSPORT BY THE BLOOD. *Physiol Rev* 1935; 15: 241-296.
- 6. van Slyke DD. The carbon dioxide carriers of the blood. *Physiol Rev* 1921; 1: 141–176.
- 7. Douglas AR, Jones NL, Reed JW. Calculation of whole blood CO2 content. *J Appl Physiol* 1988; 65: 473–477.
- 8. Kelman GR. Digital computer procedure for the conversion of PCO2 into blood CO2 content . *Respiration physiology* 1967; 3: 111–115.
- 9. Gisolf J, van Lieshout JJ, van Heusden K, et al. Human cerebral venous outflow pathway

depends on posture and central venous pressure. J Physiol 2004; 560: 317-327.

- 10. Manuel Valdueza J, von Münster T, Hoffman O, et al. Postural dependency of the cerebral venous outflow. *The Lancet (British edition)* 2000; 355: 200–201.
- 11. Fencl V. Acid-Base Balance in Cerebral Fluids. In: *Handbook of Physiology, The Respiratory System II, Control of Breathing*. 1986, pp. 115–140.
- 12. Tremblay JC, Hoiland RL, Howe CA, et al. Global REACH 2018: High Blood Viscosity and Hemoglobin Concentration Contribute to Reduced Flow-Mediated Dilation in High-Altitude Excessive Erythrocytosis. *Hypertens (Dallas, Tex 1979)* 2019; 73: 1327–1335.
- 13. Hoiland RL, Tremblay JC, Stacey BS, et al. Acute reductions in haematocrit increase flow-mediated dilatation independent of resting nitric oxide bioavailability in humans. *J Physiol* 2020; 598: 4225–4236.
- 14. Azarov I, Huang KT, Basu S, et al. Nitric Oxide Scavenging by Red Blood Cells as a Function of Hematocrit and Oxygenation. *J Biol Chem* 2005; 280: 39024–39032.
- 15. Hoiland RL, Caldwell HG, Carr JMJ. R, et al. Nitric oxide contributes to cerebrovascular shear-mediated dilatation but not steady-state cerebrovascular reactivity to carbon dioxide. *J Physiol* 2021; 0: 1–19.