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Web Appendix A: DERIVATION OF REGRET FUNCTION

If we allow for heteroskedastic errors across different alternatives, we can assume that

ξj ∼ N(0, σ2
j )

Eξ
[

max
n6=j
{Vn + ηn + ξn}

]
=
∑
n6=j

[∫
(Vn + ηn + ξn)f(ξn) · Pr(Vn + ηn + ξn > Vm + ηm + ξm,∀m 6= n)dξn

]

=
∑
n 6=j

[∫
(Vn + ηn + ξn)f(ξn)Fξ1(Vn + ηn + ξn − V1 − η1) · · ·

FξJ (Vn + ηn + ξn − VJ − ηJ)dξn

]

=
∑
n 6=j

[∫
(Vn + ηn + ξn)f(ξn)

∏
m 6=n

Φ

(
Vn + ηn + ξn − Vm − ηm

σm

)
dξn

]

Therefore,

Rj = Eξ
[

max
n6=j
{Vn + ηn + ξn}

]
− Eξ

[
Vj + ηj + ξj

]
=
∑
n 6=j

[∫
(Vn + ηn + ξn)f(ξn)

∏
m 6=n

Φ

(
Vn + ηn + ξn − Vm − ηm

σm

)
dξn

]
− Vj − ηj
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Web Appendix B: DUAL-GOAL PROGRAMMING SOLUTIONS FOR DIS-

CRETE CHOICE

We consider the simplest discrete choice situations where there are two goods to illustrate

alternative cases of the original and ε-constraint formulations.

B.1 Case 1

Original problem.

max U(x1, x2) = 2x1 + x2

min R(x1, x2) = −3x1 − x2

s.t. x1 + x2 ≤ 1, x1, x2 ∈ {0, 1}

The only solution to the problem is (x∗1, x
∗
2) = (1, 0) and it is Pareto optimal since both

objectives are optimized simultaneously at this point (Figure W1).

Figure W1: Dual-goal Programming Solution (Case 1)
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Corresponding ε-constraint formulations.

There are two corresponding ε-constraint formulations. We estimate both of the models

and the model fits are different depending on which objective function is used as an additional

constraint. The additional bound θ that determines the considered choice set of offerings is

identified by the observed consideration set data in our proposed model.

Figure W2 depicts the first approach where R is used as an additional constraint. The

solution derived from the ε-constraint approach is equivalent to the one from the original

dual-goal programming as long as minR(x1, x2) ≤ θ (Figure W2(a) and W2(b)). Further-

more, if maxR(x1, x2) ≤ θ (Figure W2(b)), we can see a special case where good 1 and 2

are both feasible and 1 is most preferred.

Figure W2: Additional constraint R(x1, x2) ≤ θR (Case 1)

(a) (b)

Figure W3 is the case where utility function is used as an additional constraint (i.e.,

−U(x1, x2) ≤ θ). As long as min−U(x1, x2) ≤ θ, the solution derived from ε-constraint

approach is equivalent to the one from the original dual-goal problem (Figure W3(a) and

W3(b)).
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Figure W3: Additional constraint −U(x1, x2) ≤ θU (Case 1)

(a) (b)

B.2 Case 2

We change the slope of the R function to illustrate the robustness of the ε-constraint formu-

lation.

Original problem.

max U(x1, x2) = 2x1 + x2

min R(x1, x2) = −3x1 + x2

s.t. x1 + x2 ≤ 1, x1, x2 ∈ {0, 1}

The only solution to the problem is (x∗1, x
∗
2) = (1, 0) and it is Pareto optimal, or not domi-

nated by other solution points. Both objectives are optimized simultaneously at this point

(Figure W4).
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Figure W4: Dual-goal Programming Solution (Case 2)

Corresponding ε-constraint formulations.

Using the same logic as in Case 1, we can draw the Figure W5 and W6, respectively.

Both formulations lead to the same optimal solution.

Figure W5: Additional constraint R(x1, x2) ≤ θR (Case 2)

(a) (b)
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Figure W6: Additional constraint −U(x1, x2) ≤ θU (Case 2)

(a) (b)

B.3 Case 3

We again change the slope of the R function to illustrate the case where there are multiple

Pareto optimal solutions that are non-dominated.

Original problem.

max U(x1, x2) = 2x1 + x2

min R(x1, x2) = −x1 − 3x2

s.t. x1 + x2 ≤ 1, x1, x2 ∈ {0, 1}

Two possible solutions are (x∗1, x
∗
2) = (1, 0) and (x∗1, x

∗
2) = (0, 1). Both of them are Pareto

optimal (Figure W7). For solution set (x∗1, x
∗
2) = (1, 0), there is no other solution that better

maximizes U and minimizes R simultaneously. The same claim can be made for the solution

(x∗1, x
∗
2) = (0, 1).
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Figure W7: Dual-goal Programming Solution (Case 3)

Corresponding ε-constraint formulations.

If we use R as an additional constraint (Figure W8), we can now have either of the two

solutions depending on the value of θ. Smaller values of θ lead to one of the two potential

solutions point as optimal as shown in Figure W8(a). Larger values of θ lead to both

points being feasible, but (x1, x2) = (1, 0) is optimal as shown in Figure W8(b). Here, the

ε-constraint formulation leads to a unique solution given θ.

Figure W8: Additional constraint R(x1, x2) ≤ θR (Case 3)

(a) (b)

Figure W9 illustrates the alternative ε-constraint formulation, wherein the value of θU
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plays the same role.

Figure W9: Additional constraint −U(x1, x2) ≤ θU (Case 3)

(a) (b)

B.4 Case 4

Our final case illustrates the possibility of three possible solutions that are Pareto optimal.

We show that the value of θ leads to different optimal solutions, highlighting the importance

of the observed consideration set data.

Original problem.

max U(x1, x2) = 2x1 + x2

min R(x1, x2) = 3x1 + x2

s.t. x1 + x2 ≤ 1, x1, x2 ∈ {0, 1}

The three possible solutions are (x∗1, x
∗
2) = (1, 0), (x∗1, x

∗
2) = (0, 1), and (x∗1, x

∗
2) = (0, 0),

and no solution set dominates the others. Therefore all of them are Pareto optimal (Figure

W10).
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Figure W10: Dual-goal Programming Solution (Case 4)

Corresponding ε-constraint formulations.

As shown above, the optimal choice is dependent on the threshold value θ. Figure W11

illustrates the ε-constraint formulation with R given as an additional constraint, and Figure

W12 illustrates the formulation when U serves as an additional constraint.

Figure W11: Additional constraint R(x1, x2) ≤ θR (Case 4)

(a) (b) (c)
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Figure W12: Additional constraint −U(x1, x2) ≤ θU (Case 4)

(a) (b) (c)

The ε-constraint formulation always leads to a unique optimal solution given θ, even

when there exists a set of Pareto optimal solution points in dual-goal optimization problem.
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Web Appendix C: GENERALIZATION OF THE ε-CONSTRAINT FRAME-

WORK

The model of dual-goal pursuit can be extended to multiple goal optimization problems. If

there are N objective functions {fn} subject to gm(x) ≤ Cm(m = 1, · · · ,M) constraints,

the multiple objective optimization problem is specified as:

min
x

f1(x) · · · min fN(x)

s.t. gm(x) ≤ Cm, m = 1, · · · ,M

We can reformulate the problem into optimizing one of the objective functions with the

remaining N − 1 goals put as additional constraints such that:

min
x

f1(x)

s.t. fn(x) ≤ εn, n = 2, · · · , N, gm(x) ≤ Cm, m = 1, · · · ,M

Alternatively, we can optimize fn with other objectives converted into additional constraints.

The data required for estimation do not change as the number of goals increases, and the

consideration set data is rationalized in terms of the conjunction (i.e., minimum subset) of

the constraints in each formulation.
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Web Appendix D: CLARK’S APPROXIMATION ALGORITHM

According to Clark (1961),

E
[

max{X1, X2, · · · , Xm, · · · , XM−1XM}
]

= E
[

max{X1, · · · , Xm, · · · ,max(XM−1, XM)}
]

≈ E
[

max{X1, · · · , Xm, · · · , XM−2, YM−1}
]

where YM−1 is a two-moment Normal approximation to max(XM−1, XM).

If XM−1 ∼ N(µM−1, σ
2
M−1), XM ∼ N(µM , σ

2
M), the first moment of max(XM−1, XM) is

ν1 = µM−1Φ

(
µM−1 − µM√
σ2
M−1 + σ2

M

)
+µMΦ

(
− µM−1 − µM√

σ2
M−1 + σ2

M

)
+
(√

σ2
M−1 + σ2

M

)
φ

(
µM−1 − µM√
σ2
M−1 + σ2

M

)

and the second moment of max(XM−1, XM) is

ν2 = (µ2
M−1 + σ2

M−1)Φ

(
µM−1 − µM√
σ2
M−1 + σ2

M

)
+ (µ2

M + σ2
M)Φ

(
− µM−1 − µM√

σ2
M−1 + σ2

M

)

+ (µM−1 + µM)
(√

σ2
M−1 + σ2

M

)
φ

(
µM−1 − µM√
σ2
M−1 + σ2

M

)

The expectation and variance of max(XM−1, XM) is

E
[

max(XM−1, XM)
]

= ν1

and

V ar
[

max(XM−1, XM)
]

= ν2 − ν21

Now we have YM−1
approx∼ N(ν1, ν2 − ν21). The algorithm is generalized in the following.
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Algorithm 1: Clark’s approximation algorithm

1 Initialize ; m = M

2 while m ≥ 2 do

3 If Xm−1 ∼ N(µm−1, σ
2
m−1), Xm ∼ N(µm, σ

2
m),

4 Calculate

ν1 = µm−1Φ
(

µm−1−µm√
σ2
m−1+σ

2
m

)
+ µmΦ

(
− µm−1−µm√

σ2
m−1+σ

2
m

)
+
(√

σ2
m−1 + σ2

m

)
φ
(

µm−1−µm√
σ2
m−1+σ

2
m

)
ν2 = (µ2

m−1 + σ2
m−1)Φ

(
µm−1−µm√
σ2
m−1+σ

2
m

)
+ (µ2

m + σ2
m)Φ

(
− µm−1−µm√

σ2
m−1+σ

2
m

)
+ (µm−1 +

µm)
(√

σ2
m−1 + σ2

m

)
φ
(

µm−1−µm√
σ2
m−1+σ

2
m

)
5 Define Ym−1

Ym−1 = max(Xm−1, Xm)
approx∼ N(ν1, ν2 − ν21)

6 Update Xm−1

Xm−1 = Ym−1

7 m = m− 1

Output: E(Xm)
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Web Appendix E: SIMULATION RESULTS

Figure W1: Simulation Results (D=4000)

(a) β1 (b) β2

(c) β3 (d) β4

(e) β5 (f) β6

(g) β7 (h) β8

(i) β9 (j) β10

(k) θ
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Web Appendix F: ESTIMATION ALGORITHM

F.1 Notation

Respondents: i = 1, · · · , N

Alternatives: j = j1, · · · , jJ

Attributes: k = 1, · · · , K

Choice occasions: t = 1, · · · , T

F.2 Estimation Procedure

Step 1. Initialize values for all variables to be inferred: βi,β,Σβ

where βi =

(
βi1, · · · βiK , θi

)T
. We assume

βi ∼MVN

(
β, Σβ

)

Step 2. Draw ηdij
i.i.d∼ EV (0, 1) (D=4000)

Step 3. Generate βi for i = 1, 2, ..., N given β, and Σβ via the random-walk Metropolis-

Hastings algorithm:

(a) Draw candidate βi
new ∼MVN(βi

old, s2I). βi
old is the previous value of βi and

s is the step size.

(b) Calculate Rd
ijt ∀j,∀t

Rd
ijt = E

[
max

( K∑
k=1

x
′

1tkβik+η
d
i1+ξi1, · · · ,

K∑
k=1

x
′

Jtkβik+η
d
iJ+ξiJ

)]
−

K∑
k=1

x
′

jtkβk−ηdij

using Clark’s approximation. Here, Rd
ijt is a D-dimensional vector.
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(c) For {j1, · · · , jm ∈ Cit}, {jm+1, · · · , jJ /∈ Cit}, evaluate approximate likelihood

using Monte Carlo method:

Li =
T∏
t=1

[
1

D

D∑
d=1

I(Rd
ij1t
≤ θiκ1 , · · · , Rd

ijmt ≤ θiκm , · · · , Rd
i,jm+1t

> θiκm+1 , · · · , Rd
ijJ t

> θiκJ )

× 1

D′

D
′∑

d′=1

I
{
Vijt + ηd

′

ijt > Vij′ t + ηd
′

ij′ t
, ηd

′

ijm ∈
{
η |Rijt ≤ θij ∀j ∈ C

}}]

where {ηd
′

ij } are realized errors such that I{Rd
ij1t
≤ θiκ1 , · · · , Rd

ijmt ≤ θiκm , · · · , Rd
i,jm+1t

>

θiκm+1 , · · · , Rd
ijJ t

> θiκJ} = 1 and D
′
= |{ηd

′

ij }|.

(d) Accept βi
new with following probability:

α = min

[
1,

Li (βi
new) · π(βi

new|β,Σβ)

Li (βi
old) · π(βi

old|β,Σβ)

]
,

where π(·|β,Σβ) is the density of the normal distribution with mean β and

variance Σβ.

(e) Generate β and Σβ given {βi} via the following Bayesian multivariate regression

(Rossi et al. 2005):

{βi} = β + ζi, ζi ∼MVN(0,Σβ).

Prior distributions are given by β|Σβ ∼MVN
(
β, Σβ⊗A−1

)
and Σβ ∼ IW(ν, ν ·

Invar), where nvar denotes the dimension of β, and Invar is an (nvar×nvar) identity

matrix.

(f) Repeat (a)-(e)
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Web Appendix G: CALCULATION OF FIT MEASURES

G.1 Log-Marginal Density (LMD-NR)

Following Newton and Raftery (1994)’s,

LMD =

[
1

R

R∑
r=1

1

l(Br|M)

]−1

where R is the number of MCMC iterations, Br is the r-th posterior draw of the parameters,

M is the given model, and l is the likelihood values.

G.2 Log-Marginal Density (LMD-GD)

Following Gelfand and Dey (1994)’s,

LMD =

[
1

R

R∑
r=1

q(Br)

l(Br|M)p(Br|M)

]−1

where q is an auxiliary density function (multivariate normal in our analysis).

G.3 Hit Probability

Consideration Set Hit Probability

=
1

N × T ×R

N∑
i=1

T∑
t=1

R∑
r=1

[
Pr
(
R̂ij1tr < θ̂ij1r, · · · , R̂ijmtr < θ̂ijmr, R̂ijm+1tr > θ̂ijm+1r · · · , R̂ijtr > θ̂ijMr

)]
for j1, · · · , jm ∈ C and jm+1, · · · , jM /∈ C where C is the consideration set.

Choice Hit Probability given Consideration Set

=
1

N × T ×R

N∑
i=1

T∑
t=1

R∑
r=1

J∏
j=1

[
exp(uijtr(Br|M))∑

j′∈C exp(uij′ tr(Br|M))

]I{yit=j}[
1− exp(uijtr(Br|M))∑

j′∈C exp(uij′ tr(Br|M))

]I{yit 6=j}
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G.4 WAIC

Following Watanabe (2010)’s,

WAIC = −2
N∑
i=1

log
( 1

R

R∑
r=1

p(yi|Br)
)

+ 2
N∑
i=1

V R
r=1

(
log p(yi|Br)

)

where V is the sample variance.
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