## Supplementary Materials

Table S1: PET and MRI Data Acquisition Parameters

| Parameter | Unit | Value |
| :---: | :---: | :---: |
| PET |  |  |
| Matrix |  | $192 \times 192$ |
| FOV | mm | 300 |
| Voxel size | mm | $1.56 \times 1.56 \times 2.78$ |
| Slice thickness | mm | 2.78 |
| Scan duration | min | 10:00 |
| MRA |  |  |
| TR/TE | ms | 22/2.4 |
| Number of slices |  | 120 |
| Flip angle | degrees | 15 |
| Slice thickness | mm | 1.2 |
| Matrix |  | $512 \times 512$ |
| FOV | $\mathrm{mm}^{2}$ | $220 \times 220$ |
| Voxel size | $\mathrm{mm}^{2}$ | $0.43 \times 0.43$ |
| Scan duration | min | 4:03 |


| TR/TE | ms | $667 / 15$ |
| :--- | :--- | :--- |
| Number of slices |  | 30 |
| Flip angle | degrees | 20 |
| FOV | cm | $24 \times 24$ |
| Matrix |  | $256 \times 256$ |
| Slice thickness | mm | 5 |
| Scan duration | min | $1: 56$ |

## Single-PLD PCASL

| Labeling pulse shape |  | Hanning |
| :--- | :--- | :--- |
| Labeling pulse duration | ms | 0.5 |
| Labeling pulse spacing | ms | 1.22 |
| Mean B1 | $\mu \mathrm{T}$ | 1.4 |
| Mean gradient strength | $\mathrm{mT} / \mathrm{m}$ | 0.7 |
| Maximal gradient strength | $\mathrm{mT} / \mathrm{m}$ | 7 |
| Bolus duration | ms | 1450 |
| TR/TE | ms | $4854 / 10.7$ |
| PLD | ms | 2025 |
| NEX |  | 3 |
| Acquisition Matrix |  | 8 interleaved spirals $\times 512$ |
|  |  | sampling points per spiral |


| Number of slices |  | 36 |
| :--- | :--- | :--- |
| FOV | $\mathrm{cm}^{3}$ | 24 |
| Acquisition Voxel size | mm | $3.73 \times 3.73 \times 4$ |
| Reconstruction Voxel size | mm | $1.875 \times 1.875 \times 4$ |
| Number of Background suppression pulses |  | 5 |
| Scan duration | min | $4: 13$ |
|  |  |  |
| Multi-PLD PCASL |  |  |
| Labeling pulse shape | ms | 0.5 |
| Labeling pulse duration | ms | 1.22 |
| Labeling pulse spacing | $\mu \mathrm{T}$ | 1.8 |
| Mean B1 | $\mathrm{mT} / \mathrm{m}$ | 0.7 |
| Mean gradient strength | $\mathrm{mT} / \mathrm{m}$ | 4.5 |
| Maximal gradient strength | ms | 1700 |
| Bolus duration | ms | $5652 / 10.7$ |
| TR/TE | ms | $300,2000,3700$ |
| PLD |  | 4 interleaved spirals X 512 |
| Acquisition Matrix |  | sampling points per spiral |
| NEX |  | 2 |
| Number of slices | 36 |  |


| FOV | $\mathrm{cm}^{3}$ | 24 |
| :--- | :--- | :--- |
| Acquisition Voxel size | mm | $5.77 \times 5.77 \times 4$ |
| Reconstruction Voxel size | mm | $1.875 \times 1.875 \times 4$ |
| Number of Background suppression pulses |  | 5 |
| Scan duration | min | $4: 47$ |
| DSC |  |  |
| TR/TE | ms | $1800 / 40$ |
| NEX |  | 1 |
| Flip angle | degrees | 60 |
| Slice thickness | mm | 5 |
| Pre-delay | s | 18 |
| Number of slices | cm | $22 \times 22$ |
| FOV |  | $128 \times 128$ |
| Matrix |  | 60 |
| Timepoints | mm | $1.719 \times 1.719 \times 5$ |
| Acquisition Voxel size | min | $1: 48$ |

Table S2: Comparison between PET, Single- and Multi-PLD PCASL techniques

|  | PET | Single-PLD PCASL | Multi-PLD PCASL |
| :--- | :---: | :---: | :---: |
| Quantitative Comparison |  |  |  |
| Image Resolution $\left(\mathrm{mm}^{3}\right)$ | $1.56 \times 1.56 \times 2.78$ | $3.73 \times 3.73 \times 4$ | $5.77 \times 5.77 \times 4$ |
| FOV $\left(\mathrm{cm}^{3}\right)$ | 30 | 24 | 24 |
| Scan duration $(\mathrm{min})$ | 10 | 4.13 | $4: 47$ |
| Image reconstruction time $(\mathrm{min})$ | 5 | Less than 1 min | Less than 1 min |
| CBF change in affected regions $(\mathrm{ml} / 100 \mathrm{~g} / \mathrm{min})$ | 15.6 | 12.7 | 18.8 |
| CBF change in unaffected regions $(\mathrm{ml} / 100 \mathrm{~g} / \mathrm{min})$ | 27.7 | 15.3 | 23.7 |
| Mean CVR of affected regions $(\%)$ | 30.8 | 24.1 | 34.3 |
| Mean CVR of unaffected regions $(\%)$ | 33.2 | 24.5 | 37.2 |
| Qualitative Comparison |  |  | Blood water as the |

## (A) Single-PLD PCASL vs PET


(B) Multi-PLD PCASL vs PET

(C) Concordance Correlation Coefficient Between ASL and PET


Figure S1: Relationship between CVR of all the regions (affected and unaffected) measured by ASL and PET. There were biases of 2.8\% and $8.73 \%$ for single- and multi-PLD PCASL respectively. Multi-PLD PCASL achieved a stronger correlation with the reference PET technique.


Figure S2: Relationship between $\triangle C B F$ measured by ASL and PET. Between multi-PLD PCASL and PET techniques, there were a bias of 3.2 and $4.0 \mathrm{ml} / 100 \mathrm{~g} / \mathrm{min}$ in the $\triangle C B F$ of affected and unaffected territories respectively. Both ASL techniques had a similar concordance correlation coefficient in regions affected by stenosis/occlusion while multi-PLD PCASL showed higher agreement with PET in normal (unaffected) territories.

