Supplementary Material for "Considerations for Fitting Dynamic Bayesian Networks with Latent Variables: A Monte Carlo Study"

Ray E. Reichenberg
University of Nebraska - Lincoln
Roy Levy
Arizona State University
Adam Clark
University of Nebraska - Lincoln

Results of the Simulation Study

Tables S1 - S10 contain the results of the parameter recovery simulation study for the raw bias, relative bias, and efficiency in the estimation of the transition probability and measurement model parameters as well as classification accuracy values for all models save for the L-CDM model. Table S11 presents the relative bias values for the L-DCM measurement model parameters. Additional tables, such as results for other parameters (i.e., the prior probability of mastery parameter) and/or for other indices (i.e., root mean squared error [RMSE]) are available upon request of the corresponding author (rreichenberg@unl.edu).

Table S1.
Raw bias in the estimation of the transition probability across manipulated design facets.

		$M Q=$ Low				$M Q=$ Med		
		$N=200$	$N=400$	$N=1000$	$N=200$	$N=400$	$N=1000$	
$T P=$ Low, $I P=$ Low	$J=1, T=5$.166	.129	.102	.008	.001	.002	
	$J=1, T=10$.047	.025	.015	.000	.001	.003	
	$J=3, T=5$.041	.023	.015	.001	.000	.001	
	$J=3, T=10$.005	.005	.007	.001	.001	.001	
	$J=5, T=5$.014	.008	.005	.000	.001	.001	
	$J=5, T=10$.004	.005	.005	.002	.000	.001	
$T P=$ High, $I P=$ Low	$J=1, T=5$.061	.045	.037	.000	.001	-.001	
	$J=1, T=10$.018	.007	-.003	-.003	-.001	.000	
	$J=3, T=5$.024	.011	.004	.002	.001	.001	
	$J=3, T=10$.000	.003	-.003	.002	.001	.002	
	$J=5, T=5$.011	.004	.003	.002	.001	.001	
	$J=5, T=10$	-.003	.001	.002	.001	.001	.001	
$T P=$ Low, $I P=$ High	$J=1, T=5$.158	.118	.080	-.002	.000	.002	
	$J=1, T=10$.061	.028	.018	.000	.002	.003	
	$J=3, T=5$.027	.015	.009	-.001	.000	.001	
	$J=3, T=10$.004	.005	.008	.002	.001	.000	
	$J=5, T=5$.005	.004	.005	.002	.001	.001	
	$J=5, T=10$.003	.005	.007	.003	.000	.000	
$T P=$ High, $I P=$ High	$J=1, T=5$.047	.049	.029	-.011	-.008	-.002	
	$J=1, T=10$.021	.005	-.007	-.010	-.004	.000	
	$J=3, T=5$.014	.007	-.001	-.001	.001	.002	
	$J=3, T=10$.003	-.008	-.006	-.001	-.001	.001	
	$J=5, T=5$	-.002	-.002	.003	.001	.000	.001	
	$J=5, T=10$	-.004	.000	.005	.002	.001	.001	

Table S2.
Relative bias in the estimation of the transition probability across manipulated design facets.

		$M Q=$ Low				$M Q=$ Med		
		$N=200$	$N=400$	$N=1000$	$N=200$	$N=400$	$N=1000$	
$T P=$ Low, $I P=$ Low	$J=1, T=5$	83.00%	64.50%	51.00%	4.00%	0.50%	1.00%	
	$J=1, T=10$	23.50%	12.50%	7.50%	0.00%	0.50%	1.50%	
	$J=3, T=5$	20.50%	11.50%	7.50%	0.50%	0.00%	0.50%	
	$J=3, T=10$	2.50%	2.50%	3.50%	0.50%	0.50%	0.50%	
	$J=5, T=5$	7.00%	4.00%	2.50%	0.00%	0.50%	0.50%	
	$J=5, T=10$	2.00%	2.50%	2.50%	1.00%	0.00%	0.50%	
$T P=$ High, $I P=$ Low	$J=1, T=5$	15.25%	11.25%	9.25%	0.00%	0.25%	-0.25%	
	$J=1, T=10$	4.50%	1.75%	-0.75%	-0.75%	-0.25%	0.00%	
	$J=3, T=5$	6.00%	2.75%	1.00%	0.50%	0.25%	0.25%	
	$J=3, T=10$	0.00%	0.75%	-0.75%	0.50%	0.25%	0.50%	
	$J=5, T=5$	2.75%	1.00%	0.75%	0.50%	0.25%	0.25%	
	$J=5, T=10$	-0.75%	0.25%	0.50%	0.25%	0.25%	0.25%	
$T P=$ Low, $I P=$ High	$J=1, T=5$	79.00%	59.00%	40.00%	-1.00%	0.00%	1.00%	
	$J=1, T=10$	30.50%	14.00%	9.00%	0.00%	1.00%	1.50%	
	$J=3, T=5$	13.50%	7.50%	4.50%	-0.50%	0.00%	0.50%	
	$J=3, T=10$	2.00%	2.50%	4.00%	1.00%	0.50%	0.00%	
	$J=5, T=5$	2.50%	2.00%	2.50%	1.00%	0.50%	0.50%	
	$J=5, T=10$	1.50%	2.50%	3.50%	1.50%	0.00%	0.00%	
$T P=$ High, $I P=$ High	$J=1, T=5$	11.75%	12.25%	7.25%	-2.75%	-2.00%	-0.50%	
	$J=1, T=10$	5.25%	1.25%	-1.75%	-2.50%	-1.00%	0.00%	
	$J=3, T=5$	3.50%	1.75%	-0.25%	-0.25%	0.25%	0.50%	
	$J=3, T=10$	0.75%	-2.00%	-1.50%	-0.25%	-0.25%	0.25%	
	$J=5, T=5$	-0.50%	-0.50%	0.75%	0.25%	0.00%	0.25%	
	$J=5, T=10$	-1.00%	0.00%	1.25%	0.50%	0.25%	0.25%	

Table S3.
Efficiency in the estimation of the transition probability across manipulated design facets.

| | | $M Q=$ Low | | | $M Q=$ Med | | |
| :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $N=200$ | $N=400$ | $N=1000$ | $N=200$ | $N=400$ | $N=1000$ |
| $T P=$ Low, $I P=$ Low | $J=1, T=5$ | .192 | .146 | .089 | .045 | .031 | .020 |
| | $J=1, T=10$ | .113 | .069 | .040 | .024 | .017 | .011 |
| | $J=3, T=5$ | .096 | .061 | .037 | .024 | .016 | .011 |
| | $J=3, T=10$ | .043 | .029 | .019 | .017 | .011 | .007 |
| | $J=5, T=5$ | .059 | .039 | .023 | .020 | .015 | .010 |
| | $J=5, T=10$ | .030 | .020 | .013 | .016 | .011 | .007 |
| $T P=$ High, $I P=$ Low | $J=1, T=5$ | .181 | .136 | .087 | .060 | .046 | .029 |
| | $J=1, T=10$ | .141 | .104 | .064 | .043 | .031 | .021 |
| | $J=3, T=5$ | .113 | .075 | .047 | .033 | .024 | .015 |
| | $J=3, T=10$ | .076 | .052 | .034 | .029 | .020 | .013 |
| | $J=5, T=5$ | .074 | .055 | .034 | .028 | .021 | .013 |
| | $J=5, T=10$ | .055 | .037 | .023 | .026 | .020 | .012 |
| $T P=$ Low, $I P=$ High | $J=1, T=5$ | .185 | .152 | .100 | .048 | .033 | .022 |
| | $J=1, T=10$ | .141 | .088 | .047 | .029 | .020 | .013 |
| | $J=3, T=5$ | .115 | .062 | .039 | .028 | .020 | .012 |
| | $J=3, T=10$ | .051 | .035 | .022 | .020 | .013 | .009 |
| | $J=5, T=5$ | .060 | .043 | .026 | .024 | .018 | .011 |
| | $J=5, T=10$ | .033 | .024 | .016 | .019 | .014 | .008 |
| $T P=$ High, $I P=$ High | $J=1, T=5$ | .188 | .153 | .104 | .066 | .049 | .035 |
| | $J=1, T=10$ | .160 | .119 | .079 | .052 | .037 | .023 |
| | $J=3, T=5$ | .126 | .091 | .055 | .038 | .027 | .018 |
| | $J=3, T=10$ | .100 | .063 | .039 | .033 | .023 | .014 |
| | $J=5, T=5$ | .090 | .062 | .041 | .035 | .024 | .015 |
| | $J=5, T=10$ | .069 | .046 | .029 | .030 | .021 | .014 |

Table S4.
Raw bias in the estimation of the conditional probability of a correct response for a Master.

		$M Q=$ Low				$M Q=$ Med		
		$N=200$	$N=400$	$N=1000$	$N=200$	$N=400$	$N=1000$	
$T P=$ Low, $I P=$ Low	$J=1, T=5$	-.027	-.028	-.033	-.008	-.002	-.001	
	$J=1, T=10$	-.003	-.004	.000	-.001	.001	.002	
	$J=3, T=5$	-.011	-.009	-.005	-.003	-.002	.000	
	$J=3, T=10$.000	.000	.003	.000	.000	.000	
	$J=5, T=5$	-.004	-.003	.000	-.004	-.002	.000	
	$J=5, T=10$.000	.001	.002	-.001	-.001	.000	
$T P=$ High, $I P=$ Low	$J=1, T=5$.001	-.002	-.004	.001	.000	.002	
	$J=1, T=10$.001	.002	.003	.002	.002	.003	
	$J=3, T=5$	-.002	-.001	.002	-.002	.000	.000	
	$J=3, T=10$.002	.001	.004	-.001	.000	.000	
	$J=5, T=5$.000	.000	.002	-.002	-.001	.000	
	$J=5, T=10$.001	.002	.002	-.001	.000	.000	
$T P=$ Low, $I P=$ High	$J=1, T=5$	-.014	-.015	-.017	.000	.001	.001	
	$J=1, T=10$	-.001	.000	.001	.001	.002	.002	
	$J=3, T=5$	-.002	-.003	-.001	-.002	-.001	.000	
	$J=3, T=10$.002	.001	.003	-.001	.000	.000	
	$J=5, T=5$.000	.000	.001	-.002	.000	.000	
	$J=5, T=10$.000	.002	.002	-.001	-.001	.000	
$T P=$ High, $I P=$ High	$J=1, T=5$.006	.001	.000	.005	.004	.003	
	$J=1, T=10$.003	.003	.004	.002	.003	.003	
	$J=3, T=5$.001	.001	.003	.000	-.001	.001	
	$J=3, T=10$.002	.003	.005	.000	.001	.000	
	$J=5, T=5$.003	.001	.002	-.001	.000	.000	
	$J=5, T=10$.002	.003	.003	-.001	.000	.000	

Table S5.
Relative bias in the estimation of the conditional probability of a correct response for a Master.

		$M Q=$ Low			$M Q=\mathrm{Med}$		
		$N=200$	$N=400$	$N=1000$	$N=200$	$N=400$	$N=1000$
$T P=$ Low, $I P=$ Low	$J=1, T=5$	-4.50\%	-4.67\%	-5.50\%	-1.07\%	-0.27\%	-0.13\%
	$J=1, T=10$	-0.50\%	-0.67\%	0.00\%	-0.13\%	0.13\%	0.27\%
	$J=3, T=5$	-1.83\%	-1.50\%	-0.83\%	-0.40\%	-0.27\%	0.00\%
	$J=3, T=10$	0.00\%	0.00\%	0.50\%	0.00\%	0.00\%	0.00\%
	$J=5, T=5$	-0.67\%	-0.50\%	0.00\%	-0.53\%	-0.27\%	0.00\%
	$J=5, T=10$	0.00\%	0.17\%	0.33\%	-0.13\%	-0.13\%	0.00\%
$T P=$ High, $I P=$ Low	$J=1, T=5$	0.17\%	-0.33\%	-0.67\%	0.13\%	0.00\%	0.27\%
	$J=1, T=10$	0.17\%	0.33\%	0.50\%	0.27\%	0.27\%	0.40\%
	$J=3, T=5$	-0.33\%	-0.17\%	0.33\%	-0.27\%	0.00\%	0.00\%
	$J=3, T=10$	0.33\%	0.17\%	0.67\%	-0.13\%	0.00\%	0.00\%
	$J=5, T=5$	0.00\%	0.00\%	0.33\%	-0.27\%	-0.13\%	0.00\%
	$J=5, T=10$	0.17\%	0.33\%	0.33\%	-0.13\%	0.00\%	0.00\%
$T P=$ Low, $I P=$ High	$J=1, T=5$	-2.33\%	-2.50\%	-2.83\%	0.00\%	0.13\%	0.13\%
	$J=1, T=10$	-0.17\%	0.00\%	0.17\%	0.13\%	0.27\%	0.27\%
	$J=3, T=5$	-0.33\%	-0.50\%	-0.17\%	-0.27\%	-0.13\%	0.00\%
	$J=3, T=10$	0.33\%	0.17\%	0.50\%	-0.13\%	0.00\%	0.00\%
	$J=5, T=5$	0.00\%	0.00\%	0.17\%	-0.27\%	0.00\%	0.00\%
	$J=5, T=10$	0.00\%	0.33\%	0.33\%	-0.13\%	-0.13\%	0.00\%
$T P=$ High, $I P=$ High	$J=1, T=5$	1.00\%	0.17\%	0.00\%	0.67\%	0.53\%	0.40\%
	$J=1, T=10$	0.50\%	0.50\%	0.67\%	0.27\%	0.40\%	0.40\%
	$J=3, T=5$	0.17\%	0.17\%	0.50\%	0.00\%	-0.13\%	0.13\%
	$J=3, T=10$	0.33\%	0.50\%	0.83\%	0.00\%	0.13\%	0.00\%
	$J=5, T=5$	0.50\%	0.17\%	0.33\%	-0.13\%	0.00\%	0.00\%
	$J=5, T=10$	0.33\%	0.50\%	0.50\%	-0.13\%	0.00\%	0.00\%

Table S6.
Efficiency in the estimation of the conditional probability of a correct response for a Master.

		$M Q=$ Low				$M Q=$ Med		
		$N=200$	$N=400$	$N=1000$	$N=200$	$N=400$	$N=1000$	
$T P=$ Low, $I P=$ Low	$J=1, T=5$.062	.053	.029	.043	.034	.022	
	$J=1, T=10$.030	.021	.014	.017	.013	.008	
	$J=3, T=5$.046	.034	.021	.023	.017	.011	
	$J=3, T=10$.019	.014	.009	.013	.009	.006	
	$J=5, T=5$.037	.026	.016	.022	.015	.010	
	$J=5, T=10$.017	.012	.008	.012	.009	.006	
$T P=$ High, $I P=$ Low	$J=1, T=5$.044	.034	.019	.031	.024	.015	
	$J=1, T=10$.020	.014	.009	.014	.011	.007	
	$J=3, T=5$.031	.021	.014	.021	.014	.009	
	$J=3, T=10$.015	.011	.007	.011	.008	.005	
	$J=5, T=5$.027	.018	.012	.018	.013	.008	
	$J=5, T=10$.014	.010	.006	.011	.008	.005	
$T P=$ Low, $I P=$ High	$J=1, T=5$.053	.046	.028	.034	.026	.018	
	$J=1, T=10$.029	.021	.012	.016	.012	.007	
	$J=3, T=5$.039	.027	.018	.021	.015	.009	
	$J=3, T=10$.018	.013	.009	.012	.008	.005	
	$J=5, T=5$.029	.022	.014	.018	.013	.008	
	$J=5, T=10$.016	.011	.007	.011	.008	.005	
$T P=$ High, $I P=$ High	$J=1, T=5$.043	.032	.018	.027	.021	.014	
	$J=1, T=10$.019	.014	.009	.014	.010	.006	
	$J=3, T=5$.031	.021	.013	.019	.013	.008	
	$J=3, T=10$.015	.011	.007	.011	.008	.005	
	$J=5, T=5$.027	.018	.012	.018	.013	.008	
	$J=5, T=10$.014	.010	.006	.011	.008	.005	

Table S7.
Raw bias in the estimation of the conditional probability of a correct response for a Non-master.

		$M Q=$ Low				$M Q=$ Med		
		$N=200$	$N=400$	$N=1000$	$N=200$	$N=400$	$N=1000$	
$T P=$ Low, $I P=$ Low	$J=1, T=5$	-.029	-.037	-.044	-.004	.000	-.001	
	$J=1, T=10$	-.013	-.012	-.006	.007	.004	-.001	
	$J=3, T=5$	-.012	-.009	-.006	.002	.001	.000	
	$J=3, T=10$.002	.000	.000	.003	.002	.001	
	$J=5, T=5$	-.003	-.002	-.001	.002	.002	.000	
	$J=5, T=10$.001	.000	.000	.004	.002	.000	
$T P=$ High, $I P=$ Low	$J=1, T=5$	-.021	-.024	-.023	.013	.007	.002	
	$J=1, T=10$.002	.001	.005	.030	.015	.007	
	$J=3, T=5$	-.003	-.004	.001	.005	.003	.001	
	$J=3, T=10$.009	.007	.011	.009	.005	.002	
	$J=5, T=5$.001	.000	.001	.004	.001	.001	
	$J=5, T=10$.009	.005	.005	.008	.004	.002	
$T P=$ Low, $I P=$ High	$J=1, T=5$	-.006	-.015	-.027	.007	.003	-.001	
	$J=1, T=10$.003	-.002	-.004	.011	.005	.000	
	$J=3, T=5$	-.008	-.005	-.004	.004	.001	.000	
	$J=3, T=10$.006	.003	.001	.005	.003	.001	
	$J=5, T=5$.000	-.003	-.001	.003	.001	.001	
	$J=5, T=10$.004	.001	.001	.006	.003	.001	
$T P=$ High, $I P=$ High	$J=1, T=5$.005	.001	.000	.031	.016	.007	
	$J=1, T=10$.025	.020	.024	.046	.023	.010	
	$J=3, T=5$.006	.005	.005	.009	.004	.001	
	$J=3, T=10$.019	.016	.015	.017	.008	.003	
	$J=5, T=5$.006	.004	.003	.006	.003	.000	
	$J=5, T=10$.013	.008	.005	.011	.006	.003	

Table S8.
Relative bias in the estimation of the conditional probability of a correct response for a Non-master.

		$M Q=$ Low			$M Q=$ Med		
		$N=200$	$N=400$	$N=1000$	$N=200$	$N=400$	$N=1000$
$T P=$ Low, $I P=$ Low	$J=1, T=5$	-7.25%	-9.25%	-11.00%	-1.60%	0.00%	-0.40%
	$J=1, T=10$	-3.25%	-3.00%	-1.50%	2.80%	1.60%	-0.40%
	$J=3, T=5$	-3.00%	-2.25%	-1.50%	0.80%	0.40%	0.00%
	$J=3, T=10$	0.50%	0.00%	0.00%	1.20%	0.80%	0.40%
	$J=5, T=5$	-0.75%	-0.50%	-0.25%	0.80%	0.80%	0.00%
	$J=5, T=10$	0.25%	0.00%	0.00%	1.60%	0.80%	0.00%
$T P=$ High, $I P=$ Low	$J=1, T=5$	-5.25%	-6.00%	-5.75%	5.20%	2.80%	0.80%
	$J=1, T=10$	0.50%	0.25%	1.25%	12.00%	6.00%	2.80%
	$J=3, T=5$	-0.75%	-1.00%	0.25%	2.00%	1.20%	0.40%
	$J=3, T=10$	2.25%	1.75%	2.75%	3.60%	2.00%	0.80%
	$J=5, T=5$	0.25%	0.00%	0.25%	1.60%	0.40%	0.40%
	$J=5, T=10$	2.25%	1.25%	1.25%	3.20%	1.60%	0.80%
$T P=$ Low, $I P=$ High	$J=1, T=5$	-1.50%	-3.75%	-6.75%	2.80%	1.20%	-0.40%
	$J=1, T=10$	0.75%	-0.50%	-1.00%	4.40%	2.00%	0.00%
	$J=3, T=5$	-2.00%	-1.25%	-1.00%	1.60%	0.40%	0.00%
	$J=3, T=10$	1.50%	0.75%	0.25%	2.00%	1.20%	0.40%
	$J=5, T=5$	0.00%	-0.75%	-0.25%	1.20%	0.40%	0.40%
	$J=5, T=10$	1.00%	0.25%	0.25%	2.40%	1.20%	0.40%
$T P=$ High, $I P=$ High	$J=1, T=5$	1.25%	0.25%	0.00%	12.40%	6.40%	2.80%
	$J=1, T=10$	6.25%	5.00%	6.00%	18.40%	9.20%	4.00%
	$J=3, T=5$	1.50%	1.25%	1.25%	3.60%	1.60%	0.40%
	$J=3, T=10$	4.75%	4.00%	3.75%	6.80%	3.20%	1.20%
	$J=5, T=5$	1.50%	1.00%	0.75%	2.40%	1.20%	0.00%
	$J=5, T=10$	3.25%	2.00%	1.25%	4.40%	2.40%	1.20%

Table S9.
Efficiency in the estimation of the conditional probability of a correct response for a Non-master.

| | | $M Q=$ Low | | | $M Q=$ Med | | |
| :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $N=200$ | $N=400$ | $N=1000$ | $N=200$ | $N=400$ | $N=1000$ |
| $T P=$ Low, $I P=$ Low | $J=1, T=5$ | .052 | .046 | .033 | .040 | .030 | .020 |
| | $J=1, T=10$ | .039 | .033 | .024 | .029 | .021 | .014 |
| | $J=3, T=5$ | .043 | .031 | .019 | .022 | .015 | .010 |
| | $J=3, T=10$ | .029 | .022 | .014 | .018 | .013 | .008 |
| | $J=5, T=5$ | .034 | .023 | .015 | .020 | .014 | .009 |
| | $J=5, T=10$ | .026 | .019 | .012 | .018 | .012 | .008 |
| $T P=$ High, $I P=$ Low | $J=1, T=5$ | .050 | .042 | .031 | .051 | .038 | .027 |
| | $J=1, T=10$ | .038 | .034 | .029 | .044 | .036 | .025 |
| | $J=3, T=5$ | .046 | .034 | .022 | .028 | .020 | .012 |
| | $J=3, T=10$ | .036 | .031 | .021 | .026 | .019 | .012 |
| | $J=5, T=5$ | .038 | .029 | .018 | .025 | .017 | .011 |
| | $J=5, T=10$ | .035 | .025 | .016 | .023 | .017 | .011 |
| $T P=$ Low, $I P=$ High | $J=1, T=5$ | .063 | .055 | .041 | .046 | .034 | .026 |
| | $J=1, T=10$ | .047 | .042 | .032 | .035 | .026 | .016 |
| | $J=3, T=5$ | .053 | .037 | .024 | .026 | .018 | .012 |
| | $J=3, T=10$ | .038 | .027 | .018 | .021 | .015 | .009 |
| | $J=5, T=5$ | .040 | .029 | .018 | .024 | .017 | .011 |
| | $J=5, T=10$ | .031 | .022 | .014 | .020 | .014 | .009 |
| $T P=$ High, $I P=$ High | $J=1, T=5$ | .056 | .047 | .035 | .059 | .052 | .037 |
| | $J=1, T=10$ | .041 | .040 | .037 | .054 | .043 | .030 |
| | $J=3, T=5$ | .056 | .042 | .029 | .034 | .025 | .016 |
| | $J=3, T=10$ | .050 | .037 | .028 | .031 | .023 | .015 |
| | $J=5, T=5$ | .051 | .037 | .025 | .029 | .021 | .013 |
| | $J=5, T=10$ | .041 | .032 | .021 | .027 | .020 | .012 |

Table S10.
Classification accuracy (validation), as a percentage across manipulated design facets.

		$M Q=$ Low			$M Q=\mathrm{Med}$		
		$N=200$	$N=400$	$N=1000$	$N=200$	$N=400$	$N=1000$
$T P=$ Low, $I P=$ Low	$J=1, T=5$	66.77	66.67	67.35	80.94	81.42	81.84
	$J=1, T=10$	88.06	88.84	89.21	93.19	93.20	93.25
	$J=3, T=5$	70.76	72.23	73.47	91.19	91.42	91.46
	$J=3, T=10$	89.91	90.20	90.33	97.13	97.11	97.09
	$J=5, T=5$	76.17	77.26	77.93	95.08	95.18	95.12
	$J=5, T=10$	91.59	91.63	91.84	98.40	98.37	98.39
$T P=$ High, $I P=$ Low	$J=1, T=5$	87.58	88.39	89.48	91.09	91.22	91.38
	$J=1, T=10$	99.00	99.18	99.20	99.22	99.27	99.26
	$J=3, T=5$	88.86	89.41	89.73	95.63	95.64	95.65
	$J=3, T=10$	99.15	99.19	99.19	99.64	99.63	99.65
	$J=5, T=5$	89.92	90.18	90.31	97.48	97.49	97.52
	$J=5, T=10$	99.17	99.20	99.21	99.80	99.81	99.80
$T P=$ Low, $I P=\mathrm{High}$	$J=1, T=5$	73.75	73.97	75.06	84.66	85.14	85.38
	$J=1, T=10$	90.93	91.30	91.84	94.59	94.81	94.91
	$J=3, T=5$	76.57	78.02	78.84	93.20	93.34	93.38
	$J=3, T=10$	92.19	92.48	92.65	97.82	97.83	97.83
	$J=5, T=5$	80.92	81.82	82.35	96.22	96.34	96.33
	$J=5, T=10$	93.47	93.68	93.73	98.83	98.81	98.79
$T P=$ High,$I P=$ High	$J=1, T=5$	89.70	91.12	92.07	93.02	93.19	93.35
	$J=1, T=10$	99.20	99.37	99.39	99.43	99.44	99.45
	$J=3, T=5$	91.18	91.80	92.18	96.61	96.68	96.70
	$J=3, T=10$	99.33	99.37	99.40	99.73	99.72	99.73
	$J=5, T=5$	91.96	92.50	92.67	98.14	98.12	98.14
	$J=5, T=10$	99.39	99.41	99.41	99.85	99.86	99.86
Note. $: \leq 70 \%, \quad: 7$	0\%-79.99\%,	: 80%	89.99\%, N	ne: $\geq 90 \%$.			

Table S11.
Relative estimation bias by sample size and measurement quality for the L-DCM measurement model parameters.

	$M Q=$ Low			$M Q=$ Medium			$M Q=$ High		
	$N=200$	$N=400$	$N=1,000$	$N=200$	$N=400$	$N=1,000$	$N=200$	$N=400$	$N=1,000$
$P\left(X_{1}=1 \mid \theta_{1}=N M\right)$	2.00%	-1.25%	-0.50%	-0.80%	3.60%	2.40%	7.00%	1.00%	0.00%
$P\left(X_{1}=1 \mid \theta_{1}=M\right)$	4.83%	5.33%	3.50%	1.47%	1.33%	0.13%	0.78%	0.33%	0.56%
$P\left(X_{5}=1 \mid \theta_{2}=N M\right)$	-5.25%	-5.25%	-0.75%	1.60%	0.00%	1.60%	11.00%	3.00%	2.00%
$P\left(X_{5}=1 \mid \theta_{2}=M\right)$	3.67%	1.33%	2.17%	-0.80%	0.13%	-0.13%	-0.44%	-0.44%	0.00%
$P\left(X_{11}=1 \mid \theta_{3}=N M\right)$	-2.50%	-4.75%	-3.25%	2.00%	0.80%	0.00%	5.00%	0.00%	4.00%
$P\left(X_{11}=1 \mid \theta_{3}=M\right)$	4.83%	2.83%	2.67%	0.80%	2.40%	-0.80%	0.00%	0.56%	-0.11%
$P\left(X_{16}=1 \mid \theta_{4}=N M\right)$	-3.00%	-4.25%	2.00%	-1.60%	-2.40%	-0.40%	-3.00%	7.00%	0.00%
$P\left(X_{16}=1 \mid \theta_{4}=M\right)$	3.67%	5.17%	0.00%	-0.13%	-0.40%	0.00%	0.00%	-0.56%	-0.33%

