Supplementary Material for "Considerations for Fitting Dynamic Bayesian Networks with Latent Variables: A Monte Carlo Study"

Ray E. Reichenberg University of Nebraska - Lincoln

> Roy Levy Arizona State University

Adam Clark University of Nebraska - Lincoln

Results of the Simulation Study

Tables S1 – S10 contain the results of the parameter recovery simulation study for the raw bias, relative bias, and efficiency in the estimation of the transition probability and measurement model parameters as well as classification accuracy values for all models save for the L-CDM model. Table S11 presents the relative bias values for the L-DCM measurement model parameters. Additional tables, such as results for other parameters (i.e., the prior probability of mastery parameter) and/or for other indices (i.e., root mean squared error [RMSE]) are available upon request of the corresponding author (rreichenberg@unl.edu).

SUPPLEMENT TO CONSIDERATIONS FOR FITTING DBNS

Table S1.

Raw bias in the estimation of the transition probability across manipulated design facets.

			$\underline{MQ} = Low$	7		$\underline{MQ} = Mec$	<u>l</u>
		N = 200	N = 400	N = 1000	N = 200	N = 400	N = 1000
TP = Low, IP = Low	J = 1, T = 5	.166	.129	.102	.008	.001	.002
	J = 1, T = 10	.047	.025	.015	.000	.001	.003
	J = 3, T = 5	.041	.023	.015	.001	.000	.001
	J = 3, T = 10	.005	.005	.007	.001	.001	.001
	J = 5, T = 5	.014	.008	.005	.000	.001	.001
	J = 5, T = 10	.004	.005	.005	.002	.000	.001
TP = High, $IP = $ Low	J = 1, T = 5	.061	.045	.037	.000	.001	001
	J = 1, T = 10	.018	.007	003	003	001	.000
	J = 3, T = 5	.024	.011	.004	.002	.001	.001
	J = 3, T = 10	.000	.003	003	.002	.001	.002
	J = 5, T = 5	.011	.004	.003	.002	.001	.001
	J = 5, T = 10	003	.001	.002	.001	.001	.001
TP = Low, IP = High	J = 1, T = 5	.158	.118	.080	002	.000	.002
	J = 1, T = 10	.061	.028	.018	.000	.002	.003
	J = 3, T = 5	.027	.015	.009	001	.000	.001
	J = 3, T = 10	.004	.005	.008	.002	.001	.000
	J = 5, T = 5	.005	.004	.005	.002	.001	.001
	J = 5, T = 10	.003	.005	.007	.003	.000	.000
TP = High, IP = High	J = 1, T = 5	.047	.049	.029	011	008	002
	J = 1, T = 10	.021	.005	007	010	004	.000
	J = 3, T = 5	.014	.007	001	001	.001	.002
	J = 3, T = 10	.003	008	006	001	001	.001
	J = 5, T = 5	002	002	.003	.001	.000	.001
	J = 5, T = 10	004	.000	.005	.002	.001	.001

Table S2.

Relative bias in the estimation of the transition probability across manipulated design facets.

			MQ = Low	7		MQ = Mec	
		N = 200	N = 400	N = 1000	N = 200	N = 400	<i>N</i> = 1000
TP = Low, IP = Low	J = 1, T = 5	83.00%	64.50%	51.00%	4.00%	0.50%	1.00%
	J = 1, T = 10	23.50%	12.50%	7.50%	0.00%	0.50%	1.50%
	J = 3, T = 5	20.50%	11.50%	7.50%	0.50%	0.00%	0.50%
	J = 3, T = 10	2.50%	2.50%	3.50%	0.50%	0.50%	0.50%
	J = 5, T = 5	7.00%	4.00%	2.50%	0.00%	0.50%	0.50%
	J = 5, T = 10	2.00%	2.50%	2.50%	1.00%	0.00%	0.50%
TP = High, IP = Low	J = 1, T = 5	15.25%	11.25%	9.25%	0.00%	0.25%	-0.25%
	J = 1, T = 10	4.50%	1.75%	-0.75%	-0.75%	-0.25%	0.00%
	J = 3, T = 5	6.00%	2.75%	1.00%	0.50%	0.25%	0.25%
	J = 3, T = 10	0.00%	0.75%	-0.75%	0.50%	0.25%	0.50%
	J = 5, T = 5	2.75%	1.00%	0.75%	0.50%	0.25%	0.25%
	J = 5, T = 10	-0.75%	0.25%	0.50%	0.25%	0.25%	0.25%
TP = Low, IP = High	J = 1, T = 5	79.00%	59.00%	40.00%	-1.00%	0.00%	1.00%
	J = 1, T = 10	30.50%	14.00%	9.00%	0.00%	1.00%	1.50%
	J = 3, T = 5	13.50%	7.50%	4.50%	-0.50%	0.00%	0.50%
	J = 3, T = 10	2.00%	2.50%	4.00%	1.00%	0.50%	0.00%
	J = 5, T = 5	2.50%	2.00%	2.50%	1.00%	0.50%	0.50%
	J = 5, T = 10	1.50%	2.50%	3.50%	1.50%	0.00%	0.00%
<i>TP</i> = High, <i>IP</i> = High	J = 1, T = 5	11.75%	12.25%	7.25%	-2.75%	-2.00%	-0.50%
	J = 1, T = 10	5.25%	1.25%	-1.75%	-2.50%	-1.00%	0.00%
	J = 3, T = 5	3.50%	1.75%	-0.25%	-0.25%	0.25%	0.50%
	J = 3, T = 10	0.75%	-2.00%	-1.50%	-0.25%	-0.25%	0.25%
	J = 5, T = 5	-0.50%	-0.50%	0.75%	0.25%	0.00%	0.25%
	J = 5, T = 10	-1.00%	0.00%	1.25%	0.50%	0.25%	0.25%

Table S3.

Efficiency in the estimation of the transition probability across manipulated design facets.

			$\underline{MQ} = \text{Low}$	7	$\underline{MQ} = Med$		
		N = 200	<i>N</i> = 400	<i>N</i> = 1000	N = 200	N = 400	<i>N</i> = 1000
TP = Low, IP = Low	J = 1, T = 5	.192	.146	.089	.045	.031	.020
	J = 1, T = 10	.113	.069	.040	.024	.017	.011
	J = 3, T = 5	.096	.061	.037	.024	.016	.011
	J = 3, T = 10	.043	.029	.019	.017	.011	.007
	J = 5, T = 5	.059	.039	.023	.020	.015	.010
	J = 5, T = 10	.030	.020	.013	.016	.011	.007
TP = High, IP = Low	J = 1, T = 5	.181	.136	.087	.060	.046	.029
	J = 1, T = 10	.141	.104	.064	.043	.031	.021
	J = 3, T = 5	.113	.075	.047	.033	.024	.015
	J = 3, T = 10	.076	.052	.034	.029	.020	.013
	J = 5, T = 5	.074	.055	.034	.028	.021	.013
	J = 5, T = 10	.055	.037	.023	.026	.020	.012
TP = Low, IP = High	J = 1, T = 5	.185	.152	.100	.048	.033	.022
	J = 1, T = 10	.141	.088	.047	.029	.020	.013
	J = 3, T = 5	.115	.062	.039	.028	.020	.012
	J = 3, T = 10	.051	.035	.022	.020	.013	.009
	J = 5, T = 5	.060	.043	.026	.024	.018	.011
	J = 5, T = 10	.033	.024	.016	.019	.014	.008
TP = High, IP = High	J = 1, T = 5	.188	.153	.104	.066	.049	.035
	J = 1, T = 10	.160	.119	.079	.052	.037	.023
	J = 3, T = 5	.126	.091	.055	.038	.027	.018
	J = 3, T = 10	.100	.063	.039	.033	.023	.014
	J = 5, T = 5	.090	.062	.041	.035	.024	.015
	J = 5, T = 10	.069	.046	.029	.030	.021	.014

Table S4.

Raw bias in the estimation of the conditional probability of a correct response for a Master.

			$\underline{MQ} = Low$	<u>/</u>		MQ = Mec	
		N = 200	N = 400	N = 1000	N = 200	N = 400	<i>N</i> = 1000
TP = Low, IP = Low	J = 1, T = 5	027	028	033	008	002	001
	J = 1, T = 10	003	004	.000	001	.001	.002
	J = 3, T = 5	011	009	005	003	002	.000
	J = 3, T = 10	.000	.000	.003	.000	.000	.000
	J = 5, T = 5	004	003	.000	004	002	.000
	J = 5, T = 10	.000	.001	.002	001	001	.000
TP = High, $IP = $ Low	J = 1, T = 5	.001	002	004	.001	.000	.002
	J = 1, T = 10	.001	.002	.003	.002	.002	.003
	J = 3, T = 5	002	001	.002	002	.000	.000
	J = 3, T = 10	.002	.001	.004	001	.000	.000
	J = 5, T = 5	.000	.000	.002	002	001	.000
	J = 5, T = 10	.001	.002	.002	001	.000	.000
TP = Low, IP = High	J = 1, T = 5	014	015	017	.000	.001	.001
	J = 1, T = 10	001	.000	.001	.001	.002	.002
	J = 3, T = 5	002	003	001	002	001	.000
	J = 3, T = 10	.002	.001	.003	001	.000	.000
	J = 5, T = 5	.000	.000	.001	002	.000	.000
	J = 5, T = 10	.000	.002	.002	001	001	.000
TP = High, IP = High	J = 1, T = 5	.006	.001	.000	.005	.004	.003
	J = 1, T = 10	.003	.003	.004	.002	.003	.003
	J = 3, T = 5	.001	.001	.003	.000	001	.001
	J = 3, T = 10	.002	.003	.005	.000	.001	.000
	J = 5, T = 5	.003	.001	.002	001	.000	.000
	J = 5, T = 10	.002	.003	.003	001	.000	.000

Table S5.

Relative bias in the estimation of the conditional probability of a correct response for a Master.

			$\underline{MQ} = Low$	<u>/</u>		MQ = Mec	<u>1</u>
		N = 200	N = 400	<i>N</i> = 1000	N = 200	N = 400	<i>N</i> = 1000
TP = Low, IP = Low	J = 1, T = 5	-4.50%	-4.67%	-5.50%	-1.07%	-0.27%	-0.13%
	J = 1, T = 10	-0.50%	-0.67%	0.00%	-0.13%	0.13%	0.27%
	J = 3, T = 5	-1.83%	-1.50%	-0.83%	-0.40%	-0.27%	0.00%
	J = 3, T = 10	0.00%	0.00%	0.50%	0.00%	0.00%	0.00%
	J = 5, T = 5	-0.67%	-0.50%	0.00%	-0.53%	-0.27%	0.00%
	J = 5, T = 10	0.00%	0.17%	0.33%	-0.13%	-0.13%	0.00%
TP = High, $IP = $ Low	J = 1, T = 5	0.17%	-0.33%	-0.67%	0.13%	0.00%	0.27%
	J = 1, T = 10	0.17%	0.33%	0.50%	0.27%	0.27%	0.40%
	J = 3, T = 5	-0.33%	-0.17%	0.33%	-0.27%	0.00%	0.00%
	J = 3, T = 10	0.33%	0.17%	0.67%	-0.13%	0.00%	0.00%
	J = 5, T = 5	0.00%	0.00%	0.33%	-0.27%	-0.13%	0.00%
	J = 5, T = 10	0.17%	0.33%	0.33%	-0.13%	0.00%	0.00%
TP = Low, IP = High	J = 1, T = 5	-2.33%	-2.50%	-2.83%	0.00%	0.13%	0.13%
	J = 1, T = 10	-0.17%	0.00%	0.17%	0.13%	0.27%	0.27%
	J = 3, T = 5	-0.33%	-0.50%	-0.17%	-0.27%	-0.13%	0.00%
	J = 3, T = 10	0.33%	0.17%	0.50%	-0.13%	0.00%	0.00%
	J = 5, T = 5	0.00%	0.00%	0.17%	-0.27%	0.00%	0.00%
	J = 5, T = 10	0.00%	0.33%	0.33%	-0.13%	-0.13%	0.00%
TP = High, IP = High	J = 1, T = 5	1.00%	0.17%	0.00%	0.67%	0.53%	0.40%
	J = 1, T = 10	0.50%	0.50%	0.67%	0.27%	0.40%	0.40%
	J = 3, T = 5	0.17%	0.17%	0.50%	0.00%	-0.13%	0.13%
	J = 3, T = 10	0.33%	0.50%	0.83%	0.00%	0.13%	0.00%
	J = 5, T = 5	0.50%	0.17%	0.33%	-0.13%	0.00%	0.00%
	J = 5, T = 10	0.33%	0.50%	0.50%	-0.13%	0.00%	0.00%

Table S6.

Efficiency in the estimation of the conditional probability of a correct response for a *Master*.

			$\underline{MQ} = Low$	<u>/</u>	$\underline{MQ} = Med$			
		N = 200	N = 400	N = 1000	N = 200	N = 400	<i>N</i> = 1000	
TP = Low, IP = Low	J = 1, T = 5	.062	.053	.029	.043	.034	.022	
	J = 1, T = 10	.030	.021	.014	.017	.013	.008	
	J = 3, T = 5	.046	.034	.021	.023	.017	.011	
	J = 3, T = 10	.019	.014	.009	.013	.009	.006	
	J = 5, T = 5	.037	.026	.016	.022	.015	.010	
	J = 5, T = 10	.017	.012	.008	.012	.009	.006	
TP = High, $IP = $ Low	J = 1, T = 5	.044	.034	.019	.031	.024	.015	
	J = 1, T = 10	.020	.014	.009	.014	.011	.007	
	J = 3, T = 5	.031	.021	.014	.021	.014	.009	
	J = 3, T = 10	.015	.011	.007	.011	.008	.005	
	J = 5, T = 5	.027	.018	.012	.018	.013	.008	
	J = 5, T = 10	.014	.010	.006	.011	.008	.005	
TP = Low, IP = High	J = 1, T = 5	.053	.046	.028	.034	.026	.018	
	J = 1, T = 10	.029	.021	.012	.016	.012	.007	
	J = 3, T = 5	.039	.027	.018	.021	.015	.009	
	J = 3, T = 10	.018	.013	.009	.012	.008	.005	
	J = 5, T = 5	.029	.022	.014	.018	.013	.008	
	J = 5, T = 10	.016	.011	.007	.011	.008	.005	
TP = High, IP = High	J = 1, T = 5	.043	.032	.018	.027	.021	.014	
	J = 1, T = 10	.019	.014	.009	.014	.010	.006	
	J = 3, T = 5	.031	.021	.013	.019	.013	.008	
	J = 3, T = 10	.015	.011	.007	.011	.008	.005	
	J = 5, T = 5	.027	.018	.012	.018	.013	.008	
	J = 5, T = 10	.014	.010	.006	.011	.008	.005	

Table S7.

Raw bias in the estimation of the conditional probability of a correct response for a Non-master.

		<u>MQ = Low</u>			$\underline{MQ} = Med$			
		N = 200	N = 400	N = 1000	N = 200	N = 400	N = 1000	
TP = Low, IP = Low	J = 1, T = 5	029	037	044	004	.000	001	
	J = 1, T = 10	013	012	006	.007	.004	001	
	J = 3, T = 5	012	009	006	.002	.001	.000	
	J = 3, T = 10	.002	.000	.000	.003	.002	.001	
	J = 5, T = 5	003	002	001	.002	.002	.000	
	J = 5, T = 10	.001	.000	.000	.004	.002	.000	
TP = High, $IP = $ Low	J = 1, T = 5	021	024	023	.013	.007	.002	
	J = 1, T = 10	.002	.001	.005	.030	.015	.007	
	J = 3, T = 5	003	004	.001	.005	.003	.001	
	J = 3, T = 10	.009	.007	.011	.009	.005	.002	
	J = 5, T = 5	.001	.000	.001	.004	.001	.001	
	J = 5, T = 10	.009	.005	.005	.008	.004	.002	
TP = Low, IP = High	J = 1, T = 5	006	015	027	.007	.003	001	
	J = 1, T = 10	.003	002	004	.011	.005	.000	
	J = 3, T = 5	008	005	004	.004	.001	.000	
	J = 3, T = 10	.006	.003	.001	.005	.003	.001	
	J = 5, T = 5	.000	003	001	.003	.001	.001	
	J = 5, T = 10	.004	.001	.001	.006	.003	.001	
TP = High, IP = High	J = 1, T = 5	.005	.001	.000	.031	.016	.007	
	J = 1, T = 10	.025	.020	.024	.046	.023	.010	
	J = 3, T = 5	.006	.005	.005	.009	.004	.001	
	J = 3, T = 10	.019	.016	.015	.017	.008	.003	
	J = 5, T = 5	.006	.004	.003	.006	.003	.000	
	J = 5, T = 10	.013	.008	.005	.011	.006	.003	

Table S8.

Relative bias in the estimation of the conditional probability of a correct response for a *Non-master*.

			$\underline{MQ} = \text{Low}$	7		$\underline{MQ} = Mec$	<u>l</u>	
		<i>N</i> = 200	N = 400	<i>N</i> = 1000	N = 200	N = 400	<i>N</i> = 1000	
TP = Low, IP = Low	J = 1, T = 5	-7.25%	-9.25%	-11.00%	-1.60%	0.00%	-0.40%	
	J = 1, T = 10	-3.25%	-3.00%	-1.50%	2.80%	1.60%	-0.40%	
	J = 3, T = 5	-3.00%	-2.25%	-1.50%	0.80%	0.40%	0.00%	
	J = 3, T = 10	0.50%	0.00%	0.00%	1.20%	0.80%	0.40%	
	J = 5, T = 5	-0.75%	-0.50%	-0.25%	0.80%	0.80%	0.00%	
	J = 5, T = 10	0.25%	0.00%	0.00%	1.60%	0.80%	0.00%	
TP = High, IP = Low	J = 1, T = 5	-5.25%	-6.00%	-5.75%	5.20%	2.80%	0.80%	
	J = 1, T = 10	0.50%	0.25%	1.25%	12.00%	6.00%	2.80%	
	J = 3, T = 5	-0.75%	-1.00%	0.25%	2.00%	1.20%	0.40%	
	J = 3, T = 10	2.25%	1.75%	2.75%	3.60%	2.00%	0.80%	
	J = 5, T = 5	0.25%	0.00%	0.25%	1.60%	0.40%	0.40%	
	J = 5, T = 10	2.25%	1.25%	1.25%	3.20%	1.60%	0.80%	
TP = Low, IP = High	J = 1, T = 5	-1.50%	-3.75%	-6.75%	2.80%	1.20%	-0.40%	
	J = 1, T = 10	0.75%	-0.50%	-1.00%	4.40%	2.00%	0.00%	
	J = 3, T = 5	-2.00%	-1.25%	-1.00%	1.60%	0.40%	0.00%	
	J = 3, T = 10	1.50%	0.75%	0.25%	2.00%	1.20%	0.40%	
	J = 5, T = 5	0.00%	-0.75%	-0.25%	1.20%	0.40%	0.40%	
	J = 5, T = 10	1.00%	0.25%	0.25%	2.40%	1.20%	0.40%	
<i>TP</i> = High, <i>IP</i> = High	J = 1, T = 5	1.25%	0.25%	0.00%	12.40%	6.40%	2.80%	
	J = 1, T = 10	6.25%	5.00%	6.00%	18.40%	9.20%	4.00%	
	J = 3, T = 5	1.50%	1.25%	1.25%	3.60%	1.60%	0.40%	
	J = 3, T = 10	4.75%	4.00%	3.75%	6.80%	3.20%	1.20%	
	J = 5, T = 5	1.50%	1.00%	0.75%	2.40%	1.20%	0.00%	
	J = 5, T = 10	3.25%	2.00%	1.25%	4.40%	2.40%	1.20%	

Table S9.

Efficiency in the estimation of the conditional probability of a correct response for a *Non-master*.

			$\underline{MQ} = \text{Low}$	/	$\underline{MQ} = Med$			
		N = 200	N = 400	<i>N</i> = 1000	N = 200	N = 400	<i>N</i> = 1000	
TP = Low, IP = Low	J = 1, T = 5	.052	.046	.033	.040	.030	.020	
	J = 1, T = 10	.039	.033	.024	.029	.021	.014	
	J = 3, T = 5	.043	.031	.019	.022	.015	.010	
	J = 3, T = 10	.029	.022	.014	.018	.013	.008	
	J = 5, T = 5	.034	.023	.015	.020	.014	.009	
	J = 5, T = 10	.026	.019	.012	.018	.012	.008	
TP = High, IP = Low	J = 1, T = 5	.050	.042	.031	.051	.038	.027	
	J = 1, T = 10	.038	.034	.029	.044	.036	.025	
	J = 3, T = 5	.046	.034	.022	.028	.020	.012	
	J = 3, T = 10	.036	.031	.021	.026	.019	.012	
	J = 5, T = 5	.038	.029	.018	.025	.017	.011	
	J = 5, T = 10	.035	.025	.016	.023	.017	.011	
TP = Low, IP = High	J = 1, T = 5	.063	.055	.041	.046	.034	.026	
	J = 1, T = 10	.047	.042	.032	.035	.026	.016	
	J = 3, T = 5	.053	.037	.024	.026	.018	.012	
	J = 3, T = 10	.038	.027	.018	.021	.015	.009	
	J = 5, T = 5	.040	.029	.018	.024	.017	.011	
	J = 5, T = 10	.031	.022	.014	.020	.014	.009	
TP = High, IP = High	J = 1, T = 5	.056	.047	.035	.059	.052	.037	
	J = 1, T = 10	.041	.040	.037	.054	.043	.030	
	J = 3, T = 5	.056	.042	.029	.034	.025	.016	
	J = 3, T = 10	.050	.037	.028	.031	.023	.015	
	J = 5, T = 5	.051	.037	.025	.029	.021	.013	
	J = 5, T = 10	.041	.032	.021	.027	.020	.012	

Table S10.

Classification accuracy (validation), as a percentage across manipulated design facets.

			MQ = Low	V		MQ = Mec	<u>d</u>
		N = 200	N = 400	N = 1000	N = 200	N = 400	N = 1000
TP = Low, IP = Low	J = 1, T = 5	66.77	66.67	67.35	80.94	81.42	81.84
	J = 1, T = 10	88.06	88.84	89.21	93.19	93.20	93.25
	J = 3, T = 5	70.76	72.23	73.47	91.19	91.42	91.46
	J = 3, T = 10	89.91	90.20	90.33	97.13	97.11	97.09
	J = 5, T = 5	76.17	77.26	77.93	95.08	95.18	95.12
	J = 5, T = 10	91.59	91.63	91.84	98.40	98.37	98.39
TP = High, IP = Low	J = 1, T = 5	87.58	88.39	89.48	91.09	91.22	91.38
	J = 1, T = 10	99.00	99.18	99.20	99.22	99.27	99.26
	J = 3, T = 5	88.86	89.41	89.73	95.63	95.64	95.65
	J = 3, T = 10	99.15	99.19	99.19	99.64	99.63	99.65
	J = 5, T = 5	89.92	90.18	90.31	97.48	97.49	97.52
	J = 5, T = 10	99.17	99.20	99.21	99.80	99.81	99.80
TP = Low, IP = High	J = 1, T = 5	73.75	73.97	75.06	84.66	85.14	85.38
	J = 1, T = 10	90.93	91.30	91.84	94.59	94.81	94.91
	J = 3, T = 5	76.57	78.02	78.84	93.20	93.34	93.38
	J = 3, T = 10	92.19	92.48	92.65	97.82	97.83	97.83
	J = 5, T = 5	80.92	81.82	82.35	96.22	96.34	96.33
	J = 5, T = 10	93.47	93.68	93.73	98.83	98.81	98.79
TP = High, IP = High	J = 1, T = 5	89.70	91.12	92.07	93.02	93.19	93.35
	J = 1, T = 10	99.20	99.37	99.39	99.43	99.44	99.45
	J = 3, T = 5	91.18	91.80	92.18	96.61	96.68	96.70
	J = 3, T = 10	99.33	99.37	99.40	99.73	99.72	99.73
	J = 5, T = 5	91.96	92.50	92.67	98.14	98.12	98.14
	J = 5, T = 10	99.39	99.41	99.41	99.85	99.86	99.86
<i>Note</i> $\cdot < 70\%$ $\cdot '$	70% - 79 99%	· 80% -	89 99% No	$ne^{\cdot} > 90\%$			

Note. $\leq 70\%$, $\leq 70\%$ - 79.99%, $\leq 80\%$ - 89.99%, *None* $\geq 90\%$.

Table S11.

Relative estimation bias by sample size and measurement quality for the L-DCM measurement model parameters.

		MQ = Lov	V	1	MQ = Medin	um		MQ = High	h
	<i>N</i> = 200	<i>N</i> = 400	<i>N</i> = 1,000	<i>N</i> = 200	<i>N</i> = 400	<i>N</i> = 1,000	<i>N</i> = 200	<i>N</i> = 400	<i>N</i> = 1,000
$P(X_1=1 \Theta_1=NM)$	2.00%	-1.25%	-0.50%	-0.80%	3.60%	2.40%	7.00%	1.00%	0.00%
$P(X_1=1 \theta_1=M)$	4.83%	5.33%	3.50%	1.47%	1.33%	0.13%	0.78%	0.33%	0.56%
$P(X_5=1 \theta_2=NM)$	-5.25%	-5.25%	-0.75%	1.60%	0.00%	1.60%	11.00%	3.00%	2.00%
$P(X_5=1 \theta_2=M)$	3.67%	1.33%	2.17%	-0.80%	0.13%	-0.13%	-0.44%	-0.44%	0.00%
$P(X_{11}=1 \theta_3=NM)$	-2.50%	-4.75%	-3.25%	2.00%	0.80%	0.00%	5.00%	0.00%	4.00%
$P(X_{11}=1 \theta_3=M)$	4.83%	2.83%	2.67%	0.80%	2.40%	-0.80%	0.00%	0.56%	-0.11%
$P(X_{16}=1 \theta_4=NM)$	-3.00%	-4.25%	2.00%	-1.60%	-2.40%	-0.40%	-3.00%	7.00%	0.00%
$P(X_{16}=1 \theta_4=M)$	3.67%	5.17%	0.00%	-0.13%	-0.40%	0.00%	0.00%	-0.56%	-0.33%