Table I. The International Statistical Classification of Diseases Codes Used in Defining Stroke Population

Codes by	ICD-9-CM	ICD-10-CM
Ischemic stroke	$433,434,435,438$	I63, I64, G45, I69
Hemorrhagic stroke	$430,431,432$	I60, I61, I62
ICD-9-CM, International Statistical Classification of Disease and Related Health Problems,		
Ninth Revision, Clinical Modification; ICD-10-CM, International Statistical Classification of		
Disease and Related Health Problems, Tenth Revision, Clinical Modification		

Table II. Oral Anticoagulant Codes

Medication	Codes
Warfarin	"A043862100" "A050095100" "A050423100" "A050423100"
	"A052559100" "AC43862100" "AC50095100" "AC50423100"
	"AC52559100" "AC55271100" "B020346100" "B020354100"
	"В020515100" "В020516100" "В023426100" "В023572100"
	"В023573100" "ВС23572100" "ВС23573100" "Х000140100"
Rivaroxaban	"В025129100" "В025647100" "В025648100" "ВС25129100"
	"ВС25647100" "ВС25648100"
Dabigatran	"В025458100" "В025459100" "ВС25458100" "ВС25459100"
	"BC26233100"
Apixaban	"ВС26124100" "ВС26133100"
Edoxaban	"ВС26599100" "ВС26600100" "ВС26601100"

Table III. Codes for Medical Comorbidities.

Comorbidities	Disease Codes
Atrial fibrillation	ICD-9 of 427.31; ICD-10 of I48
Peripheral arterial occlusion	ICD-9 of 440.2, 440.3; ICD-10 of I70.2, I70.3, I70.4, I70.5,
disease	I70.6, I70.7, I75.0
Coronary heart disease	ICD-9 of 410, 411, 412, 413, 414; ICD-10 of I20, I21, I22,
	I24, I25
Chronic heart failure	ICD-9 of 428; ICD-10 of I50
Hypertension	ICD-9 of 401, 402, 403, 404, 405; ICD-10 of I10, I11, I12,
	I13, I15
Diabetes mellitus	ICD-9 of 250; ICD-10of E08, E09, E10, E11, E13
Hyperlipidemia	ICD-9 of 272; ICD-10 of E78
Chronic kidney disease	ICD-9 of 580, 581, 582, 583, 584, 585, 586, 587, 588, 589;
	ICD-10 of N00, N01, N02, N03, N04, N05, N06, N07, N08,
	N10, N11, N14, N15, N17, N18, N19, N25, N27
Chronic liver disease	ICD-9 of 570, 571, 572; ICD-10 of K70, K72, K73, K74,
	K75, K76

Table IV. Oral Antiplatelet Codes


```
"A0424611G0" "A0424611G0" "A0424611G0" "A042774100" "A042774100" "A042774100"
"A042774100" "A042774100" "A042774100" "A042774100" "A042774100" "A042915100"
"A042915100" "A042915100" "A042915100" "A042915100" "A042915100" "A042915100"
"A0429151G0" "A0429151G0" "A042934100" "A042934100" "A042934100" "A042934100"
"A042934100" "A042934100" "A042934100" "A042934100" "A0429341G0" "A043139100"
"A043139100" "A043139100" "A043139100" "A043142 100" "A043142100" "A043142100"
"A043142100" "A043142100" "A043142100" "A043142 100" "A043142100" "A043142100"
"A043142100" "А043212100" "А043212100" "А043212100" "A043212100" "А043212100"
"A043212100" "А043212100" "А043212100" "A043254100" "A043254100" "A043254100"
"A043254100" "A043254100" "A043254100" "A043254100" "A043254100" "A043309100"
"A043309100" "A043309100" "A043309100" "A043309100" "A043309100" "A043309100"
"A0433091G0" "A0433091G0" "A043663100" "A043663100" "A043663100" "A043663100"
"A043663100" "A043663100" "A043663100" "A043663100" "A0436631G0" "A0436631G0"
"A043664100" "А043664100" "A043664100" "A043664100" "A043664100" "A043664100"
"A043664100" "A0436641G0" "A0436641G0" "A044016100" "A044016100" "A044016100"
"A044016100" "A044016100" "A044016100" "A0440161G0" "A044069100" "A044176100"
"A044176100" "A044176100" "A044176100" "A044176100" "A044176100" "A0441761G0"
"A0441761G0" "A044578100" "A044578100" "A044578100" "A044578100" "A044578100"
"A045015100" "A045015100" "A045015100" "A045015100" "A045015100" "A045072100"
"A045072100" "A048339100" "A0483391G0" "A048542100" "A048542100" "A048542100"
"A0485421G0" "A0495361G0" "A0495361G0" "A054863100" "A054863100" "A0548631G0"
"A0548631G0" "A0551041G0" "A0551041G0" "AC29754100" "AC37344100" "AC37344100"
"AC373441G0" "AC373441G0" "AC37702100" "AC41220100" "AC41511100" "AC415111G0"
"AC41814100" "AC418141G0" "AC42461100" "AC424611G0" "AC42774100" "AC42934100"
"AC43139100" "АС43142100" "AC43212100" "АС43254100" "AC43254100" "AC43309100"
"AC433091G0" "AC43663100" "AC43663100" "AC436631G0" "AC436631G0" "AC43664100"
"AC436641G0" "AC44176100" "AC44176100" "AC44176100" "AC441761G0" "AC441761G0"
"AC441761G0" "AC48542100" "AC495361G0" "AC548631G0" "AC54985100" "AC54985100"
"AC549851G0" "AC549851G0" "AC551041G0" "B008262100" "B008262100" "B017332100"
"В017332100" "В017332100" "В017332100" "В018755100" "В018755100" "В020365100"
"В020365100" "В020365100" "В020365100" "В023619100" "В023619100" "В023619100"
"В023919100" "В023919100" "В023919100" "В023919100" "В023919100" "В023919100"
"В024025100" "В024025100" "В024025100" "В024025100" "В024025100" "В024025100"
"B0240251G0" "B0240251G0" "B0240251G0" "BC23919100" "BC23919100" "BC23919100"
"BC23919100" "BC23919100" "BC24025100" "BC240251G0" "C001621100" "C001621100"
"N004155100" "N004155100" "N004155100" "N004155100" "N011693100" 'N011693100"
```


Clopidogrel

```
"A047589100""'A047589100" "A047589100" "A047589100""A047589100"" 'A047589100"
"A048062100" "A048062100" "A048649100" "A048649100"" "A048730100" "A048730100"
"A048730100" "A049224100" "A049224100" "A049224100"" "A049344100" "A049344100"
"A049719100" "A049719100" "A049967100""A049967100""'A050126100" "A050126100"
"A050241100" "A050241100""A052522100"" "A052522100""*A052522100" "A055026100"
"A055026100" "A055044100" "A055044100""A055044100""'A055044100""A055044100"
"A055044100" "A055044100" "A055428100" "A055428100" "A055428100""A057123100"
"A057123100" "A057123100""A057123100""A057123100""'A057123100""A057123 100"
"A057140100" "A057140100" "AA48649100" "AA48649100"" "AA48649100" "AA48649100"
"AA48730100""AA48730100" "AA48730100" "AA48730100""AA48730100" "AA48730100"
"AA49344100" "AA49344100" "AA49344100"" 'AA49344100" "AA49344100" "AA50126100"
"AA50126100""AA50126100""AA50126100" "AA50126100""AA50126100""AA57140100"
"AA57140100""AA57140100""AA57140100""AA57140100""AA57140100""AB48649100"
"AB48649100"" AB48649100" "AB48649100" "AB48730100" "AB48730100"" "AB48730100'
"AB49344100""AB49344100""AB49344100""AB49719100""AB49719100""AB49719100'
"AB49719100""AB49719100" "AB49719100" "AB49719100""'AB50126100"" 'AB50126100"
"AB50126100"" AB57819100" "AB57819100" "AB57819100" "AB57819100"" "AB57819100'
"AB58093100""AB58093100""AB58093100""AB58093100""AC48062100" "AC48062100"
"AC48062100"" AC48062100" "AC48062100" "AC48062100"" AC48062100"" "AC48649100"
"AC48649100" "AC48649100" "AC48649100" "AC48649100" "AC49224100" "AC49224100'
"AC49224100""AC49224100" "AC49224100" "AC49224100"" AC49344100" "AC49344100'
"AC49344100"" АС49719100" "АС49719100" "AC49967100"" AC49967100" "AC49967100'
"AC49967100"""AC49967100""AC49967100" "AC49967100" "AC50126100" "AC50126100'
"AC50126100"" AC50126100" "AC50241100" "AC50241100" "AC50241100" "AC50241100"
"AC50241100"""AC50241100"" "АС50241100"" AC52522100" "AC52522100"" AC52522100"
"AC52522100" "AC52522100"" AC52522100""AC55026100" "AC55026100"" AC55026100'
"AC55026100"" AC55026100" "AC55026100" "AC55026100" "AC55428100"" 'AC55428100'
"AC55428100" "AC55428100""AC55428100" "AC55428100" "AC57140100" "AC57140100'
"AC57140100" "AC57819100" "AC57819100" "AC57819100"" AC57819100"" "AC57819100'
"AC57819100"" 'АС58093100" "AC58093100" "AC58093100"" AC58093100" "AC58093100'
"АС58093100" "В022932100" "B022932100" "B022932100"" "В022932100" "В022932100"
"В024863100" "В024863100" "B024863100" "В025034100" "B025034100" "B025034100" "B025114100"
"В025114100" "В025114100"" "В025222100" "В025222100" "B025222100"" "B025222100" "B025326100"
"B025326100" "В025326100"""В026190100" "В026190100"" "В026335100"" "В026335100'
"BB25873100" "ВВ25873100" "ВВ25873100""ВВ25873100""ВВС22932100" "ВС22932100"
"ВС22932100" "ВС22932100" "ВС22932100""ВВ22932100""ВВС24863100" "ВС24863100"
"ВС24863100" "ВС24863100" "ВС24863100" "ВС25034100" "В С25034100" "В С25034100"
"ВС25034100" "ВС25034100" "ВС25034100" "ВС25114100"" "ВС25114100"" "ВС25114100"
"ВС25114100" "ВС25114100"" "ВС25114100"" "ВС25222100"" "ВС25222100" "ВС25326100"
"ВС25326100" "ВС25326100" "ВС25326100" "ВС25326100" "ВС25326100" "ВС25873 100"
```

```
"BC25873100" "ВС25873100" "ВС25873100" "ВС25873100" "ВС26190100" "ВС26190100"
"ВС26190100""ВВС26190100" "ВС26190100" "ВС26190100" "ВС26190100" "ВС26252100"
"ВС26252100" "ВС26252100" "ВС26252100" "ВС26252100" "ВС26252100" "ВС26335100"
"ВС26335100" "ВС26335100" "ВС26335100" "ВС26335100" "ВС26335100" "ВС27182100"
"BC27182100" "BC27182100"
```


Prasugrel

"BC27361100" "BC27362100"

Ticagrelor

"B025691100" "B025691100" "B025691100" "BC25691100" "BC25691100" "BC25691100" "BC25691100" "BC25691100" "BC25691100"

Ticlopidine

```
"A028034100" "A028034100" "A028034100" "A028034100" "A028034100" "A028034100"
"A028034100" "A028034100" "A028034100" "A028034100" "A028034100" "A028034100"
"А028034100" "А031596100" "А031596100" "A031596100" "A031596100" "A031596100"
"А031596100" "A031596100" "A031596100" "A033091100""A033091100" "A033091100"
"A033091100" "A033091100" "A033091100" "A033091100" "A033091100" "A033675100"
"А033675100" "А033675100" "А033675100" "A033675100""A033675100""A033675100"
"А033675100" "A034016100" "A034016100" "A034016100" "A034016100" "A034016100"
"А034016100" "А034016100" "А034016100" "A034016100" "A034927100" "A034927100"
"A034927100""A034927100" "A034927100" "A034927100" "A034927100" "A034927100"
"А034927100" "А034927100" "A034927100" "A034927100" "A036396100" "A036396100"
"A036396100" "A036396100" "A036396100" "A036396100" "A036396100" "A036396100"
"А036756100" "А036756100" "А036756100""A036756100""A036756100""A036756100"
"А036756100" "А036756100" "А036756100" "А036756100" "А036756100" "А036756100"
"А036756100" "А036857100" "A036857100""A036857100""A036857100""A036857100"
"A036857100" "A036857100" "A037211100" "A037211100" "A037211100" "A037211100" "A037211100"
"A037211100" "A037211100" "A037211100" "A037211100" "A038262100" "A038262100" "A038262100"
"A038494100""A038494100" "A038494100" "A038494100" "A038494100" "A038494100"
"A038494100" "A038494100" "A038494100" "A038494100" "A038494100" "A039559100"
"А039559100""A039559100""A039559100""A039559100""A039559100""A039559100"
"А039559100" "A039559100" "A039559100" "A039559100""A039575100" "A039575100"
"A039575100" "A039575100" "A039575100" "A039575100" "A039575100" "A039575100"
"A039575100" "A039575100" "A041251100""A041251100""A041251100" "A041251100"
"A041251100" "A041251100" "A041251100" "A041251100" "A041251100" "A041251100" "A041251100"
"A041251100" "A042830100" "A042830100" "A042830100" "A042830100" "A042830100"
"A042830100""A042830100" "A042830100" "A042830100" "A043972100" "A043972100"
"A043972100" "A043972100" "A050174100" "A050174100" "A050174100" "A050174100"
"A050174100" "AB31596100" "AB31596100""AB31596100" "AB31596100" "AB31596100"
"AB31596100" "AB33091100" "AB33091100" "AB33091100" "AB33091100" "AB33091100"
```

"AB33091100" "AB33091100" "AC31596100" "AC31596100" "AC31596100" "AC31596100"
"AC33091100" "AC33091100" "AC33091100" "AC33675100" "AC33675100" "AC33675100"
"АС 33675100 " "АС $33675100 "$ "АС $33675100 "$ "АС 34927100 " "AC34927100" "AC34927100"
"AC34927100" "AC34927100" "AC36396100" "AC36396100" "AC36396100" "AC36396100"
"AC36396100" "AC36396100" "AC36396100" "AC39575100" "AC39575100" "AC39575100"
"AC39575100" "AC39575100" "AC39575100" "AC41251100" "AC41251100" "AC41251100"
"AC41251100" "AC42830100" "AC42830100" "AC42830100" "AC42830100" "AC42830100"
"AC43972100" "AC43972100" "AC43972100" "AC43972100" "AC43972100" "AC50174100"
"AC50174100" "AC50174100" "AC50174100" "AC50174100" "B015133100" "B015133100"
"B015133100" "B015133100" "B015133100" "B015133100" "B018857100" "B018857100" "B018857100"
"В018857100" "B018857100" "B018857100" "B018857100" "B018857100" "B018857100" "B018857100"
"В018857100" "В018965100" "В018965100" "B018965100" "В018965100" "B018965100" "B018965100"
"В020841100" "В020841100" "B020841100" "B020841100" "B020841100" "B020841100" "B020841100"
"ВС18857100" "ВС18857100" "ВС18857100" "ВС18857100" "ВС18857100"

Cilostazol

"А044124100" "A044124100" "A044136100" "A044136100" "A044136100" "A044136100" "А048377100" "A048377100" "A048377100" "A049008100" "A049008100" "A049008100" "А049189100" "А049189100" "A049189100" "A050027100" "A050027100" "A050034100" "А050034100" "A050034100" "A050429100" "A050429100" "A050429100" "A050429100" "A050429100" "AB44124100" "AB44124100" "AB44124100" "AB44124100" "AB44124100" "AB44124100" "AB44124100" "AB44136100" "AB44136100" "AB44136100" "AB44136100" "AB44136100" "AB44136100" "AB44136100" "AB49189100" "AB49189100" "AB49189100" "AB49189100" "AB49189100" "AB49189100" "AB49189100" "AC44124100" "AC44124100" "AC44124100" "AC44136100" "AC44136100" "AC44136100" "AC48377100" "AC48377100" "AC48377100" "AC48377100" "AC48377100" "AC48377100" "AC48377100" "AC49008100" "AC49008100" "AC49008100" "AC49008100" "AC49008100" "AC49008100" "AC49008100" "AC49189100" "AC49189100" "AC49189100" "AC50027100" "AC50027100" "AC50027100" "AC50027100" "AC50027100" "AC50027100" "AC50027100" "AC50027100" "AC50034100" "AC50034100" "AC50034100" "AC50034100" "AC50034100" "AC50034100" "AC50034100" "AC55010100" "AC55010100" "AC55010100""AC55010100" "AC55010100" "AC55010100" "AC55010100" "AC57814100" "AC57814100" "AC57814100" "AC57814100" "AC57814100" "AC57814100" "AC57814100" "B023004100" "B023004100" "B023004100" "B023004100" "В023004100" "В023004100" "В023004100" "B023004100" "В023005100" "B023005100" "B023005100" "В025249100" "В025249100" "B025993100" "B025993100" "B025993100" "B025993100" "B025994100" "В025994100" "B025994100" "B025994100" "BC25249100" "BC25249100" "BC25249100" "ВС25249100" "BC25249100" "BC25993100" "BC25993100" "BC25993100" "BC25993100" "BC25993100" "BC25994100" "BC25994100" "BC25994100" "BC25994100" "BC25994100"

```
Abciximab
"K000489221""K000489221""K000489221"
```


Eptifibatide

"В023459229" "В023459229" "В023459229" "В023459229" "В023468255" "В023468255" "В023468255" "В023468255" "ВС23459229" "ВС23459229" "ВС23459229" "ВС23468255" "ВС23468255" "ВС23468255" "ВС23468255" "ВС23468255"

Tirofiban

"В022606248" "B022606248" "B022606248" "B022606248" "BC22606248" "BC22606248"

Dipyridamole

"A001941100" "A001941100" "A001941100" "A001941100" "A001941100" "A001941100" "A001941100"
"A001941100" "A0019411G0" "A0019411G0" "A003853100" "A003853100" "A003853100"
"А003853100" "A005200100" "A005200100" "A005200100" "A005200100" "A005200100"
"А005200100" "A005200100" "A005414100" "A005414100" "A005414100" "A005414100"
"А006394100" "А006394100" "А007799212" "A007799212" "А007799212" "А008380100" "А008380100" "А008380100" "А008380100" "A008380100" "A009983100" "A009983100" "A009983100" "A0099831G0" "A010802100" "A010802100" "A010802100" "A010802100" "А012383100" "А012383100" "А012383100" "А012383100" "А013634100""А013634100" "А013634100" "А013634100" "А013634100" "А013634100" "А013634100" "A013634100" "A013634100" "A0136341G0" "A0136341G0" "A013752100" "A013752100" "A013752100" "A013801100" "A013801100" "A013801100" "A013801100" "A013801100" "A013801100" "A013801100" "A013801100" "A0138011G0" "A0138011G0" "A014256100" "A014256100" "A014256100"

```
"A015511100""A015511100" "A015511100" "A015511100" "A015511100" "A015734100" "A015734100"
```

"А015734100" "А015734100" "А015990100" "A015990100" "A015990100" "А017350212"
"A017350212" "A017350212" "A017350212" "A017350212" "A017350212" "A017573100"
"А017573100""А017573100" "А017573100" "A017573100""A017737100""А017737100"
"А017737100" "А017737100" "А017737100" "А017872212" "А017872212""А017872212"
"А017872212" "А017872212" "А017872212" "А017872212""А019034100""А019034100"
"А019034100" "А019138100" "А019138100" "А019138100" "А019138100" "А019502100"
"А019502100" "A019502100" "A019627100" "A019627100" "A019627100" "A019627100"
"А019796100" "А019796100" "А019796100" "А019894100" "А019894100" "А019894100"
"А019895100" "А019895100" "А019895100" "A019895100" "A019895100" "A019895100"
"A019895100" "A019895100" "A019895100" "A0198951G0" "A0198951G0" "A020095100"
"А020095100" "А021566100" "А021566100" "А021566100" "А021566100" "A021711100"
"А021711100" "А021711100" "А022187100" "A022187100" "А022187100" "А022187100"
"А022723100""А022723100" "А022723100" "А022723100""A022723100""А022802100"
"А022802100" "А022802100" "А023317212" "А023317212" "А023317212" "А023317212"
"А023321100" "А023321100" "A023321100" "A023321100" "A023321100" "A023644100"
"А023644100" "A023644100" "A023644100" "A024356100" "A024356100" "A024356100"
"A024356100" "A024772212" "A024772212" "A024772212" "A024772212" "A024772212"
"А024772212" "A025272100" "А025272100" "A025272100" "A025272100" "A025406100"
"А025406100" "A025406100" "A025406100" "A025431100" "A025431100" "A025431100"

$$
\begin{aligned}
& \text { "A025431100" "A025431100" "A025431100"" A025431100""A025686100" "A025686100" } \\
& \text { "A025686100" "A025686100" "A025686100" "A025686100" "A0256861G0" "A0256861G0" } \\
& \text { "A025851100" "A025851100" "A025851100"" A026008100"" "A026008100" "A026008100" } \\
& \text { "A026008100" "A026008100" "A026521100" "A026521100"" "A026521100" "A026770100" } \\
& \text { "A026770100" "A026770100"" } \mathrm{A} 027445100 " \text { "A027445100" "A027445100" "A027445100" } \\
& \text { "A027445100" "A027445100" "A027445100" "A027445100"" } \mathrm{A} 027511100 \text { " "A027511100" } \\
& \text { "А027512100""A027512100""A027512100" "A027512100"" } \mathrm{A} 027512100 " \text { "A027512100" } \\
& \text { "A027512100" "A028454100" "A028454100" "A028454100"" } \mathrm{A} 028454100 \text { " "A028454100" } \\
& \text { "A028454100" "A028454100" "A028454100" "A0284541G0" "A0284541G0" "A0284541G0" } \\
& \text { "А028507100" "A028507100" "A028507100" "A028507100"" } \mathrm{A} 028507100 \text { ""A028507100" } \\
& \text { "A028507100" "A028507100" "A028507100'" "A028507100" "A028507100" "A028592100" } \\
& \text { "A028592100" "A028592100" "A028592100'" "A028592100" "A028592100" "A028592100" } \\
& \text { "A028592100" "A0285921G0" "A0285921G0" "A029432100" "A029432100" "A029432100" } \\
& \text { "A029432100" "A029432100" "A029432100" "A029432100"" A029432100" "A029432 100" } \\
& \text { "А029432100" "A029432100" "A029432100" "A029432100" "A029432100" "A029432100" } \\
& \text { "А029765100" "A029765100" "A029765100" "A029766100"" } \mathrm{A} 029766100 \text { " "A029766100" } \\
& \text { "А029766100" "A029766100" "A029766100" "A030336100"" "A030336100" "A031228100" } \\
& \text { "A03 1228100"" } \mathrm{A} 031228100 " \text { "A031228100" "A031228100""A031228100"" } \mathrm{A} 031228100 \text { " } \\
& \text { "A03 1228100" "A031228100" "A031323100"" "A031323100" "A031323100" "A031323100" } \\
& \text { "A031323100""A031323100""A031323100""A031323100""A031323100""A032046100" } \\
& \text { "A032046100" "A032046100" "A032046100" "A032046100" "A0320461G0" "A0320461G0' } \\
& \text { "A032530100" "A032530100" "A032530100" "A032530100""A032530100"" } \mathrm{A} 032530100 \text { " } \\
& \text { "A032530100" "A0325301G0" "A0325301G0" "A033622100" "A033622100" "A033622100" } \\
& \text { "A033622100" "A034584100" "A034584100" "A034584100"" } \mathrm{A} 034584100 \text { " "A034584100" } \\
& \text { "A0345841G0" "A037644100" "A037644100" "A037644100" "A0376441G0" "A0376441G0" } \\
& \text { "A038495100" "A038495100" "A038495100" "A038495100"" } \mathrm{A} 039042100 \text { ""A039042100" } \\
& \text { "A039042100" "A0390421G0" "A0390421G0"" A040976100" "A040976100" "A040976100" } \\
& \text { "A041288100" "A041288100" "A041288100" "A041288100""A041548100"" A041548100" } \\
& \text { "A041548100" "A041548100" "A041548100" "A041548100""A041548100""A0415481G0" } \\
& \text { "A0415481G0"" } \mathrm{A} 041877100 " \text { "A041877100" "A041898100" "A041898100" "A041898100" } \\
& \text { "A041898100""A042535100""A042535100""A042535100" "A042535100""A042535100" } \\
& \text { "А042535100" "А042535100" "A042535100" "A042535100"" } \mathrm{A} 043040100 \text { " "A043040100" } \\
& \text { "А043040100" "A043040100" "A043040100" "A043040100"" } \mathrm{A} 043040100 \text { " "A043040100" } \\
& \text { "А043630100" "А043630100" "A043630100" "A043630100"" } \mathrm{A} 043630100 \text { " "A043630100" } \\
& \text { "A045312100""A045312100" "A045312100" "AC01941100" "AC019411G0" "AC05200100" } \\
& \text { "AC05200100" "AC08380100" "AC10802100" "AC13634100" "AC13634100" "AC136341G0" } \\
& \text { "AC136341G0" "AC13801100""AC138011G0" "AC17350212" "AC19138100""AC19627100" }
\end{aligned}
$$

```
"AC256861G0" "AC27445100"" AC27445100" "AC27445100" "AC27445100" "AC27445100"
"AC27445100" "AC274451G0" "AC284541G0" "AC284541G0" "AC285071G0" "AC285071G0"
"AC28592100" "AC28592100" "AC28592100" "AC28592100" "AC28592100" "AC28592100"
"AC28592100" "AC285921G0" "AC294321G0" "AC294321G0" "AC31228100" "AC31228100"
"AC31228100" "AC31228100"" AC3 1228100" "AC31228100" "AC312281G0" "AC32046100"
"AC32046100"" AC32046100" "AC32046100" "AC32046100" "AC32046100" "AC32046100"
"AC32046100" "AC320461G0" "AC32530100" "AC32530100" "AC32530100" "AC32530100"
"AC32530100""AC325301G0" "AC325301G0" "AC325301G0" "AC325301G0" "AC325301G0"
"AC34584100" "AC37644100" "AC376441G0" "AC39042100" "AC390421G6" "AC41548100"
"AC41548100" "AC415481G0" "AC415481G0" "AC41877100" "AC41877100" "AC41877100"
"AC41877100""AC41877100" "AC42535100" "AC42535100"" AC42535100" "AC42535100"
"AC42535100" "AC42535100" "AC42535100" "AC425351G0" "AC43040100" "AC43040100"
"AC43040100" "AC43040100""AC43040100""AC43040100""AC43040100" "AC430401G0"
"AC43630100" "AC43630100" "AC43630100" "AC43630100" "AC43630100" "AC43630100"
"AC45312100""AC57891100""AC578911G0" "B004606212" "B004606212" "B004606212"
"В004606212" "В004606212" "В004606212" "В008358100" "В008358100" "В008358100" "В008358100"
"В008358100" "В008358100" "В009073100"" "В009073 100" "В009073100" "В009073100"" "В009073100"
"B009073100" "B009073100"""B009073100"",B0090731G0" "B0090731G0"" "B013267212"
"В013267212" "В013267212" "В013267212" "В013267212" "В013318100" "В013318100" "В013318100"
"В013318100" "В013590100" "B013590100"" "В013590100" "В013590100""ВВ013590100""'В013590100"
"В013590100" "В014345212" "В014345212" "В014345212" "В014345212" "В014602100" "В014602100"
"В014602100" "В014602100" "В016102100"" "В016102100" "В016102100" "В016102100" "В016141100"
"В016141100" "В016141100"" "В018442100" "В018442100" "В018471100"" "В018471100" "В018471100"
"В020244100" "В020244100" "В020244100" "В020244100" "В023385212" "В023385212" "В0233852 12"
"В023385212" "В023919100" "В023919100"" "В023919100" "В023919100" "В023919100" "В023919100"
"BC23919100" "BC23919100" "BC23919100" "BC23919100" "BC23919100" "N000163100"
"N000163100" "N000163100" "N001036100" "N001036100"" "N001036100" "N001036100"
"N001036100" "N004907212" "N004907212""N0049072 12" "N004907212" "N006489212"
"N006489212" "N006489212" "N008511100" "N008511100" "N008511100" "N011074100"" N011074100"
"N011074100" "N013361100" "N013361100" "N013361100"" "N013361100" "N015343212"
"N015343212" "N015343212" "N015343212""N015343221" "N015343221" "N015343221"
"NC06489212" "NC15343212
```

Table V. Baseline Characteristics of Ischemic Stroke Population before Inverse Probability of Treatment Weighting

	NOACS		Warfarin		Total	SMD	
N	37,129	48.87%	38,840	51.13%	75,969		
Age (mean, SD)	74.966	9.498	70.046	12.689	72.451	11.509	0.439
Gender							
Male	19,994	53.85%	21,001	54.07%	40,995	53.96%	-0.004
Female	17,135	46.15%	17,839	45.93%	34,974	46.04%	
Comorbidity							
PAOD	991	2.67%	1,515	3.90%	2,506	3.30%	0.069
CHD	20,920	56.34%	19,985	51.45%	40,905	53.84%	-0.098
CHF	14,040	37.81%	14,327	36.89%	28,367	37.34%	-0.019
HTN	33,628	90.57%	33,413	86.03%	67,041	88.25%	-0.142
DM	17,410	46.89%	18,575	47.82%	35,985	47.37%	0.019
Hyperlipidemia	22,626	60.94%	20,781	53.50%	43,407	57.14%	-0.151
CKD	11,757	31.67%	13,199	33.98%	24,956	32.85%	0.049
Liver Disease	8,163	21.99%	7,314	18.83%	15,477	20.37%	-0.078
Medical History							
Warfarin	14,008	37.73%	25,951	66.82%	39,959	52.60%	0.609
Antiplatelets	34,139	91.95%	34,323	88.37%	68,462	90.12%	-0.120
Event time (mean, SD)	626.600	505.600	995.700	730.500	815.308	657.088	
AF, Atrial Fibrillation; PAOD, Peripheral arterial occlusion disease; CHD, Coronary heart							
disease; CHF, Chronic heart failure; CKD, chronic kidney disease; HTN, Hypertension; DM,							
Diabetes mellitus; SD, standard deviation; SMD, Standardized mean difference							

Table VI. Baseline Characteristics of Ischemic Stroke Population after Inverse Probability of Treatment Weighting

	NOACS		Warfarin		Total		SMD
N_{w}	75,319	49.54%	76,727	50.46%	$152,046.0$		
Age (mean,SD)	72.732	16.276	72.801	16.269	72.716	16.272	0.003
Gender							
Male	40,037	53.16%	35,420	46.16%	75,457	49.63%	-0.014
Female	35,282	46.84%	41,307	53.84%	76,589	50.37%	
Comorbidity							
PAOD	2,677	3.55%	2,606	3.40%	5,283	3.47%	-0.009
CHD	41,347	54.90%	42,329	55.17%	83,676	55.03%	0.005
CHF	29,058	38.58%	29,492	38.44%	58,550	38.51%	-0.003
HTN	66,449	88.22%	67,922	88.52%	134,371	88.38%	0.009
DM	35,556	47.21%	36,428	47.48%	71,983	47.34%	0.005
Hyperlipidemia	42,746	56.75%	43,997	57.34%	86,743	57.05%	0.012
CKD	25,554	33.93%	25,882	33.73%	51,436	33.83%	-0.004
Liver Disease	15,636	20.76%	16,090	20.97%	31,726	20.87%	0.005
Medical history							
Warfarin	39,259	52.12%	39,869	51.96%	79,128	52.04%	-0.003
Antiplatelets	67,926	90.19%	69,406	90.46%	137,332	90.32%	0.009

N_{w} : expressed by weighted number, percentage, mean and SD.
AF, Atrial Fibrillation; PAOD, Peripheral arterial occlusion disease; CHD, Coronary heart disease; CHF, Chronic heart failure; CKD, chronic kidney disease; HTN, Hypertension; DM, Diabetes mellitus; SD, standard deviation; SMD, Standardized mean difference

Table VII. Baseline Characteristics of Hemorrhagic Stroke Population before Inverse Probability of Treatment Weighting

	NOACS		Warfarin		Total		SMD
N	2,711	42.00%	3,743	58.00%	6,454		
Age (mean, SD)	73.018	11.167	66.691	13.798	69.349	13.134	0.504
Gender							
Male	1,557	57.43%	2,114	56.48%	3,671	56.88%	0.019
Female	1,154	42.57%	1,629	43.52%	2,783	43.12%	
Comorbidity							
PAOD	66	2.43%	135	3.61%	201	3.11%	0.069
CHD	1,379	50.87%	1,652	44.14%	3,031	46.96%	-0.135
CHF	997	36.78%	1,312	35.05%	2,309	35.78%	-0.036
HTN	2,479	91.44%	3,103	82.90%	5,582	86.49%	-0.258
DM	1,208	44.56%	1,617	43.20%	2,825	43.77%	-0.027
Hyperlipidemia	1,377	50.79%	1,600	42.75%	2,977	46.13%	-0.162
Kidney Disease	830	30.62%	1,246	33.29%	2,076	32.17%	0.057
Liver Disease	667	24.60%	783	20.92%	1,450	22.47%	-0.088
Medical History							
Warfarin	892	32.90%	2,379	63.56%	3,271	50.68%	0.645
Antiplatelets	2,210	81.52%	2,776	74.17%	4,986	77.25%	-0.178
Event time (mean, SD) 565.800	475.300	901.700	692.600	760.594	632.889		
AF, Atrial Fibrillation; CHD, Coronary heart disease; CHF, Chronic heart failure; CKD,							
chronic kidney disease; DM, Diabetes mellitus; HTN, Hypertension; NOAC, non-vitamin K							
antagonist oral anticoagulants; PAOD, Peripheral arterial occlusion disease; SD, standard							
deviation; SMD, Standardized mean difference							

Table VIII. Baseline Characteristics of Hemorrhagic Stroke Population after Inverse Probability of Treatment Weighting

	NOACS		Warfarin		Total		SMD
N_{w}	6,453	49.87%	6,487	50.13%	$12,939.2$		
Age (mean, SD)	68.960	22.274	69.393	17.129	69.177	19.457	-0.035
Gender							
Male	3,577	55.43%	3,692	56.93%	7,269	56.18%	-0.030
Female	2,876	44.57%	2,794	43.07%	5,670	43.82%	
Comorbidity							
PAOD	214	3.32%	211	3.25%	425	3.28%	-0.004
CHD	3,006	46.59%	3,090	47.64%	6,097	47.12%	0.021
CHF	2,244	34.78%	2,326	35.86%	4,570	35.32%	0.023
HTN	5,561	86.19%	5,617	86.59%	11,178	86.39%	0.012
DM	2,799	43.39%	2,874	44.30%	5,673	43.84%	0.018
Hyperlipidemia	2,956	45.81%	3,011	46.42%	5,967	46.12%	0.012
Kidney Disease	2,150	33.33%	2,129	32.82%	4,279	33.07%	-0.011
Liver Disease	1,528	23.69%	1,535	23.66%	3,064	23.68%	-0.001
Medical History							
Warfarin	3,243	50.25%	3,261	50.27%	6,503	50.26%	0.000
Antiplatelets	5,048	78.23%	5,040	77.69%	10,087	77.96%	-0.013

N_{w} : expressed by weighted number, percentage, mean and SD.
AF, Atrial Fibrillation; CHD, Coronary heart disease; CHF, Chronic heart failure; CKD, chronic kidney disease; DM, Diabetes mellitus; HTN, Hypertension; NOAC, non-vitamin K antagonist oral anticoagulants; PAOD, Peripheral arterial occlusion disease; SD, standard deviation; SMD, Standardized mean difference

Table IX. Incidence Rates of Different Types of Hemorrhagic Stroke for All Stroke Patients at Baseline Taking NOACs or Warfarin

	$\begin{aligned} & \text { Total population } \\ & (N=82,423) \end{aligned}$	$\begin{gathered} \text { NOACs } \\ (N=39,840) \end{gathered}$	$\begin{gathered} \text { Warfarin } \\ (N=42,583) \end{gathered}$	Crude HR	Adjusted HR	Adjusted HR under IPTW ${ }^{\dagger}$
Intracerebral hemorrhage (ICH)						
Total person-years	187193.47	68965.57	118227.90			
Follow-up years	2.27 ± 1.81	1.73 ± 1.39	2.78 ± 2.00			
Event number	630	180	450			
Incidence rate ${ }^{\text {¢ }}$	0.337	0.261	0.381	0.58 (0.49~0.69) ${ }^{* * *}$	0.56 (0.46~0.68) ${ }^{* * *}$	0.59 (0.52~0.66) ${ }^{* * *}$
Subdural hemorrhage (SDH)						
Total person-years	187624.64	69062.52	118562.12			
Follow-up years	2.28 ± 1.81	1.73 ± 1.39	2.78 ± 2.00			
Event number	133	33	100			
Incidence rate ${ }^{\text {¢ }}$	0.071	0.048	0.084	0.50 (0.33~0.74)***	$0.52(0.34 \sim 0.81){ }^{* *}$	0.49 (0.38~0.65) ${ }^{* * *}$
Subarachnoid hemorrhage (SAH)						
Total person-years	187733.25	69094.52	118638.72			
Follow-up years	2.28 ± 1.81	1.73 ± 1.39	2.79 ± 2.00			
Event number	43	16	27			
Incidence rate ${ }^{\text {¢ }}$	0.023	0.023	0.023	0.93 (0.50~1.76)	1.01 (0.49~2.06)	1.11 (0.72~1.70)

Abbreviations: HR, hazard ratio; N, number, NOAC, non-vitamin K antagonist oral anticoagulants; IPTW, inverse probability of treatment weighting. * $p<$ $0.05, * * p<0.01, * * * p<0.001$.
\dagger Adjusted for age, gender, baseline stroke type, atrial fibrillation, peripheral arterial occlusive disease, coronary heart disease, chronic heart failure, hypertension, diabetes mellitus, use of warfarin, and use of antiplatelets.
\# Incidence rate denotes events/total person-years (per 100 person-years).

Table X. Incidence Rates of Different Types of Hemorrhagic Stroke among the Ischemic Stroke Population Taking NOACs or Warfarin

Variable	Ischemic stroke population $(N=75,969)$	$\begin{gathered} \text { NOACs } \\ (N=37,129) \end{gathered}$	$\begin{gathered} \text { Warfarin } \\ (N=38,840) \\ \hline \end{gathered}$	Crude HR	Adjusted HR	Adjusted HR under IPTW ${ }^{\dagger}$
Intracerebral hemorrhage (ICH)						
Total person-years	173384.50	64643.83	108740.67			
Follow-up years	2.28 ± 1.81	1.74 ± 1.39	2.80 ± 2.00			
Event number	297	88	209			
Incidence rate ${ }^{\ddagger}$	0.171	0.136	0.192	$0.59(0.46 \sim 0.76)^{* * *}$	$0.48(0.36 \sim 0.63){ }^{* * *}$	$0.54(0.46 \sim 0.64)^{* * *}$
Subdural hemorrhage (SDH)						
Total person-years	173574.84	64681.27	108893.57			
Follow-up years	2.28 ± 1.81	1.74 ± 1.39	2.80 ± 2.00			
Event number	58	20	38			
Incidence rate ${ }^{\ddagger}$	0.033	0.031	0.035	0.73 (0.42~1.26)	0.49 (0.27~0.90)*	$0.52(0.35 \sim 0.75)^{* * *}$
Subarachnoid hemorrhage (SAH)						
Total person-years	173627.81	64703.99	108923.82			
Follow-up years	2.29 ± 1.81	1.74 ± 1.39	2.80 ± 2.00			
Event number	21	6	15			
Incidence rate ${ }^{\ddagger}$	0.012	0.009	0.014	0.55 (0.21~1.43)	0.55 (0.19~1.58)	0.75 (0.40~1.43)

Abbreviations: HR, hazard ratio; IPTW, inverse probability of treatment weighting; NOAC, non-vitamin K antagonist oral anticoagulant

* $p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$.
${ }^{\dagger}$ Adjusted for age, gender, atrial fibrillation, peripheral arterial occlusive disease, coronary heart disease, chronic heart failure, hypertension, diabetes mellitus, use of warfarin, and use of antiplatelets.
\# Incidence rate denotes events/total person-years (per 100 person-years).

Table XI. Incidence Rates of Different Types of Hemorrhagic Stroke among the Hemorrhagic Stroke Population Taking NOACs or Warfarin
$\left.\begin{array}{lcccccc}\hline & \begin{array}{c}\text { Hemorrhagic stroke } \\ \text { population } \\ (N=6454)\end{array} & \text { NOACs } & \text { Warfarin } & \text { Crude HR } & \text { Adjusted HR } & \begin{array}{c}\text { Adjusted HR under } \\ \text { IPTW }\end{array} \\ & & & & \\ (N=3711)\end{array}\right]$

[^0]* $p<0.05$, ** $p<0.01$, *** $p<0.001$.
${ }^{\dagger}$ Adjusted for age, gender, atrial fibrillation, peripheral arterial occlusive disease, coronary heart disease, chronic heart failure, hypertension, diabetes mellitus, use of warfarin, and use of antiplatelets.
${ }^{\ddagger}$ Incidence rate denotes events/total person-years (per 100 person-years)

Table XII. Risk of Recurrent Stroke among Stroke Patients Using Various Doses of NOACs

NOACs	Subgroups by different dose	Comparison of subgroups	Crude HR	Adjusted HR \dagger	Adjusted HR under IPTW
$\begin{aligned} & \hline \text { Rivaroxaban } \\ & (N=19,783) \end{aligned}$	Low dose: 9,613 (48.6\%)	Standard dose vs. warfarin	0.68 (0.59~0.77)***	0.66 (0.57~0.76)***	0.65 (0.50~0.71) ${ }^{* * *}$
	Standard dose: 10,170 (51.4\%)	Low dose vs. warfarin	0.65 (0.56~0.75)***	0.67 (0.58~0.78)***	0.65 (0.60~0.71)***
	(missing: 904)	Standard vs. low dose	1.04 (0.87~1.25)	0.99 (0.82~1.19)	1.00 (0.90~1.11)
$\begin{aligned} & \hline \text { Dabigatran } \\ & (N=11,997) \end{aligned}$	Low dose: 10,677 (89.0\%)	Standard dose vs. warfarin	0.84 (0.64~1.10)	0.84 (0.63~1.10)	0.68 (0.58~0.79)***
	Standard dose: 1320 (11.0\%)	Low dose vs. warfarin	0.76 (0.68~0.85)***	0.72 (0.64~0.81) ${ }^{* * *}$	0.78 (0.74~0.83)***
	(missing: 93)	Standard vs. low dose	1.10 (0.82~1.47)	1.17 (0.87~1.56)	0.86 (0.74~1.01)
Apixaban$(N=4,998)$	Low dose: 2991 (59.8\%)	Standard dose vs. warfarin	0.63 (0.45~0.89)**	0.66 (0.46~0.93)*	0.47 (0.41~0.54)***
	Standard dose: 2007 (40.2\%)	Low dose vs. warfarin	0.51 (0.37~0.70)***	0.49 (0.35~0.68)***	0.56 (0.50~0.63)**
	(missing: 124)	Standard vs. low dose	1.25 (0.79~1.98)	1.34 (0.84~2.13)	0.84 (0.72~0.99)*
Edoxaban$(N=1,918)$	Low dose: 1281 (66.8\%)	Standard dose vs. warfarin	0.92 (0.46~1.85)	0.82 (0.46~1.86)	0.35 (0.28~0.43)***
	Standard dose: 637 (33.2\%)	Low dose vs. warfarin	0.27 (0.11~0.66)**	0.28 (0.12~0.68)**	0.18 (0.14~0.23)***
	(missing: 23)	Standard vs. low dose	3.36 (1.01~10.27)*	3.26 (1.07~9.97)*	$1.95(1.43 \sim 2.65)^{* * *}$

Abbreviations: HR, hazard ratio; IPTW, inverse probability of treatment weighting; NOAC, non-vitamin K antagonist oral anticoagulant.

* $\mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$.
\dagger Adjusted for age, gender, baseline stroke type, atrial fibrillation, peripheral arterial occlusion disease, coronary heart disease, chronic heart failure, hypertension, diabetes mellitus, use of warfarin, and use of antiplatelets.

Table XIII. Recurrent Stroke among Stroke Patients with Morbid Obesity Using Various NOACs

Population of all types of stroke	Exposure	Primary outcome		Secondary outcome	
	Recurrent stroke	Recurrent ischemic stroke	Recurrent hemorrhagic stroke		
Crude HR	NOACs	$0.862(0.389 \sim 1.909)$	$0.861(0.318 \sim 2.239)$	$0.873(0.232 \sim 3.284)$	
	Rivaroxaban	$0.883(0.355 \sim 2.199)$	$0.998(0.333 \sim 2.997)$	$0.689(0.133 \sim 3.579)$	
	Dabigatran	$0.599(0.136 \sim 2.642)$	$0.465(0.059 \sim 3.684)$	$0.856(0.099 \sim 7.372)$	
	Apixaban	$1.625(0.361 \sim 7.313)$	$1.307(0.161 \sim 10.595)$	$2.176(0.245 \sim 19.362)$	
	NOACs	$0.715(0.290 \sim 1.762)$	$1.021(0.329 \sim 3.167)$	$0.371(0.066 \sim 2.076)$	
Adjusted HR †	Rivaroxaban	$0.999(0.368 \sim 2.707)$	$1.317(0.396 \sim 4.375)$	$0.481(0.062 \sim 3.723)$	
	Dabigatran	$0.522(0.097 \sim 2.805)$	$0.702(0.068 \sim 7.282)$	$0.533(0.030 \sim 9.399)$	
	Apixaban	$2.033(0.328 \sim 12.613)$	$1.751(0.172 \sim 17.827)$	$1.625(0.032 \sim 83.758)$	
	NOACs	$0.787(0.414 \sim 1.496)$	$1.309(0.602 \sim 2.846)$	$0.292(0.076-1.128)$	
Adjusted HR under	Rivaroxaban	$1.071(0.540 \sim 2.124)$	$1.716(0.763 \sim 3.862)$	$0.376(0.080 \sim 1.776)$	
IPTW	Dabigatran	$0.272(0.065 \sim 1.143)$	$0.518(0.077 \sim 3.499)$	$0.217(0.021 \sim 2.225)$	
	Apixaban	$1.426(0.316 \sim 6.445)$	$1.133(0.145 \sim 8.874)$	$1.121(0.042 \sim 30.070)$	

[^1]* $p<0.05$, ** $p<0.01$, *** $p<0.001$.
\dagger Adjusted for age, gender, baseline stroke type, atrial fibrillation, peripheral arterial occlusion disease, coronary heart disease, chronic heart failure, hypertension, diabetes mellitus, use of warfarin, and use of antiplatelets.

Table XIV. Number and Proportions of Stroke Patients were Treated with Standard and Low Dose NOACs

$\mathrm{N}=38,696$			
Dose	Standard	14,134	36.53%
	low-dose	24,562	63.47%

Patients with missing dosage information ($N=1,144$).
NOAC, non-vitamin K antagonist oral anticoagulants

Table XV. The Number and Proportions of Stroke Patients Treated with NOACs and Warfarin by Days of Prescription

	NOACs		Warfarin		Total		P value					
	Mean	SD	Mean	SD	Mean	SD						
N	38,696	50.76%	37,535	49.24%	76,231							
Use days	330.800	378.000	466.900	631.500	397.800	523.000						
$1-30$ days	7,072	18.28%	8,431	22.46%	15,503	20.34%						
31-90 days	5,910	15.27%	5,506	14.67%	11,416	14.98%						
91-180 days	5,738	14.83%	4,518	12.04%	10,256	13.45%	$<.0001$					
181-360 days	7,363	19.03%	5,064	13.49%	12,427	16.30%						
>360 days	12,613	32.60%	14,016	37.34%	26,629	34.93%						
Missing	1,144	5,048								6,192		

N, number; NOAC, non-vitamin K antagonist oral anticoagulants; SD, standard deviation

Table XVI. The median follow-up time for NOACs

NOACs	All types of stroke	Ischemic stroke	Hemorrhagic stroke
Rivaroxaban	1.69 ± 1.26 years	1.70 ± 1.26 years	1.62 ± 1.25 years
Dabigatran	2.23 ± 1.61 years	2.24 ± 1.61 years	2.07 ± 1.54 years
Apixaban	1.04 ± 0.77 years	1.04 ± 0.77 years	0.97 ± 0.74 years
Edoxaban	0.44 ± 0.32 years	0.44 ± 0.32 years	0.45 ± 0.33 years

NOAC, non-vitamin K antagonist oral anticoagulants

[^0]: Abbreviations: HR, hazard ratio; IPTW, inverse probability of treatment weighting; NOAC, non-vitamin K antagonist oral anticoagulant.

[^1]: Abbreviations: HR, hazard ratio ;NOAC, non-vitamin K antagonist oral anticoagulant.

