
Appendix 1 
 

A.1 Privacy Enhancing Technologies  
In this section, the authors will discuss several privacy enhancing technologies that were part of 

the TIPPERS system deployed in the US Navy ship. In particular, the section explains the 
differential privacy, secure database, and policy technologies along with a description of their 
usage in the context of Trident Warrior 2019.  

 
A.1.1 Differential Privacy 

PeGaSus (PGS) is a specific algorithm for analyzing streaming data under differential privacy 
[17]. PGS supports a variety of analyses; counts, sliding windows, and event monitoring, in real 
time with provable guarantees of privacy and low error.  It also supports analysis at multiple 

resolutions, from an individual sensor to aggregate statistics of a collection of sensors. 
 PGS processes a set of data streams in short windows (say 5 minutes).  At the conclusion 

of each time window, data is aggregated into a set of counts.  For example, one count might report 
the number of individuals observed by a particular sensor at least once during the previous 5 
minutes.  These counts are fed into the Perturber, the first of three components in the PGS system.  

The Perturber adds random noise to the counts, where the noise is sufficient to ensure the 
differential privacy guarantee.  Practically speaking, this means that the location of a user at a 

particular time is effectively hidden.  While the noise ensures privacy, it may also create artificial 
effects in the data stream, such as jitter, even when the underlying data stream is smooth. 
 The two remaining components of PGS address the issue of spurious patterns arising from 

the noise infusion.  The Grouper partitions the data into smooth windows -- intervals of the data 
stream where the total deviation from the window average is small.  Crucially, this grouping must 

be done carefully to ensure the DP condition is met.  The final module is the Smoother, which 
combines the outputs of the Perturber and Grouper, to produce a data stream where spurious jitter 
from the noise has been greatly reduced.   

 The Perturb-Group-Smooth technique, the inspiration for the name PeGaSus, is data-
adaptive; it yields higher accuracy on streams that are smooth, but can nevertheless detect changes 

in the pattern (such as a conference room transitioning from unoccupied to occupied). 
 
A.1.2 Secure Databases and Encrypted Storage 

There are two specialized databases that are incorporated into TIPPERS:  PULSAR and Jana.  In 
this section, the authors will discuss those technologies and how they function. 

 
A.1.2.1 PULSAR Technology 

A standard secret-sharing scheme allows a dealer to randomly split a secret into two or more 

shares, such that certain subsets of the shares can be used to reconstruct the secret and others reveal 
nothing about it. The simplest type of secret sharing is 2-party additive secret sharing, where the 

secret s is an element of an Abelian group G, and it is split into two shares (r,r-s) that add up to s, 
where r is a random element of G. A useful feature of such scheme is that it is homomorphic in 
the sense that if many secrets are shared, the two parties can individually compute shares of the 

sum of the secrets by locally adding their shares, without any communication. This feature of 
additive secret sharing  (more generally, linear secret sharing) is useful for many cryptographic 

applications. 



 The notion of function secret sharing (FSS) [10,11,18] can be viewed as a natural 
generalization of additive secret sharing to functions, where the challenge is to keep the shares 

succinct. Concretely, suppose a class F of functions f mapping n-bit strings to elements of G is 
provided. Is it possible to split an arbitrary f from F into two functions, f1 and f2, such that: (1) 

f=f1+f2 (on every input x),  (2) each of the two shares has a short key describing it that enables its 
efficient evaluation, and yet (3) each key alone hides f? A scheme as above is referred to as an FSS 
scheme for the class F. A special case of interest is the class of point functions f, which have a 

nonzero output on at most one input. An FSS for this class is called a distributed point function 
(DPF). 

 If one insists on perfectly hiding f, then it can be shown that, even in the simple case of 
DPF, the best possible solution is to additively share the truth-table representation of f, whose 
shares consist of 2^n group elements. But if one considers the computational notion of hiding, then 

there are exponentially better solutions in many cases of interest, including the DPF case. 
 Efficient constructions of FSS for simple classes can be constructed from minimal 

cryptographic assumptions such as a block cipher (e.g. AES). This can be applied to private reading 
(e.g. finding a nearby restaurant without revealing your location [19]), private storage (e.g. 
anonymous messaging [20]).  One exemplary application is that of secure distributed histograms 

or "distograms", that allow for the ability to privately aggregate information into histogram 
buckets.  Stealth (makers of PULSAR) incorporates these distograms into the PULSAR (Private 

Updateable Lightweight Scalable Active Repository) solution as a means of real-time privacy-
preserving data aggregation and retrieval which can be applied to sensors, mobile devices, WiFi 
access points, and beyond. 

 New research has shown that FSS can also be used for computing more complex functions 
such as in the work of Boyle, Gilboa, and Ishai [11] as well as important applications in secure 

RAM computation such as Doerner and Shelat [20] and Bunn, Katz, Kushilevitz, and Ostrovsky 
[21]. 
 

A.1.2.2 Jana Technology 
Jana technology implements the paradigm of Private Data as a Service (PDaaS).  Jana 

technology provides order revealing encryption in the form of POPE indexes. This allows Jana to 
use its database query engine to efficiently process operators such as range selection, at some 
quantifiable cost in information leakage. (Note that humans are particularly poor at understanding 

impacts of information leakage. Thus, even when such leakage is quantifiable it remains an open 
research question to determine whether the information is at all useful to data contributors or 

systems security analysts). Jana also supports encrypted secret shares suitable for linear secret 
sharing based processing of query operators using the SCALE/MAMBA MPC engine, allowing 
the technology to process data with no leakage at some quantifiable cost in query performance. 

Uniquely, Jana uses linear secret sharing methods to compute and apply its differential privacy 
protections, so that query results are never “in the clear '' within the system. 

 



Figure 15. Jana PDaaS System. 
 

Jana is illustrated in Figure 15. The bottom center is the commercial relational database, 
PostgreSQL, where encrypted (or plaintext, if desired) data is stored in relational form. 
One or more contributing parties, shown at left in the figure, use their platforms to encrypt data 

(with help from Jana) before actually sending the data on to Jana. At top right, it is shown that Jana 
receives queries. Using the list of available encryptions stored in the database for each attribute in 

each relation, our query re-writer modified each query, choosing whether to execute each query 
operator using the relational database query engine, or the SCALE/MAMBA MPC engine. If 
deterministic or order revealing encryptions are usable by a query operator, and are available for 

the attributes accessed by the operator, then the re-writer runs applicable operators in the Postgres 
database directly (and more efficiently than in MPC). For other operators, our re-writer retrieves 

necessary secret shared data from the relational store, and then issues byte-code programs that 
evaluate those operators over the retrieved data in SCALE. Note that application of differential 
privacy randomness is always performed in the SCALE engine. In each case, the final result of a 

query is produced in secret shared form for communication to the querier. These result shares are 
then combined by client-side Jana tools to provide query results in usable form. 

 Jana also provides and enforces a role-based access policy to control who can ask queries 
and receive query results. Jana includes a language for describing what outcomes should be made 
available, with what protections applied, to queries based on attributes assigned to them by the 

DBA. Available protections are specifiable at the per-record and per-attribute level of granularity. 
Protections include preclusion of access (no access), allowance for access (full access), aggregate-
only access, and differentially private aggregate-only access. 

 
A.1.3 Policies and Policy Enforcement 

In TIPPERS, policies are used to guide the collection, storage, processing, and sharing of data. 
These policies are either defined by the administrator of the space and therefore apply to any device 
in it (e.g., due to security reasons) or defined by users to express how their data should be managed 

(e.g., to restrict access to pieces of information about them). In this demonstration the primary 
focus is on the former types of policies as in this specific environment there is a strong requirement 

to enforce the policies of the space such as preventing unauthorized users from entering a certain 
area or detect when a fire code violation is taking place. This way, a sample policy in the system 
is defined to alert the administrator using the command control application of situations where 

there is an unauthorized access to a space. 
 This policy is defined through the TIPPERS interface and enforced  by leveraging the Pulsar 

system. To this end, a query is continuously posed to Pulsar to return true if the count of people 



with a specific badge (which represents whether the authorization level of a person) in specific 
spaces (e.g., the armory) is different from zero. Pulsar computes this count operation efficiently 

and returns an answer to the app which, in case of a violation, displays an alert.  
 With respect to user-defined policies, the system denies access to an individual's data by 

default when an application tries to access it. As an example of user-defined policies, the team 
created a policy to enable the group commander to access data about people in his/her group. This 
policy, would be defined by each member of the group, grants explicit permission to the group 

commander to access the location of the person. Internally, these policies are managed by the 
TIPPERS policy engine that enforces them at query time. In particular, as discussed in Section 2.1, 

TIPPERS offers the possibility to define such policies in high-level terms (e.g., restricting access 
to location data instead of to specific sensor data) and translates it into access control to low-level 
sensor data. This way, if a user tries to access, for instance, connectivity records of a specific 

device, this will be denied if the user defined a policy to restrict access to his/her location as this 
low-level data can be used to infer such information [7]. 

 
A.1.4. Details of PETs and TIPPERS usage in Trident Warrior exercise 

As explained in Section 2.1, the TIPPERS system integrates the previously explained PETS and 

decides how to use them depending on the specific piece of data collected. In summary, the 
PeGaSus technology from UMass/Colgate/Duke is used to generate differential private streams of 

data into TIPPERS. In the context of the Trident Warrior exercise, a PeGaSus virtual sensor is 
used in TIPPERS to generate differential private occupancy counts over synthetic data generated 
for the ship. Notice the ability to only instrument with real sensors in a few spaces and thus, 

synthetic presence and occupancy data was generated for the rest of spaces (i.e., other 
rooms/floors). As Figure 2 shows (see Section 2.2), sensor data flowing from the synthetic data 

generator tool, as well as from the real sensors, is translated into presence through our 
Connectivity2Presence virtual sensor. Then, this data is further processed to generate occupancy 
counts by another virtual sensor (Presence2Occupancy) at different space granularity levels i.e. 

region, floor, room.  All these streams of occupancy data are passed to the PeGaSus virtual sensor 
to generate a differentially private version. There exist two instantiations of the PeGaSus virtual 

sensor with two different epsilon values (0.5 and 1.0) that generate a stream of differentially private 
occupancy with different noise levels. 

A web application was developed to visualize the differentially private occupancy data and 

compare it with the real occupancy data in order to study its utility [23]. This tool, is based on a 
TIPPERS application (Building Analytics) that was built to give access to a building administrator 

to better plan spaces and events, as well as to better control HVAC systems in order to be more 
energy efficient without having access to the real data. In the tool, the user has the option to view 
differentially private occupancy data for different time intervals and space granularity inside the 

building. 
 It was decided to use the secure databases developed by Stealth and Galois (makers of 

Pulsar and Jana, respectively) for two specific tasks. The first task stored real counts of occupancy 
(divided by badge profile -- i.e., visitor, worker, etc.) and performed policy checking on the 
encrypted domain. The second task stored metadata, such as who is the host of each visitor as well 

as their current location in the encrypted domain. Figure 2 (see Section 2.2), shows how the data 
flows into both systems, as well as the data models defined for them. Notice that a new virtual 

sensor was developed to compute occupancy data of each space divided by profile. This 
information is pushed into the Pulsar system. Also, the real-time presence data generated by the 



virtual sensor using connectivity data is pushed into the Jana system, along with metadata about 
the relationship between hosts and visitors. 

 

 

 

 

 

 

 

 

 

 

 


