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Appendix A 
Four Equivalent Alternative Formulations of the UVIRR Correction and Attenuation Formulas 

 
The BVIRR correction equation given in the text is, 

ρ"#$ =
&'()*'*(+,-./0*'

1 ../0*(
1.

2&''$&(($
	,  (A1a) 

which can be re-expressed using true-score u ratios for one or both variables as: 

ρ"#$ =
	&'()*5*6

-&'')&(()
+ λ2|1 − <"=||1 − <#=|	,  (A1b) 

ρ"#$ = >
&'()

-&(()
<?<# + λ2|1 − <?=||1 − <#=|@ /2ρ??$	, (A1c) 

and 

ρ"#$ = B
ρ?C)
2ρ??)

<"<C + λ-|1 − <"=||1 − <C=|D /2ρCC$	, (A1d) 

where ρ?C) is the observed correlation between X and Y, ρ"#$ is the corrected correlation between T and 
P (i.e., the constructs represented by X and Y, respectively), <? and <C are the ratios of the observed 
standard deviations of X and Y to the population standard deviations of X and Y, respectively, <" and <# 
are the true-score u ratios of X and Y, respectively, ρ??$ and ρCC$ are applicant-group reliabilities for X 
and Y, respectively, and ρ??) and ρCC) are incumbent-group reliabilities for X and Y, respectively. All 
four of the above equations yield identical results, but we recommend Equation A1a because it is 
generally the easiest version to use.  

If one has access to reliability estimates from applicant samples (i.e., ρ??$ or ρCC$), those values 
can be converted to incumbent reliabilities using the formulas 

ρ??) = 1 − /0&''$
*'
1   (A2) 

and  
ρCC) = 1 − /0&(($

*(
1  , (A3) 

(Schmidt & Hunter, 2015, p. 127). The true-score u ratios required in Equations A1b, A1c, and A1d can 
be computed as 

<" = E
<?= − (1 − ρ??$)

ρ??$
= E

ρ??)<?
=

1 + ρ??)<?
= − <?=

 (A4) 

for the true-score u ratio of X and 

<# = E
<C= − (1 − ρCC$)

ρCC$
= E

ρCC)<C
=

1 + ρCC)<C
= − <C=

		,	 (A5) 

for the true-score u ratio of Y (Le et al., 2016, p. 983; Schmidt & Hunter, 2015, p. 127).  
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The attenuation formulas that correspond to A1a, A1b, A1c, and A1d are, respectively: 

ρ?C) =
&56$2&''$&(($0H-./0*'

1 ../0*(
1.

*'*(
	,  (A6a) 

ρ?C) = 2ρ??)ρCC) >
&56$0H-./0*5

1../0*6
1 .

*5*6
@	,  (A6b) 

ρ?C) = 2ρCC) >
&56$2&''$0H-./0*'

1 ../0*6
1.

*'*6
@	,  (A6c) 

and 

ρ?C) = 2ρ??) >
&56$2&(($0H-./0*5

1../0*(
1.

*5*(
@	.  (A6d) 

The equations for computing the λ coefficients for Equations A1a, A1b, A1c, and A1d (and A1a, 
A6b, A6c, and A6d, respectively) are, respectively: 

λ = 	signNρO"$ρO#$(1 − <?)(1 − <C)P
sign(1 − <?)	min R<?,

1
<?S

+ sign(1 − <C)min R<C,
1
<CS

min R<?,
1
<?
S +min R<C,

1
<C
S

	, (A7a) 

λ = 	signNρO"$ρO#$(1 − <")(1 − <#)P
sign(1 − <")min R<",

1
<"S

+ sign(1 − <#)	min R<#,
1
<#S

min R<",
1
<"
S +min R<#,

1
<#
S

	, (A7b) 

λ = 	signNρO"$ρO#$(1 − <?)(1 − <#)P
sign(1 − <?)min R<?,

1
<?S

+ sign(1 − <#)min R<#,
1
<#S

min R<?,
1
<?
S +min R<C,

1
<#
S

	, (A7c) 

and 

λ = 	signNρO"$ρO#$(1 − <")(1 − <C)P
sign(1 − <")	min R<",

1
<"S

+ sign(1 − <C)	min R<C,
1
<CS

min R<",
1
<"
S +min R<C,

1
<C
S

	. (A7d) 

The equations for computing the V coefficients associated with Equations A1a, A1b, A1c, and 
A1d are, respectively: 

T =
<?<C

2ρ??$ρCC$	
	, (A7a) 

T =
<"<#

2ρ??)ρCC)	
	, (A7b) 

T =
<"<C

2ρ??)ρCC$	
	, (A7c) 

and 
T =

<?<#
2ρ??$ρCC)	

	. (A7d) 
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Appendix B 
Conceptual Derivation of the λ Formula 

A Two-Stage Correction Procedure 

In exploring methods for using the BVIRR procedure when u ratios fall on either side of 
1, we devised a method by which the BVIRR correction could be used to make a mixed-variation 
correction in a two-stage procedure. Regardless of how large or small the u ratios in a correction 
are, the choice of some arbitrarily large population standard deviation to use in making a 
correction can turn any application of the BVIRR procedure into a correction for range 
restriction; similarly, the choice of an arbitrarily small population standard deviation can turn any 
application of BVIRR into a correction for range enhancement. When applied in succession, 
corrections involving large and small hypothetical population standard deviations can 
successfully assuage issues related to mismatched u ratios without breaking any of the “rules” we 
have outlined for how to use the BVIRR correction. We describe this procedure below to 
illustrate the intuition of the approach and then, in the subsequent section, we present a shortcut 
that we have derived to compute a λ value between −1 and +1 that obviates the need for a two-
stage correction. We emphasize that scenarios in which one must utilize a λ that is less than 1 in 
absolute value are not typical and that this procedure for handling mixed patterns of u ratios is 
our solution to a problem that otherwise appears intractable; it is a bivariate approximation of a 
correction that should ideally be computed using the multivariate range-correction procedure and 
is therefore only a convenience for use in settings where such a correction is infeasible.  

To account for range variation with u ratios that fall on either side of 1, first correct the 
observed correlation toward arbitrarily large hypothetical population standard deviations. We 
recommend defining a hypothetical population standard deviation by adding some infinitesimally 
small value (e.g., 100/V) to each of one’s u ratios; if the resulting u ratio is smaller than 1, set the 
hypothetical u ratio to 1 plus the chosen small value (e.g., 1 +	100/V). We denote these new 
hypothetical values for <? and <C as <?W  and <CW . Next, compute another set of hypothetical u 
ratios by dividing each observed u ratio by its u-prime counterpart, such that <?X = <?	/	<?W  and 
<CX = <C	/	<CW . The u-prime values are all at least trivially larger than 1 and the u-double-prime 
values are all at least trivially smaller than 1, which means that λ values can be chosen 
unambiguously for the <?W  and <CW  set and for the <?X  and <CX set. 

With hypothetical u ratios in hand, correct Y?C) for range restriction by using <?X  and <CX in 
Equation 1 with λ set to 1 and without making a correction for measurement error. Then pass the 
result of that operation through Equation 1 yet again to correct for range enhancement, this time 
using <?W  and <CW , setting λ to −1, and correcting the result for measurement error using applicant 
reliabilities. This sequence of operations accounts for the mixed pattern of range restriction and 
range enhancement without having to select a λ value different from 1 in absolute value. The 
two-stage procedure makes full use of all range-variation information and results in a corrected 
correlation that gives greater weight to the type of range variation (i.e., restriction or 
enhancement) that is most impactful in the given data. Next, we present a procedure for 
obtaining the same results as the two-stage correction that is much simpler to use and that allows 
one to choose an appropriate λ value to use in Equations 1 and 2. 
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A General Procedure for Computing a λ Coefficient 

We suggest a general formula for estimating λ that (a) reduces to the +1/−1 rules 
described above when both u ratios fall on the same side of 1, (b) converges with the two-stage 
correction procedure described in the previous section, and (c) makes the BVIRR correction 
tolerant of u ratios that fall on either side of 1 for substantive reasons or simply due to sampling 
error. Our generalized λ formula was intended to “tilt” the BVIRR correction toward being either 
a correction for range restriction or a correction for range enhancement, according to which type 
of range variation has the larger effect.  

Our procedure for computing a λ coefficient is, 

λ = 	signNρO"$ρO#$(1 − <?)(1 − <C)P
sign(1 − <?)	min R<?,

1
<?S

+ sign(1 − <C)min R<C,
1
<CS

min R<?,
1
<?
S +min R<C,

1
<C
S

	. (B1) 

The result of Equation B1 ranges from −1 to +1, with λ values smaller than 1 in absolute value 
indicating the extent to which the BVIRR correction must make a compromise between 
increasing the magnitude of an observed correlation and decreasing the magnitude of the 
correlation. In deriving our λ formula, we began with the assumption that the magnitude of the 
effect of a variable’s range variation on a correlation is proportional to the extent to which the 
variable’s u ratio deviates from 1. That is, we assumed that the impacts of two variables’ range 
variation of their correlation can be compared by computing minZ<?, 1 <?[ \ and minZ<C, 1 <C[ \, 
where the largest proportional difference between <? and <C from 1 signals which u ratio has the 
strongest effect on the correlation between X and Y. Next, because our goal was to determine 
which u ratio in a set should play a more prominent role in a correction, we added 
minZ<?, 1 <?[ \ and minZ<C, 1 <C[ \ together, giving each value the sign of the difference between 
1 and the corresponding u ratio before computing the sum (this process determines the emphasis 
given to a range-restriction correction versus a range-enhancement correction). We then divided 
the previously described result by the sum of minZ<?, 1 <?[ \ and minZ<C, 1 <C[ \ to standardize 
to result in terms of the total relative effect of both variables’ range variation. Finally, we 
determined the final sign of the λ coefficient by multiplying the previously computed result by 
the sign of the product of ρO"$, ρO#$, (1 − <?), and (1 − <C).  
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Appendix C 
Standard Errors of u Ratios and Reliability Indices 

Assuming one has observed (not estimated) values for ]?$ = 2ρ??$ and ]C$ = 2ρCC$, the 
individual sampling error variance formulas of correlations and all artifacts are as follows:  

^_&'()
= =

Z1 − ρ?C)
= \=

à − 1
 (C1a) 

^_b'$
= =

Z1 − ]?$
= \=

c̀ − 1
 (C1b) 

^_b($
= =

Z1 − ]C$
= \=

c̀ − 1
 (C1c) 

^_*'
= ≈ .5	<?= f

1
à − 1

+
1

c̀ − 1
g (C1d) 

^_*(
= ≈ .5	<C= f

1
à − 1

+
1

c̀ − 1
g (C1e) 

Where à is the restricted-group sample size and c̀ is the sample size for the unrestricted 
referent sample. If one is computing an artifact-distribution meta-analysis with BVIRR, we 
strongly recommend using the above estimates of artifacts’ standard errors to residualize one’s 
artifact distributions and remove the artifact variance that is likely attributable to sampling error. 
Simply use the mean value for the artifact and the mean sample size of studies that provide the 
artifact to estimate the sampling variance, subtract that error variance from the observed variance 
of artifacts, and use the residualized artifact variances to compute the Taylor series 
approximation of ^h&56$ , as described in Appendix E.  
 
These standard errors can also be computed for individual studies using the mean artifact values 
and the sample-specific sample sizes as inputs to the error-variance equations; the resulting  error 
variances can be used as inputs to the Taylor series approximation of ^_&56$ , described in 
Appendix D. Use of the mean artifact value (rather than study-specific estimates) in estimating 
the sampling error allows for more stable sampling error estimates, just as using the mean 
correlation produces better estimates of sampling error in meta-analyses of correlations.  
 
If ]?$ or ]C$ are not observed values, but rather are estimated from ]?) or ]C) and <? or <C, the 
following procedure can be used to estimate the sampling error of the applicant reliability 
estimates. 
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If ]?$ or ]C$ are computed from ]?) or ]C), respectively, then the following standard errors 
should be used: 

^_b')
= =

Z1 − ]?)
= \=

à − 1
 

(C2a) 

^_b()
= =

Z1 − ]C)
= \=

à − 1
 

(C2b) 

^_b'$
= ≈

⎣
⎢
⎢
⎡ <?Z1 − ]?)

= \

-1 − <?=Z1 − ]?)
= \⎦
⎥
⎥
⎤
=

^_*'
= +

⎣
⎢
⎢
⎡ <?]?)

-1 − <?=Z1 − ]?)
= \⎦
⎥
⎥
⎤
=

^_b')
=

= .5<?o p
Z1 − ]?)

= \=

1 − <?=Z1 − ]?)
= \
q f

1
à − 1

+
1

c̀ − 1
g +

<?=]?)
= Z1 − ]?)

= \=

N1 − <?=Z1 − ]?)
= \P( à − 1)

 

(C2c) 

^_b($
= ≈

⎣
⎢
⎢
⎡ <CZ1 − ]C)

= \

-1 − <C=Z1 − ]C)
= \⎦
⎥
⎥
⎤
=

^_*(
= +

⎣
⎢
⎢
⎡ <C]C)

-1 − <C=Z1 − ]C)
= \⎦
⎥
⎥
⎤
=

^_b()
=

= .5	<Co p
Z1 − ]C)

= \=

1 − <C=Z1 − ]C)
= \
q f

1
à − 1

+
1

c̀ − 1
g +

<C=]C)
= Z1 − ]C)

= \=

N1 − <C=Z1 − ]C)
= \P( à − 1)

 

(C2d) 
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Note that ]?) and <? are likely to be correlated. If this this the case, then the equations for ^_b'$r
=  

in Equation C2c will underestimate the sampling error. In that case, a better approximation 
would account for this correlation: 

^_b'$
= ≈

⎣
⎢
⎢
⎡ <?Z1 − ]?)

= \

-1 − <?=Z1 − ]?)
= \⎦
⎥
⎥
⎤
=

^_*'
= +

⎣
⎢
⎢
⎡ <?]?)

-1 − <?=Z1 − ]?)
= \⎦
⎥
⎥
⎤
=

^_b')
=

+ 2

⎣
⎢
⎢
⎡ <?Z1 − ]?)

= \

-1 − <?=Z1 − ]?)
= \⎦
⎥
⎥
⎤

⎣
⎢
⎢
⎡ <?]?)

-1 − <?=Z1 − ]?)
= \⎦
⎥
⎥
⎤
^_*'^_b')t*'b')

= .5	<?o p
Z1 − ]?)

= \=

1 − <?=Z1 − ]?)
= \
q f

1
à − 1

+
1

c̀ − 1
g +

<?=]?)
= Z1 − ]?)

= \=

N1 − <?=Z1 − ]?)
= \P( à − 1)

+ 2 p
<?=]?)Z1 − ]?)

= \=

1 − <?=Z1 − ]?)
= \
qu

1
à − 1

+ 1
c̀ − 1

à + c̀ − 1
t*'b')  

(C2e) 

Where t*'b')  is a value that must be derived analytical based on the type of reliability estimate 
one is using. Equation C2e also applies for ^_b($

=  by using <C instead of <? and using ]C) instead 
of ]?).  
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Appendix D 
Taylor Series Approximation of Sampling Variance vwxy Estimates Computed Using the 

Bivariate Indirect Range Restriction (BVIRR) Correction 

Beginning with the disattenuation formula for BVIRR range restriction given in the text: 

ρ"#$ = zρ?C)<?<C + λ-|1 − <?
=||1 − <C=|	{ Z]?$]C$\[  

(D1) 

Per the principles of propagation of uncertainty and assuming ]?$, ]C$, <?, <C, and ρ"#$, are 
independent, we can approximate: 

^_&56$
= ≈ |/=^_b'$

= +	|==^_b($
= + |}=^_*'

= + |o=^_*(
= + |~=^_&'()

=  (D2) 

where, |/ …|~ are the first order partial derivatives of ρ"#$ with respect to ]?$, ]C$, <?, <C, and 
ρ?C), respectively. 
These partial derivatives are as follows: 

|/ =
Äρ"#$
Ä]?$

= −
ρ?C)<?<C + Å2|1 − <?

=||1 − <C=|	
]?$
= ]C$

 (D3a) 

|= =
Äρ"#$
Ä]?$

= −
ρ?C)<?<C + Å2|1 − <?

=||1 − <C=|	
]?$]C$

=  (D3b) 

|} =
Äρ"#$
Ä<?

= pρ?C)<C −
Å<?(1 − <?=)2|1 − <C=|

|1 − <?=|/.~
q /Z]?$]C$\ (D3c) 

|o =
Äρ"#$
Ä<C

= pρ?C)<? −
Å<C(1 − <C=)2|1 − <?=|

|1 − <C=|/.~
q /Z]?$]C$\ (D3d) 

|~ =
Äρ"#$
Äρ?C)

=
<?<C
]?$]C$

 (D3e) 

 
For equations to estimate the sampling-error variances of artifacts to use in D2, see Appendix C.
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Appendix E 
Taylor Series Approximation of the Random-Effects Variance of vwxy Using the Bivariate 

Indirect Range Restriction (BVIRR) Correction 

Under BVIRR range restriction, the attenuation formula yielding ρ?C) (solved from Equation 1 in 
the manuscript) is: 

ρ?C) = Bρ"#$]?$]C$ − Å-|1 − <?
=||1 − <C=|D (<?<C)[  

(E1) 

where ]?$ = 2ρ??$ and ]C$ = 2ρCC$ to simplify notation, which can be linearly approximated 
to: 

ρ?C) ≈ ρÇ?C) + É/Ñb'$ + É=Ñb($ + É}Ñ*' + ÉoÑ*( + É~Ñ&"#$ (E2) 
where d indicates deviation scores for each variable. 
Via a first-order Taylor Series Approximation (delta method): 

ÖÜY&'() ≈ É/=ÖÜYb'$ +	É=
=ÖÜYb($ + É}

=ÖÜY*' + Éo
=ÖÜY*( + É~

=ÖÜY&56$  (E3) 
where, É/ …É~ are the first order partial derivatives of ρ?C) with respect to ]?$, ]C$, <?, <C, and 
ρ"#$, respectively. 
These partial derivatives are as follows: 

É/ =
Äρ?C)
Ä]?$

=
ρ"#$]C$
<?<C

 

É= =
Äρáà)
Ä]C$

=
ρ"#$]?$
<?<C

 

É} =
Äρ?C)
Ä<?

=
Å(1 − <?=)2|1 − <C=|

<à|1 − <?=|/.~
−
ρ"#$]?$]C$ − Å2|1 − <?

=||1 − <C=|	
<?=<C

 

Éo =
Äρ?C)
Ä<C

=
Å(1 − <C=)2|1 − <?=|

<?|1 − <C=|/.~
−
ρ"#$]?$]C$ − Å2|1 − <?

=||1 − <C=|	
<?<C=

 

É~ =
Äρ?C)
Äρ"#$

=
]?$]C$
<?<C

 

(E4) 

Note that if one or both of the mean u ratios equals 1, É} and/or Éo will be undefined; in such a 
scenario, re-compute the partial derivative after adding a small value (e.g., .01) to the u ratio 
associated with the derivative to obtain a proper result. 
We can rearrange Equation E3 to yield an approximation formula for ÖÜY&56$ : 

ÖÜY&56$ ≈ âÖÜY&'() − RÉ/
=ÖÜYb'$ +	É=

=ÖÜYb($ + É}
=ÖÜY*' + Éo

=ÖÜY*(Sä /É~
= (E5) 

We can expand Equation E5 to account for the fact that ÖÜY&'()  is a value to be estimated from 
ÖÜYã'() − ÖÜYå (that is, ÖÜY&'()  is the variance of observed correlations after subtracting out the 
sampling error of observed correlations): 

ÖÜY&56$ ≈ âÖÜYã'() − ÖÜYå − RÉ/
=ÖÜYb'$ +	É=

=ÖÜYb($ + É}
=ÖÜY*' + Éo

=ÖÜY*(Sä /É~
= (E6) 

For the most accurate estimate of ÖÜY&56$ , we strongly recommend residualizing the variance of 
one’s distributions of ]?$, ]C$, <?, and <C values by subtracting out the variance in artifacts that 
would be predicted by sampling error only. Failure to residualize the variance of artifacts will 
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lead to biased estimates of ÖÜY&56$  with the BVIRR correction. See Appendix C for procedures 
to estimate the sampling variance of artifacts. 
 
For a complete set of meta-analytic variance estimates, one can estimate the variance in 
correlations predicted from artifacts (ÖÜYcãç), the total variance of correlations predicted from 
artifacts and sampling error (ÖÜYéãå), and the residual variance of observed correlations (ÖÜYãåè) 
as 

ÖÜYcãç = É/=ÖÜYb'$ +	É=
=ÖÜYb($ + É}

=ÖÜY*' + Éo
=ÖÜY*(	, (E7) 

ÖÜYéãå = ÖÜYcãç + ÖÜYå	, (E8) 
and 

ÖÜYãåè = ÖÜYã'() − ÖÜYéãå	. 
 

(E9) 
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Appendix F 
Tabled Results of Simulation Study by Condition and Meta-Analytic Method 

Table F1 
Means and Standard Deviations of ρÇ Estimates from Simulations Using Competing Meta-Analytic 
Methods with the Correction for Bivariate Indirect Range Restriction 

k ρÇ SDρ 
Meta-analytic method  

ICA ICV ICTSA AD (100%) AD (50%) (AD 20%)  
10 .1 .00 .028 (.046) .096 (.043) .089 (.048) .116 (.047) .108 (.065) .097 (.092)  

  .05 .025 (.049) .096 (.048) .089 (.053) .120 (.053) .113 (.071) .097 (.105)  
  .10 .022 (.057) .101 (.061) .099 (.065) .123 (.065) .117 (.082) .107 (.106)  
  .15 .017 (.069) .098 (.074) .098 (.080) .119 (.076) .108 (.090) .100 (.116)  
  .20 .012 (.077) .097 (.091) .102 (.096) .119 (.092) .109 (.103) .099 (.130)  
          
 .3 .00 .256 (.081) .296 (.041) .292 (.046) .318 (.042) .310 (.062) .292 (.088)  
  .05 .258 (.083) .299 (.043) .296 (.048) .318 (.046) .307 (.065) .301 (.087)  
  .10 .246 (.107) .298 (.056) .297 (.062) .318 (.058) .310 (.073) .302 (.097)  
  .15 .230 (.125) .298 (.069) .298 (.073) .319 (.070) .312 (.084) .303 (.104)  
  .20 .212 (.154) .299 (.091) .305 (.095) .321 (.092) .312 (.103) .304 (.120)  
          
 .5 .00 .490 (.044) .500 (.031) .499 (.035) .520 (.032) .513 (.049) .498 (.072)  
  .05 .490 (.052) .499 (.037) .500 (.042) .520 (.038) .511 (.056) .504 (.076)  
  .10 .491 (.077) .499 (.053) .500 (.057) .518 (.054) .510 (.065) .503 (.085)  
  .15 .492 (.098) .500 (.067) .502 (.072) .520 (.066) .511 (.078) .501 (.092)  
  .20 .468 (.137) .492 (.081) .494 (.088) .511 (.082) .505 (.089) .497 (.105)  
          

20 .1 .00 .019 (.029) .096 (.031) .088 (.035) .123 (.032) .118 (.046) .108 (.073)  
  .05 .018 (.031) .097 (.036) .091 (.040) .123 (.037) .119 (.050) .110 (.079)  
  .10 .011 (.035) .097 (.043) .092 (.047) .123 (.043) .116 (.056) .109 (.080)  
  .15 .006 (.040) .098 (.052) .097 (.058) .125 (.053) .119 (.063) .111 (.084)  
  .20 .006 (.046) .103 (.068) .108 (.072) .129 (.068) .125 (.076) .110 (.094)  
          
 .3 .00 .238 (.083) .296 (.027) .292 (.031) .321 (.028) .316 (.042) .308 (.067)  
  .05 .242 (.085) .298 (.029) .294 (.034) .324 (.030) .320 (.043) .309 (.064)  
  .10 .222 (.103) .298 (.040) .295 (.044) .325 (.041) .322 (.048) .312 (.070)  
  .15 .198 (.121) .300 (.052) .300 (.056) .326 (.053) .323 (.061) .314 (.078)  
  .20 .165 (.128) .299 (.064) .302 (.068) .325 (.064) .321 (.071) .311 (.086)  
          
 .5 .00 .487 (.044) .499 (.023) .498 (.026) .524 (.023) .519 (.036) .508 (.056)  
  .05 .485 (.054) .499 (.026) .498 (.030) .525 (.026) .521 (.036) .511 (.058)  
  .10 .482 (.077) .498 (.037) .498 (.041) .523 (.036) .517 (.044) .509 (.061)  
  .15 .477 (.100) .497 (.048) .498 (.053) .521 (.048) .516 (.054) .506 (.070)  
  .20 .453 (.140) .496 (.061) .500 (.067) .519 (.061) .515 (.066) .502 (.078)  

(Table continues) 
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Table F1 (Continued) 
Means and Standard Deviations of ρÇ Estimates from Simulations Using Competing Meta-Analytic 
Methods with the Correction for Bivariate Indirect Range Restriction 

k ρÇ SDρ 
Meta-analytic method  

ICA ICV ICTSA AD (100%) AD (50%) (AD 20%)  
50 .1 .00 .009 (.016) .097 (.020) .088 (.023) .126 (.020) .123 (.028) .116 (.048)  

  .05 .008 (.016) .096 (.022) .088 (.025) .125 (.023) .123 (.030) .117 (.047)  
  .10 .004 (.015) .097 (.027) .091 (.030) .126 (.028) .124 (.035) .116 (.052)  
  .15 .001 (.016) .097 (.033) .096 (.036) .126 (.034) .124 (.039) .121 (.053)  
  .20 -.001 (.017) .101 (.041) .104 (.045) .129 (.041) .127 (.045) .123 (.060)  
          
 .3 .00 .224 (.081) .297 (.017) .292 (.020) .325 (.016) .324 (.023) .318 (.040)  
  .05 .214 (.090) .298 (.020) .294 (.022) .326 (.019) .324 (.025) .318 (.043)  
  .10 .182 (.101) .297 (.026) .294 (.028) .326 (.026) .325 (.031) .317 (.045)  
  .15 .144 (.106) .300 (.033) .299 (.036) .328 (.032) .326 (.036) .320 (.051)  
  .20 .107 (.098) .298 (.041) .300 (.044) .325 (.041) .324 (.045) .317 (.056)  
          
 .5 .00 .485 (.031) .498 (.014) .497 (.016) .526 (.014) .524 (.021) .519 (.035)  
  .05 .485 (.045) .498 (.017) .497 (.020) .526 (.017) .524 (.024) .518 (.035)  
  .10 .480 (.074) .500 (.023) .500 (.026) .526 (.023) .524 (.028) .519 (.040)  
  .15 .463 (.106) .498 (.031) .500 (.035) .525 (.031) .523 (.034) .520 (.043)  
  .20 .405 (.152) .491 (.037) .494 (.041) .517 (.036) .515 (.039) .509 (.050)  
          

100 .1 .00 .005 (.010) .096 (.014) .088 (.016) .125 (.014) .124 (.020) .120 (.032)  
  .05 .003 (.009) .097 (.016) .089 (.018) .126 (.016) .126 (.021) .123 (.032)  
  .10 .002 (.008) .097 (.019) .091 (.021) .127 (.019) .126 (.024) .123 (.034)  
  .15 .000 (.008) .100 (.025) .098 (.027) .129 (.025) .129 (.030) .125 (.037)  
  .20 -.001 (.009) .101 (.030) .104 (.032) .130 (.030) .129 (.032) .126 (.043)  
          
 .3 .00 .197 (.089) .297 (.012) .292 (.014) .326 (.012) .325 (.016) .321 (.027)  
  .05 .187 (.095) .296 (.014) .292 (.016) .325 (.014) .325 (.018) .322 (.029)  
  .10 .150 (.098) .297 (.018) .294 (.020) .327 (.018) .326 (.021) .323 (.030)  
  .15 .102 (.091) .299 (.024) .298 (.026) .328 (.024) .328 (.026) .325 (.034)  
  .20 .072 (.074) .298 (.029) .301 (.031) .326 (.029) .325 (.031) .324 (.038)  
          
 .5 .00 .482 (.045) .499 (.010) .498 (.012) .527 (.010) .526 (.014) .524 (.023)  
  .05 .479 (.057) .499 (.012) .498 (.014) .527 (.012) .526 (.016) .523 (.023)  
  .10 .470 (.084) .498 (.017) .498 (.019) .526 (.017) .526 (.020) .524 (.027)  
  .15 .436 (.126) .497 (.022) .498 (.025) .525 (.022) .524 (.024) .522 (.030)  
  .20 .362 (.166) .492 (.028) .496 (.030) .519 (.027) .518 (.029) .515 (.036)  

Note. Values not in parentheses are means of ρÇ estimates. Values not in parentheses are standard 
deviations of ρÇ  estimates. 
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Table F2 
Means and Standard Deviations of SDρ Estimates from Simulations in Which All Studies Report Artifact 
Information Using Competing Meta-Analytic Methods with the Correction for Bivariate Indirect Range 
Restriction 

k ρÇ SDρ 
Meta-analytic method 

ICA ICV ICTSA ADTSA_res 
10 .1 .00 .032 (.039) .099 (.046) .055 (.055) .032 (.043) 

  .05 .042 (.044) .110 (.047) .068 (.057) .043 (.051) 
  .10 .065 (.056) .139 (.050) .102 (.064) .076 (.063) 
  .15 .091 (.069) .169 (.058) .138 (.073) .116 (.072) 
  .20 .121 (.087) .212 (.066) .185 (.079) .164 (.079) 
       
 .3 .00 .041 (.051) .075 (.042) .038 (.047) .032 (.042) 
  .05 .051 (.058) .085 (.043) .047 (.051) .043 (.048) 
  .10 .091 (.066) .121 (.045) .087 (.061) .080 (.060) 
  .15 .132 (.076) .159 (.054) .131 (.070) .123 (.069) 
  .20 .170 (.090) .201 (.067) .178 (.078) .173 (.077) 
       
 .5 .00 .027 (.042) .054 (.039) .021 (.037) .026 (.036) 
  .05 .043 (.052) .071 (.041) .036 (.046) .043 (.044) 
  .10 .081 (.062) .107 (.043) .074 (.059) .082 (.055) 
  .15 .131 (.070) .149 (.051) .124 (.066) .129 (.061) 
  .20 .177 (.082) .190 (.062) .170 (.076) .168 (.071) 
       

20 .1 .00 .031 (.030) .103 (.031) .058 (.045) .028 (.037) 
  .05 .038 (.032) .113 (.030) .070 (.048) .044 (.043) 
  .10 .056 (.043) .141 (.034) .110 (.047) .082 (.051) 
  .15 .076 (.055) .176 (.039) .152 (.049) .133 (.052) 
  .20 .102 (.069) .217 (.048) .197 (.055) .180 (.055) 
       
 .3 .00 .049 (.051) .076 (.030) .033 (.038) .028 (.034) 
  .05 .064 (.053) .090 (.030) .049 (.043) .045 (.040) 
  .10 .110 (.054) .127 (.032) .099 (.049) .087 (.047) 
  .15 .146 (.059) .165 (.038) .144 (.050) .137 (.047) 
  .20 .176 (.076) .207 (.045) .191 (.052) .184 (.051) 
       
 .5 .00 .027 (.038) .058 (.028) .020 (.030) .025 (.030) 
  .05 .050 (.050) .077 (.027) .037 (.038) .044 (.036) 
  .10 .096 (.053) .115 (.030) .086 (.047) .091 (.042) 
  .15 .145 (.057) .154 (.036) .134 (.048) .138 (.042) 
  .20 .195 (.066) .196 (.043) .182 (.053) .180 (.048) 

(Table Continues) 
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Table F2 (Continued) 
Means and Standard Deviations of SDρ Estimates from Simulations in Which All Studies Report Artifact 
Information Using Competing Meta-Analytic Methods with the Correction for Bivariate Indirect Range 
Restriction 

k ρÇ SDρ 
Meta-analytic method 

ICA ICV ICTSA ADTSA_res 
50 .1 .00 .026 (.019) .103 (.019) .059 (.034) .024 (.030) 

  .05 .030 (.022) .114 (.019) .077 (.032) .043 (.034) 
  .10 .041 (.029) .142 (.021) .115 (.031) .091 (.034) 
  .15 .052 (.039) .180 (.025) .160 (.030) .142 (.031) 
  .20 .069 (.051) .221 (.030) .204 (.035) .188 (.032) 
       
 .3 .00 .062 (.049) .080 (.017) .033 (.031) .026 (.028) 
  .05 .081 (.047) .094 (.018) .054 (.033) .046 (.032) 
  .10 .121 (.043) .128 (.020) .104 (.030) .095 (.030) 
  .15 .148 (.056) .170 (.024) .154 (.030) .146 (.029) 
  .20 .159 (.075) .211 (.028) .199 (.033) .192 (.031) 
       
 .5 .00 .026 (.039) .061 (.016) .013 (.022) .021 (.024) 
  .05 .053 (.041) .079 (.016) .037 (.031) .048 (.029) 
  .10 .108 (.044) .117 (.019) .093 (.030) .099 (.026) 
  .15 .164 (.048) .160 (.022) .145 (.029) .147 (.026) 
  .20 .211 (.058) .200 (.026) .189 (.031) .187 (.029) 
       

100 .1 .00 .020 (.015) .103 (.013) .062 (.026) .022 (.026) 
  .05 .023 (.017) .115 (.013) .081 (.022) .045 (.029) 
  .10 .031 (.023) .145 (.015) .120 (.020) .095 (.022) 
  .15 .040 (.029) .181 (.018) .163 (.021) .143 (.022) 
  .20 .050 (.036) .223 (.022) .207 (.025) .192 (.023) 
       
 .3 .00 .078 (.046) .080 (.012) .033 (.026) .022 (.024) 
  .05 .092 (.042) .095 (.012) .057 (.026) .048 (.026) 
  .10 .123 (.043) .128 (.014) .106 (.020) .099 (.020) 
  .15 .133 (.062) .170 (.017) .155 (.020) .147 (.020) 
  .20 .138 (.074) .214 (.021) .201 (.024) .195 (.022) 
       
 .5 .00 .029 (.045) .061 (.011) .009 (.017) .022 (.021) 
  .05 .061 (.045) .080 (.012) .037 (.027) .050 (.023) 
  .10 .117 (.043) .117 (.013) .096 (.020) .100 (.016) 
  .15 .175 (.048) .160 (.017) .146 (.022) .147 (.020) 
  .20 .218 (.060) .201 (.018) .192 (.022) .189 (.020) 

Note. Values not in parentheses are means of SDρ estimates. Values not in parentheses are standard 
deviations of SDρ estimates. 
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Table F3 
Means and Standard Deviations of SDρ Estimates from Simulations in Which 50% of Studies Report 
Artifact Information Using Competing Artifact-Distribution Meta-Analytic Methods with the Correction 
for Bivariate Indirect Range Restriction 

k ρÇ SDρ 
Meta-analytic method 

ADInt ADInt_res ADTSA ADTSA_res 
10 .1 .00 .017 (.035) .040 (.046) .013 (.033) .034 (.045) 

  .05 .028 (.045) .052 (.053) .023 (.042) .047 (.052) 
  .10 .058 (.063) .086 (.063) .047 (.062) .078 (.065) 
  .15 .103 (.076) .130 (.068) .085 (.079) .120 (.073) 
  .20 .152 (.084) .174 (.075) .130 (.093) .165 (.082) 
       
 .3 .00 .020 (.036) .039 (.044) .016 (.033) .034 (.043) 
  .05 .031 (.046) .052 (.050) .022 (.041) .045 (.050) 
  .10 .067 (.062) .089 (.059) .052 (.060) .079 (.063) 
  .15 .111 (.073) .131 (.067) .091 (.078) .122 (.072) 
  .20 .164 (.081) .179 (.074) .140 (.089) .168 (.080) 
       
 .5 .00 .017 (.033) .033 (.039) .013 (.029) .028 (.037) 
  .05 .032 (.042) .051 (.046) .024 (.038) .044 (.045) 
  .10 .070 (.057) .088 (.054) .056 (.058) .080 (.057) 
  .15 .121 (.064) .136 (.059) .099 (.072) .126 (.065) 
  .20 .163 (.073) .175 (.067) .143 (.084) .167 (.073) 
       

20 .1 .00 .009 (.024) .036 (.040) .007 (.023) .032 (.040) 
  .05 .018 (.033) .051 (.045) .011 (.028) .045 (.045) 
  .10 .051 (.051) .089 (.049) .036 (.049) .080 (.053) 
  .15 .105 (.063) .138 (.051) .083 (.069) .129 (.058) 
  .20 .159 (.064) .183 (.053) .139 (.074) .177 (.059) 
       
 .3 .00 .012 (.026) .035 (.038) .008 (.022) .031 (.037) 
  .05 .020 (.034) .049 (.042) .013 (.029) .044 (.042) 
  .10 .061 (.051) .091 (.046) .046 (.049) .085 (.049) 
  .15 .117 (.057) .140 (.048) .100 (.063) .134 (.052) 
  .20 .169 (.057) .186 (.051) .151 (.069) .180 (.056) 
       
 .5 .00 .009 (.022) .028 (.032) .006 (.018) .025 (.031) 
  .05 .023 (.034) .047 (.038) .016 (.030) .042 (.038) 
  .10 .070 (.048) .093 (.042) .057 (.049) .087 (.045) 
  .15 .124 (.049) .141 (.042) .109 (.057) .135 (.047) 
  .20 .170 (.052) .182 (.048) .155 (.065) .177 (.054) 

(Table continues)  
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Table F3 (Continued) 
Means and Standard Deviations of SDρ Estimates from Simulations in Which 50% of Studies Report 
Artifact Information Using Competing Artifact-Distribution Meta-Analytic Methods with the Correction 
for Bivariate Indirect Range Restriction 

k ρÇ SDρ 
Meta-analytic method 

ADInt ADInt_res ADTSA ADTSA_res 
50 .1 .00 .002 (.011) .029 (.032) .001 (.008) .027 (.032) 

  .05 .008 (.020) .046 (.036) .003 (.013) .044 (.036) 
  .10 .045 (.043) .092 (.037) .032 (.041) .089 (.039) 
  .15 .110 (.044) .143 (.031) .096 (.049) .140 (.033) 
  .20 .167 (.040) .189 (.034) .157 (.046) .187 (.035) 
       
 .3 .00 .003 (.012) .027 (.029) .002 (.009) .026 (.029) 
  .05 .012 (.024) .047 (.034) .008 (.020) .046 (.035) 
  .10 .059 (.041) .095 (.032) .050 (.042) .093 (.033) 
  .15 .123 (.037) .145 (.030) .116 (.041) .144 (.032) 
  .20 .176 (.035) .192 (.031) .171 (.038) .191 (.032) 
       
 .5 .00 .003 (.012) .022 (.025) .002 (.009) .022 (.025) 
  .05 .015 (.025) .046 (.030) .014 (.024) .046 (.031) 
  .10 .073 (.036) .098 (.027) .068 (.038) .098 (.027) 
  .15 .131 (.032) .146 (.027) .128 (.035) .146 (.028) 
  .20 .176 (.032) .187 (.030) .172 (.035) .186 (.030) 
       

100 .1 .00 .000 (.004) .024 (.028) .000 (.002) .024 (.028) 
  .05 .003 (.010) .045 (.031) .001 (.007) .045 (.031) 
  .10 .041 (.036) .094 (.026) .031 (.035) .093 (.027) 
  .15 .111 (.033) .143 (.024) .104 (.036) .142 (.025) 
  .20 .171 (.027) .192 (.023) .166 (.028) .192 (.024) 
       
 .3 .00 .001 (.005) .023 (.025) .000 (.003) .024 (.025) 
  .05 .007 (.016) .046 (.029) .005 (.014) .047 (.028) 
  .10 .062 (.034) .098 (.022) .056 (.035) .098 (.023) 
  .15 .126 (.025) .146 (.021) .123 (.026) .147 (.021) 
  .20 .180 (.025) .194 (.023) .178 (.025) .195 (.023) 
       
 .5 .00 .001 (.006) .019 (.022) .001 (.007) .022 (.023) 
  .05 .011 (.020) .045 (.026) .012 (.020) .049 (.025) 
  .10 .074 (.025) .098 (.018) .075 (.025) .100 (.017) 
  .15 .131 (.023) .146 (.021) .132 (.023) .147 (.020) 
  .20 .178 (.022) .188 (.021) .177 (.022) .189 (.020) 

Note. Values not in parentheses are means of SDρ estimates. Values not in parentheses are standard 
deviations of SDρ estimates. 
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Table F4 
Means and Standard Deviations of SDρ Estimates from Simulations in Which 20% of Studies Report 
Artifact Information Using Competing Artifact-Distribution Meta-Analytic Methods with the Correction 
for Bivariate Indirect Range Restriction 

k ρÇ SDρ 
Meta-analytic method 

ADInt ADInt_res ADTSA ADTSA_res 
10 .1 .00 .035 (.046) .046 (.048) .032 (.046) .045 (.049) 

  .05 .046 (.053) .058 (.054) .041 (.054) .056 (.055) 
  .10 .077 (.066) .089 (.064) .066 (.068) .084 (.067) 
  .15 .117 (.075) .128 (.072) .102 (.083) .121 (.077) 
  .20 .164 (.083) .174 (.078) .145 (.092) .166 (.084) 
       
 .3 .00 .037 (.046) .045 (.048) .031 (.046) .043 (.049) 
  .05 .044 (.051) .055 (.052) .037 (.049) .052 (.052) 
  .10 .080 (.064) .090 (.061) .067 (.065) .085 (.063) 
  .15 .119 (.074) .129 (.070) .103 (.080) .123 (.074) 
  .20 .171 (.081) .178 (.078) .146 (.096) .165 (.089) 
       
 .5 .00 .029 (.039) .037 (.041) .021 (.035) .032 (.040) 
  .05 .044 (.047) .054 (.047) .034 (.045) .048 (.048) 
  .10 .080 (.058) .090 (.056) .065 (.061) .081 (.059) 
  .15 .128 (.066) .135 (.063) .107 (.075) .125 (.069) 
  .20 .167 (.075) .174 (.071) .145 (.087) .163 (.080) 
       

20 .1 .00 .018 (.033) .043 (.042) .017 (.034) .039 (.042) 
  .05 .030 (.042) .057 (.047) .026 (.042) .052 (.048) 
  .10 .062 (.055) .092 (.052) .050 (.058) .083 (.057) 
  .15 .114 (.063) .139 (.053) .092 (.072) .128 (.062) 
  .20 .166 (.067) .186 (.058) .139 (.085) .172 (.071) 
       
 .3 .00 .019 (.033) .039 (.040) .016 (.032) .036 (.040) 
  .05 .034 (.041) .058 (.043) .026 (.040) .052 (.045) 
  .10 .071 (.053) .094 (.048) .055 (.056) .085 (.054) 
  .15 .121 (.059) .140 (.050) .097 (.070) .129 (.060) 
  .20 .171 (.063) .186 (.056) .147 (.080) .175 (.067) 
       
 .5 .00 .017 (.029) .033 (.033) .012 (.024) .028 (.033) 
  .05 .031 (.038) .050 (.039) .023 (.036) .045 (.040) 
  .10 .077 (.049) .096 (.044) .062 (.053) .085 (.051) 
  .15 .127 (.052) .141 (.046) .106 (.064) .130 (.056) 
  .20 .171 (.055) .182 (.051) .147 (.073) .172 (.061) 

(Table continues) 
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Table F4 (Continued) 
Means and Standard Deviations of SDρ Estimates from Simulations in Which 20% of Studies Report 
Artifact Information Using Competing Artifact-Distribution Meta-Analytic Methods with the Correction 
for Bivariate Indirect Range Restriction 

k ρÇ SDρ 
Meta-analytic method 

ADInt ADInt_res ADTSA ADTSA_res 
50 .1 .00 .007 (.019) .035 (.036) .005 (.018) .031 (.036) 

  .05 .014 (.027) .052 (.039) .008 (.023) .045 (.040) 
  .10 .053 (.046) .095 (.039) .035 (.045) .085 (.047) 
  .15 .110 (.050) .143 (.036) .087 (.060) .134 (.045) 
  .20 .167 (.043) .189 (.035) .143 (.060) .181 (.045) 
       
 .3 .00 .008 (.019) .033 (.032) .005 (.017) .029 (.032) 
  .05 .020 (.029) .052 (.036) .011 (.024) .047 (.038) 
  .10 .066 (.043) .098 (.035) .049 (.045) .090 (.041) 
  .15 .126 (.042) .147 (.034) .106 (.054) .141 (.040) 
  .20 .178 (.037) .193 (.033) .160 (.055) .186 (.041) 
       
 .5 .00 .007 (.017) .028 (.028) .004 (.013) .025 (.027) 
  .05 .023 (.030) .051 (.033) .015 (.027) .046 (.034) 
  .10 .076 (.038) .099 (.031) .060 (.043) .092 (.037) 
  .15 .132 (.036) .147 (.030) .118 (.048) .142 (.036) 
  .20 .176 (.034) .188 (.031) .162 (.048) .182 (.037) 
       

100 .1 .00 .003 (.011) .031 (.032) .001 (.009) .029 (.032) 
  .05 .007 (.018) .050 (.034) .003 (.012) .046 (.035) 
  .10 .047 (.040) .095 (.032) .032 (.037) .090 (.036) 
  .15 .112 (.038) .144 (.026) .097 (.045) .141 (.030) 
  .20 .171 (.030) .193 (.026) .160 (.039) .190 (.029) 
       
 .3 .00 .003 (.010) .029 (.028) .001 (.007) .027 (.028) 
  .05 .012 (.023) .050 (.032) .007 (.018) .046 (.033) 
  .10 .063 (.037) .098 (.026) .050 (.039) .094 (.030) 
  .15 .126 (.030) .147 (.023) .116 (.038) .145 (.025) 
  .20 .179 (.028) .195 (.025) .173 (.033) .193 (.027) 
       
 .5 .00 .003 (.011) .024 (.024) .002 (.008) .023 (.024) 
  .05 .016 (.024) .050 (.027) .013 (.022) .048 (.028) 
  .10 .074 (.030) .098 (.021) .067 (.032) .097 (.024) 
  .15 .132 (.026) .146 (.022) .126 (.031) .145 (.023) 
  .20 .178 (.024) .189 (.022) .173 (.029) .188 (.024) 

Note. Values not in parentheses are means of SDρ estimates. Values not in parentheses are standard 
deviations of SDρ estimates. 
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Appendix G 

Full Figures of Simulation Results 

 
Figure G1. Mean ρ estimates by number of studies meta-analyzed and meta-analytic method. ICA = traditional compound attenuation factor-based individual-
correction method; ICV = individual-correction method using equation-implied error variances and weights; ICTSA = individual-correction method using Taylor 

series approximation to estimate corrected error variances and weights; AD (50%) = artifact distribution method with 50% of artifacts available; AD (20%) = 

artifact distribution method with 20% of artifacts available. AD results were identical across different AD computation methods, as interactive and Taylor series 

approximation methods both use mean artifacts to estimate mean ρ values. Dashed lines indicate true parameter values, solid lines indicate mean parameter 

estimates, and ribbons around solid lines indicate the parameter estimates values within 1 standard error of the mean parameter estimate (standard error was 

computed as the standard deviation of statistics from 1,000 replications).  
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Figure G2. SDρ estimates by meta-analytic method for meta-analysis of 10 studies (k = 10). ICA = traditional compound attenuation 

factor-based individual-correction method; ICV = individual-correction method using equation-implied error variances and weights; 

ICTSA = individual-correction method using Taylor series approximation to estimate corrected error variances and weights; ADInt = 

interactive artifact distribution method; ADInt_res = interactive artifact distribution method with shrunken artifact distributions; ADTSA 

= Taylor series approximation artifact distribution method using observed artifact variances; ADTSA_res = Taylor series approximation 

artifact distribution method using artifact variances residualized to remove the influence of predicted sampling error. Dashed lines 

indicate true parameter values, solid lines indicate mean parameter estimates, and ribbons around solid lines indicate the parameter 

estimates values within 1 standard error of the mean parameter estimate (standard error was computed as the standard deviation of 

statistics from 1,000 replications).  
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Figure G3. SDρ estimates by meta-analytic method for meta-analysis of 20 studies (k = 20). ICA = traditional compound attenuation 

factor-based individual-correction method; ICV = individual-correction method using equation-implied error variances and weights; 

ICTSA = individual-correction method using Taylor series approximation to estimate corrected error variances and weights; ADInt = 

interactive artifact distribution method; ADInt_res = interactive artifact distribution method with shrunken artifact distributions; ADTSA 

= Taylor series approximation artifact distribution method using observed artifact variances; ADTSA_res = Taylor series approximation 

artifact distribution method using artifact variances residualized to remove the influence of predicted sampling error. Dashed lines 

indicate true parameter values, solid lines indicate mean parameter estimates, and ribbons around solid lines indicate the parameter 

estimates values within 1 standard error of the mean parameter estimate (standard error was computed as the standard deviation of 

statistics from 1,000 replications).  
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Figure G4. SDρ estimates by meta-analytic method for meta-analysis of 50 studies (k = 50). ICA = traditional compound attenuation 

factor-based individual-correction method; ICV = individual-correction method using equation-implied error variances and weights; 

ICTSA = individual-correction method using Taylor series approximation to estimate corrected error variances and weights; ADInt = 

interactive artifact distribution method; ADInt_res = interactive artifact distribution method with shrunken artifact distributions; ADTSA 

= Taylor series approximation artifact distribution method using observed artifact variances; ADTSA_res = Taylor series approximation 

artifact distribution method using artifact variances residualized to remove the influence of predicted sampling error. Dashed lines 

indicate true parameter values, solid lines indicate mean parameter estimates, and ribbons around solid lines indicate the parameter 

estimates values within 1 standard error of the mean parameter estimate (standard error was computed as the standard deviation of 

statistics from 1,000 replications).  
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Figure G5. SDρ estimates by meta-analytic method for meta-analysis of 100 studies (k = 100). ICA = traditional compound attenuation 

factor-based individual-correction method; ICV = individual-correction method using equation-implied error variances and weights; 

ICTSA = individual-correction method using Taylor series approximation to estimate corrected error variances and weights; ADInt = 

interactive artifact distribution method; ADInt_res = interactive artifact distribution method with shrunken artifact distributions; ADTSA 

= Taylor series approximation artifact distribution method using observed artifact variances; ADTSA_res = Taylor series approximation 

artifact distribution method using artifact variances residualized to remove the influence of predicted sampling error. Dashed lines 

indicate true parameter values, solid lines indicate mean parameter estimates, and ribbons around solid lines indicate the parameter 

estimates values within 1 standard error of the mean parameter estimate (standard error was computed as the standard deviation of 

statistics from 1,000 replications).  
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Figure G6. Mean ρ and SDρ estimates for ICTSA (individual-correction method using Taylor 
series approximation to estimate corrected error variances and weights) and ADTSA_res (Taylor 

series approximation artifact distribution method using artifact variances residualized to remove 
the influence of predicted sampling error; using 100% of artifact information) methods by 

number of studies meta-analyzed. 
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Appendix H 
R Functions for BVIRR Corrections, Error Variance Estimates, and Taylor Series 

Approximation Artifact-Distribution Meta-Analysis Random-Effects Variance Estimates 

R code for simplified versions of key functions for key BVIRR methods are presented in this 

section. More comprehensive and robust functions to implement BVIRR methods are available 
in the psychmeta package for R (Dahlke & Wiernik, 2018, 2017/2019). 

 

The correction (or attenuation) for BVIRR can be applied using the correct_r_bvirr 

function defined below. The arguments to this function are:  

 

• rxyi: Observed range-restricted sample correlation between X and Y. If attenuate is 

set to TRUE, supply the unrestricted true-score correlation as rxyi. 

• qxi: Square root of observed range-restricted reliability for X.  

• qyi: Square root of observed range-restricted reliability for Y. 

• ux: Ratio of sample standard deviation to unrestricted standard deviation for X. 

• uy: Ratio of sample standard deviation to unrestricted standard deviation for Y. 

• sign_rxz: Sign of the unrestricted correlation between X and the selection mechanism.  

• sign_ryz: Sign of the unrestricted correlation between Y and the selection mechanism. 

• attenuate: Logical scalar that determines whether a correction is performed (FALSE; 

default) or attenuation is performed (TRUE). 

• vare_from_means: Logical scalar that determines whether sampling variances are 

estimated using mean sample statistics (TRUE; default) or individual sample statistics 

(FALSE). 

 
correct_r_bvirr<-function(rxyi, 
                          ux=1, uy=1, qxi=1, qyi=1, 
                          sign_rxz=1, sign_ryz=1, attenuate=FALSE){ 
     ux_prime<-ux 
     uy_prime<-uy 
     ux_prime[ux>1/ux]<-1/ux[ux>1/ux] 
     uy_prime[uy>1/uy]<-1/uy[uy>1/uy] 
     sign_x<-sign(ux-1) 
     sign_y<-sign(uy-1) 
     sign_x<-sign(1-ux) 
     sign_y<-sign(1-uy) 
     lambda<-sign_x*sign_y*sign(sign_rxz*sign_ryz)* 
          (sign_x*ux_prime+sign_y*uy_prime)/(ux_prime+uy_prime) 
     qxa<-(1-ux^2*(1-qxi^2))^.5 
     qya<-(1-uy^2*(1-qyi^2))^.5 
     if(attenuate){ 
          (rxyi*qxa*qya-lambda*sqrt(abs(1-ux^2)*abs(1-uy^2)))/(ux*uy) 
     }else{ 
          (rxyi*ux*uy+lambda*sqrt(abs(1-ux^2)*abs(1-uy^2)))/(qxa*qya) 
     } 
} 
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The sampling variance of a correlation corrected for BVIRR can be estimated using the 

var_error_r_bvirr function defined below. The arguments to the var_error_r_bvirr are 

the same as the correct_r_bvirr function, but with two additional arguments: 

 

• dependent_sds_x: Logical scalar or vector determining whether supplied ux values 

were computed using dependent samples (TRUE; i.e., the restricted sample is a subset of 

the unrestricted sample) or independent samples (FALSE; i.e., the restricted sample and 

the unrestricted sample are observed in separate studies; default).  

• dependent_sds_y: Same as dependent_sds_x, but for uy values. 

 
var_error_r_bvirr<-function(rxyi, ni, na=NA, 
                            ux=1, dependent_sds_x=FALSE, 
                            uy=1, dependent_sds_y=FALSE, 
                            qxi=1, qyi=1, 
                            sign_rxz=1, sign_ryz=1, 
                            vare_from_means=TRUE){ 
     ux_prime<-ux 
     uy_prime<-uy 
     ux_prime[ux>1/ux]<-1/ux[ux>1/ux] 
     uy_prime[uy>1/uy]<-1/uy[uy>1/uy] 
     sign_x<-sign(ux-1) 
     sign_y<-sign(uy-1) 
     sign_x<-sign(1-ux) 
     sign_y<-sign(1-uy) 
     lambda<-sign_x*sign_y*sign(sign_rxz*sign_ryz)* 
          (sign_x*ux_prime+sign_y*uy_prime)/(ux_prime+uy_prime) 
     if(vare_from_means){ 
          weighted_mean<-function(x,wt=rep(1,length(x))){ 
               x[is.na(wt)]<-NA 
               wt[is.na(x)]<-NA 
               sum(as.numeric(x*wt),na.rm=TRUE)/ 
                    sum(as.numeric(wt),na.rm=TRUE) 
          } 
          mean_rxyi<-weighted_mean(x=rxyi,wt=ni) 
          mean_ux<-weighted_mean(x=ux,wt=ni) 
          mean_uy<-weighted_mean(x=uy,wt=ni) 
          mean_qxi<-weighted_mean(x=qxi,wt=ni) 
          mean_qyi<-weighted_mean(x=qxi,wt=ni) 
     }else{ 
          mean_rxyi<-rxyi 
          mean_ux<-ux 
          mean_uy<-uy 
          mean_qxi<-qxi 
          mean_qyi<-qyi 
     } 
     n_term_x<-n_term_y<-1/(ni-1) 
     sign_xa<-sign_ya<-rep(1,length(n_term_x)) 
     sign_xa[dependent_sds_x]<-sign_ya[dependent_sds_y]<--1 
     n_term_x[!is.na(na)]<-n_term_x[!is.na(na)]+sign_xa*1/(na[!is.na(na)]-1) 
     n_term_y[!is.na(na)]<-n_term_y[!is.na(na)]+sign_ya*1/(na[!is.na(na)]-1) 
     var_e<-(1-mean_rxyi^2)^2/(ni-1) 
     var_e_ux<-0.5*mean_ux^2*n_term_x 
     var_e_uy<-0.5*mean_uy^2*n_term_y 
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     var_e_qxi<-(1-mean_qxi^2)^2/(ni-1) 
     var_e_qyi<-(1-mean_qyi^2)^2/(ni-1) 
     var_e_qxa<-(mean_qxi*ux^2)^2/((mean_qxi^2-1)*ux^2+1)*var_e_qxi 
     var_e_qya<-(mean_qyi*uy^2)^2/((mean_qyi^2-1)*uy^2+1)*var_e_qyi 
     qxa<-(1-ux^2*(1-qxi^2))^.5 
     qya<-(1-uy^2*(1-qyi^2))^.5 
      
     rtpa<-(rxyi*ux*uy+lambda*sqrt(abs(1-ux^2)*abs(1-uy^2)))/(qxa*qya) 
     b_rxyi<-(ux*uy)/(qxa*qya) 
     b_qxa<--rtpa/qxa 
     b_qya<--rtpa/qya 
     b_ux<-(rxyi*uy-(lambda*ux*(1-ux^2)*sqrt(abs(1-uy^2)))/abs(1-ux^2)^1.5)/(qxa*qya) 
     b_uy<-(rxyi*ux-(lambda*uy*(1-uy^2)*sqrt(abs(1-ux^2)))/abs(1-uy^2)^1.5)/(qxa*qya) 
     as.numeric(b_qxa^2*var_e_qxa+b_qya^2*var_e_qya+ 
                     b_ux^2*var_e_ux+b_uy^2*var_e_uy+b_rxyi^2*var_e) 
} 
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The random-effects variance of correlations corrected for BVIRR can be estimated using the 

estimate_var_rho_tsa_bvirr function defined below. The arguments to the 

estimate_var_rho_tsa_bvirr function are: 

 

• mean_rtpa: Optional mean unrestricted true-score correlation between X and Y. 

• mean_rxyi: Mean observed range-restricted sample correlation between X and Y. 

• var_rxyi: Variance of observed range-restricted sample correlations between X and Y. 

• mean_ni: Mean sample size. 

• mean_ux: Mean ratio of sample standard deviation to unrestricted standard deviation for 

X. 

• var_ux: Variance of ratios of sample standard deviations to unrestricted standard 

deviations for X. 

• mean_uy: Mean ratio of sample standard deviation to unrestricted standard deviation for 

Y. 

• var_uy: Variance of ratios of sample standard deviations to unrestricted standard 

deviations for Y. 

• mean_qxi: Mean square root of observed range-restricted reliability for X.  

• var_qxi: Variance of square roots of observed range-restricted reliabilities for X. 

• mean_qyi: Mean square root of observed range-restricted reliability for Y. 

• var_qyi: Variance of square roots of observed range-restricted reliabilities for Y. 

• sign_rxz: Sign of the unrestricted correlation between X and the selection mechanism.  

• sign_ryz: Sign of the unrestricted correlation between Y and the selection mechanism. 

 
estimate_var_rho_tsa_bvirr <- function(mean_rtpa=NULL, mean_rxyi, var_rxyi=0, 
mean_ni, 
                                     mean_ux=1, var_ux=0, 
                                     mean_uy=1, var_uy=0, 
                                     mean_qxi=1, var_qxi=0, 
                                     mean_qyi=1, var_qyi=0, 
                                     sign_rxz=1, sign_ryz=1, 
                                     residualize_ads=TRUE){ 
     ux_prime<-mean_ux 
     uy_prime<-mean_uy 
     ux_prime[mean_ux>1/mean_ux]<-1/mean_ux[mean_ux>1/mean_ux] 
     uy_prime[mean_uy>1/mean_uy]<-1/mean_uy[mean_uy>1/mean_uy] 
     sign_x<-sign(mean_ux-1) 
     sign_y<-sign(mean_uy-1) 
     sign_x<-sign(1-mean_ux) 
     sign_y<-sign(1-mean_uy) 
     lambda<-sign_x*sign_y*sign(sign_rxz*sign_ryz)* 
          (sign_x*ux_prime+sign_y*uy_prime)/(ux_prime+uy_prime) 
      
     if(residualize_ads){ 
          var_ux<-var_ux-0.5*mean_ux^2*1/(mean_ni-1) 
          var_uy<-var_uy-0.5*mean_uy^2*1/(mean_ni-1) 
          var_qxi<-var_qxi-(1-mean_qxi^2)^2/(mean_ni-1) 
          var_qyi<-var_qyi-(1-mean_qyi^2)^2/(mean_ni-1) 
     } 
     var_ux[is.na(var_ux)]<-var_uy[is.na(var_uy)]<- 
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          var_qxi[is.na(var_qxi)]<-var_qyi[is.na(var_qyi)]<-0 
     var_ux[var_ux<0]<-var_uy[var_uy<0]<- 
          var_qxi[var_qxi<0]<-var_qyi[var_qyi<0]<-0 
     mean_qxa<-(1-mean_ux^2*(1-mean_qxi^2))^.5 
     mean_qya<-(1-mean_uy^2*(1-mean_qyi^2))^.5 
     var_qxa<-(mean_qxi*mean_ux^2)^2/(mean_qxi^2*mean_ux^2-mean_ux^2+1)*var_qxi 
     var_qya<-(mean_qyi*mean_uy^2)^2/(mean_qyi^2*mean_uy^2-mean_uy^2+1)*var_qyi 
      
     if(is.null(mean_rtpa)) 
          mean_rtpa<-(mean_rxyi*mean_ux*mean_uy+ 
                      lambda*sqrt(abs(1-mean_ux^2)* 
                                  abs(1-mean_uy^2)))/(mean_qxa*mean_qya) 
     var_e<-(1-mean_rxyi^2)^2/(mean_ni-1) 
 
     b_qxa<-mean_rtpa*mean_qya/(mean_ux*mean_uy) 
     b_qya<-mean_rtpa*mean_qxa/(mean_ux*mean_uy) 
     b_ux<-(lambda*(1-mean_ux^2)*sqrt(abs(1-mean_uy^2)))/ 
          (mean_uy*abs(1-mean_ux^2)^1.5)-mean_rxyi/mean_ux 
     b_uy<-(lambda*(1-mean_uy^2)*sqrt(abs(1-mean_ux^2)))/ 
          (mean_ux*abs(1-mean_uy^2)^1.5)-mean_rxyi/mean_uy 
     b_rtpa<-(mean_qxa*mean_qya)/(mean_ux*mean_uy) 
      
     var_art<-b_qxa^2*var_qxa+b_qya^2*var_qya+b_ux^2*var_ux+b_uy^2*var_uy 
     var_pre<-var_e+var_art 
     var_res<-var_rxyi-var_pre 
     var_rho<-var_res/b_rtpa^2 
     data.frame(var_art=as.numeric(var_art), 
                var_pre=as.numeric(var_pre), 
                var_res=as.numeric(var_res), 
                var_rho=as.numeric(var_rho)) 
} 
 

 


