
Supplementary Material
TimeTrial: An Interactive Application for Optimizing the Design
and Analysis of Transcriptomic Times-Series Data in Circadian

Biology Research

Elan Ness-Cohn, Marta Iwanaszko, William Kath, Ravi Allada, and Rosemary Braun

July 3, 2020

JTK_CYCLE
JTK_CYCLE (Hughes et al., 2010) is a non-parametric method based on the Jonchkeere-Terpstra and
Kendall rank based sum test. Implemented in the R programming language, JTK_CYCLE uses the
Jonchkeere-Terpstra test to detect the monotonic orderings of data across ordered independent groups and
subsequently uses the Kendall rank sum test to compare the experimental Jonchkeere-Terpstra statistic to
that of a reference curve. JTK_CYCLE strength is the method has built in structures to handle uneven
sampling, missing data, and replicate samples (Table 1). In practice, all of these feature are important to
researchers. Often data points are missed as a result of sequencing errors (Gierliński et al., 2015). Moreover,
uneven sampling and replicates are useful in the design of time course experiment where researchers may
want dense sampling at a specific stretch of the time course to detect a signal of interest and subsequent
sparser sampling as the time course progresses. While JTK_CYCLE thus allows for flexibility in experi-
mental design, results show that by using a reference waveform (i.e. a cosine wave), JTK_CYCLE is biased
towards that reference and periodic signals that do not fit the reference pattern (i.e. a sawtooth wave) can
go undetected (Thaben and Westermark, 2014).

ARSER
ARSER (Yang and Su, 2010) is a parametric method based on autoregressive spectral estimation. Imple-
mented in both Python and the R programming language, by first detrending and then smoothing the data,
ARSER assesses statistical significance of the waveforms fit to a sinusoidal curve. As a nature of the de-
trending in the algorithm, ARSER has been shown to pick up trending oscillatory dynamics such as linear
trends (Yang and Su, 2010). ARSER however does not have built in structures to handle missing data,
uneven sampling, or replicate samples (Table 1).

RAIN
RAIN (Thaben and Westermark, 2014) is a non-parametric method based on the rank test for umbrella
alternative – a generalization of the Jonckheere-Terpstra test – that does not require a user defined reference
signal. Implemented in the R programming language, RAIN was developed to expand the range of signals
detected by JTK_CYCLE. Using the rank test for umbrella alternative, RAIN searches for monotonic
patterns of rising followed by monotonic patterns of falling, but does not assume any relationship between
the patterns. As such, a user-defined reference signal is not employed, allowing for the detection of rhythms
that other referenced based methods may miss. RAIN further has built in structures to handle uneven
sampling, missing data, and replicate samples (Table 1).

BooteJTK
BooteJTK (Hutchison et al., 2018) is a non-parametric method based on an empirical Bayes procedure.
Implemented in Python programming language, BooteJTK “shrinks” the spread in variances across time
points, generates bootstrap time-series from the variance estimations, and computes statistical significance

1

of cycling by averaging the results of the bootstrapped time-series via a non-parametric pairwise rank order
correlation, Kendall’s τ, in relation to a gamma distribution. BooteJTK uses a range of phase shifted
reference waveforms to avoid bias toward a single reference signal. Furthermore, the variance shrinking
coupled with the bootstrapping procedure is argued to improve consistency across related experimental
datasets (Hutchison et al., 2018). Nonetheless, the method can be computationally expensive. As dataset
size scales, the bootstrapping procedure become computationally more costly. Furthermore, the method
does not have built in structures to handle uneven sampling or deal with replicates. The method can handle
missing data, as long as there is at least some data present for every time point sampled. Since BooteJTK
groups ZT time points across period cycles (i.e. ZT_2 groups with ZT_26), if the grouped ZT times are
missing across period cycles – more characteristic of uneven sampling – BooteJTK’s detection procedures
breaks down (Table 1).

Method Replicates Missing Data Uneven Sampling Efficiency Language

ARSER - - - X Python/R

BooteJTK - X - - Python

JTK_CYCLE X X X X R

RAIN X X X X R

Table 1: Comparison of Method Features
(X) represent the method is implementation to handle the feature, while (-) denotes a method does not have a valid imple-
mentation. Missing data refers to sporadic non-sequenced timepoints on a per gene basis, while uneven sampling refers to a
systematic omission of a specific timepoint across all genes in the time-series. Thus, BooteJTK has a (X) for missing data,
since the imputation procedure can handle the sporadic level of missingness; but a (-) for uneven sampling, since the imputation
procedure fails with the systematic omission of a particular time point across all genes.

Parameters Synthetic Data | methodParameters_SyntheticData.xlsx
The excel file contains all the parameters used for processing each synthetic datasets. The spreadsheet
is broken down by method. All datasets were processed by all four cycling detection methods (ARSER,
BooteJTK, JTK_CYCLE, and RAIN), using each method’s recommended parameter settings as defined by
the sampling length and interval. Since ARSER and BooteJTK do not have built in function for dealing
with replicates, replicates where either averaged together or concatenated as are the two common practices
in the field. JTK_CYCLE and RAIN used the replicate procedures recommended in their documentation.
See (https://github.com/nesscoder/TimeTrial) for source code and additional files.

Parameters Biological Data | methodParameters_BiologicalData.xlsx
The excel file contains all the parameters used for processing each synthetic datasets. The spreadsheet
is broken down by method. All datasets were processed by all four cycling detection methods (ARSER,
BooteJTK, JTK_CYCLE, and RAIN), using each method’s recommended parameter settings as defined by
the sampling length and interval. See (https://github.com/nesscoder/TimeTrial) for source code and
additional files.

2

https://github.com/nesscoder/TimeTrial
https://github.com/nesscoder/TimeTrial

Synthetic Data | Function Form

Cycling Waveform Signal Function

Sine f(t) =
A

2
sin

(
2π

24
(t− φ)

)
+ ε

Peak f(t) = A

(∣∣∣sin(2π
24

(t− φ)
)∣∣∣p)+ ε ; p ∈ [10, 60]

Sawtooth f(t) = Amin

(
(t mod 24)

φ
,
(t mod 24)− 24

φ− 24

)
+ ε

Linear Trend f(t) = lt+
A

2
sin

(
2π

24
(t− φ)

)
+ ε ; l ∈ [−2, 2]

Damped f(t) = e−dt · A
2
sin

(
2π

24
(t− φ)

)
+ ε ; d ∈ [0.01, 0.03]

Amplified f(t) = eat · A
2
sin

(
2π

24
t− φ

)
+ ε ; a ∈ [0.01, 0.015]

Contractile f(t) =
A

2
sin

(
2π

24

(
tk/24− φ

))
+ ε ; k ∈ [1.8, 1.9]

Table 2: Cycling Waveform Functions
The time, t, is evenly distributed every 2 hours between t = 0 and t = 96. Phases φ are measured in hours, and were uniformly
sampled. All waveforms were down-sampled to account for the different sampling lengths (24h, 48h, 72h, 96h) and sampling
intervals (2h, 4h, 6h, 8h). The amplitudes, A, was drawn from a log-normal distribution with µ = 1.302 and σ = 0.303,
as derived from the distribution of amplitudes in observed biological data. Gaussian white noise ε was added to each point
independently as a percentage of the amplitude, ε = rAη where η ∼ N (0, 1) and r = {0%, 10%, 20%, 30%, 40%}. All other
parameters were uniformly sampled over the ranges denoted in the table. Range bounds were chosen to maintain the mean
expression and standard deviation seen in real data. See (https://github.com/nesscoder/TimeTrial) for source code and
additional files.

Non-Cycling Waveform Signal Function

Flat f(t) = A+ ε

Linear f(t) = mt+ ε ; m ∈ [−5, 5]

Sigmoid f(t) =
A

1 + eg(t−φ)
+ ε ; g ∈ [−1, 1]

Exponential f(t) =
A

100
edt + ε ; d ∈ [0.09, 0.05]

Table 3: Non-Cycling Waveform Functions
The time, t, is evenly distributed every 2 hours between t = 0 and t = 96. All waveforms were down-sampled to account
for the different sampling lengths (24, 48, 72, 96) and sampling intervals (2, 4, 6, 8). The amplitudes, A, was drawn from a
log-normal distribution with µ = 1.302 and σ = 0.303, as derived from the distribution of amplitudes in observed biological
data. Gaussian white noise ε was added to each point independently as a percentage of the amplitude, ε = rAη where
η ∼ N (0, 1) and r = {0%, 10%, 20%, 30%, 40%}. All other parameters were uniformly sampled over the ranges denoted
in the table. Range bounds were chosen to maintain the mean expression and standard deviation seen in real data. See
(https://github.com/nesscoder/TimeTrial) for source code and additional files.

3

https://github.com/nesscoder/TimeTrial
https://github.com/nesscoder/TimeTrial

Figure 1: Characteristic waveforms in Real Data | Examples of waveform characteristics observed in real data from
GSE11923 - Hogenesch 2009 (Hughes et al., 2009).

4

Figure 2: Method Comparison | The spearman rank correlation, (ρ), of the resultant raw p-values in each dataset with a
given sampling scheme were computed. This correlation compares the ranking of genes from one method to their corresponding
ranking in a different method. See (https://nesscoder.shinyapps.io/TimeTrial_Real/) for interactive plots and a complete
tutorial.

5

https://nesscoder.shinyapps.io/TimeTrial_Real/

Figure 3: Sampling Schemes Comparison | The spearman rank correlation, (ρ), of the resultant raw p-values in each
dataset with a given method were computed. This correlation compares the ranking of genes from one sampling scheme to their
corresponding ranking in a different sampling scheme. See (https://nesscoder.shinyapps.io/TimeTrial_Real/) for interactive
plots and a complete tutorial.

6

https://nesscoder.shinyapps.io/TimeTrial_Real/

References
Gierliński M, Cole C, Schofield P, Schurch NJ, Sherstnev A, Singh V, Wrobel N, Gharbi K, Simp-
son G, Owen-Hughes T, Blaxter M and Barton GJ (2015) Statistical models for RNA-seq data de-
rived from a two-condition 48-replicate experiment. Bioinformatics 31(22): 3625–3630. DOI:
10.1093/bioinformatics/btv425. URL https://academic.oup.com/bioinformatics/article-lookup/
doi/10.1093/bioinformatics/btv425.

Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, Panda S and Hogenesch JB
(2009) Harmonics of circadian gene transcription in mammals. PLoS Genetics 5(4): e1000442. DOI:
10.1371/journal.pgen.1000442. URL https://dx.plos.org/10.1371/journal.pgen.1000442.

Hughes ME, Hogenesch JB and Kornacker K (2010) JTK_CYCLE: An Efficient Nonparametric Algorithm
for Detecting Rhythmic Components in Genome-Scale Data Sets. Journal of Biological Rhythms
25(5): 372–380. DOI:10.1177/0748730410379711. URL http://journals.sagepub.com/doi/10.1177/
0748730410379711.

Hutchison AL, Allada R and Dinner AR (2018) Bootstrapping and Empirical Bayes Methods Improve
Rhythm Detection in Sparsely Sampled Data. Journal of Biological Rhythms 33(4): 339–349. DOI:
10.1177/0748730418789536. URL http://journals.sagepub.com/doi/10.1177/0748730418789536.

Thaben PF and Westermark PO (2014) Detecting Rhythms in Time Series with RAIN. Journal of Bi-
ological Rhythms 29(6): 391–400. DOI:10.1177/0748730414553029. URL http://journals.sagepub.
com/doi/10.1177/0748730414553029.

Yang R and Su Z (2010) Analyzing circadian expression data by harmonic regression based on autore-
gressive spectral estimation. Bioinformatics 26(12): i168–i174. DOI:10.1093/bioinformatics/btq189.
URL https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/
btq189.

7

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv425
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv425
https://dx.plos.org/10.1371/journal.pgen.1000442
http://journals.sagepub.com/doi/10.1177/0748730410379711
http://journals.sagepub.com/doi/10.1177/0748730410379711
http://journals.sagepub.com/doi/10.1177/0748730418789536
http://journals.sagepub.com/doi/10.1177/0748730414553029
http://journals.sagepub.com/doi/10.1177/0748730414553029
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq189
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq189

	JTK_CYCLE
	ARSER
	RAIN
	BooteJTK
	Parameters Synthetic Data | methodParameters_SyntheticData.xlsx
	Parameters Biological Data | methodParameters_BiologicalData.xlsx
	Synthetic Data | Function Form

