
 16

Appendix 1 - Commented example code

The example code below illustrates a routine to automatically scrape the reactions to

a post of a public Facebook page (such as the page of a politician) in R. Unlike

profiles, which are to be regarded as the private online-personas of Facebook users,

pages are public entities of which posts are visible to all Facebook users, regardless

of whether they are connected to the page (via “liking” it) or not.

To run, the code requires a recent version of R (it was tested on version 3.4.4) and of

Google Chrome (version 67.0.3396.62).

Install the requested dependencies

The code below installs (if they are not already installed) the packages wdman,

binman, XML, devtools, getPass, and RSelenium, and loads them.

#===
==========
INSTALL/LOAD PACKAGES
#===

==========
want = c("XML", "devtools","getPass")
have = want %in% rownames(installed.packages())
if (any(!have)) { install.packages(want[!have]) }

Check for RSelenium (not on the CRAN)
if (!"RSelenium" %in% rownames(installed.packages())) {
 devtools::install_github("ropensci/RSelenium")
 devtools::install_github("ropensci/wdman")
 devtools::install_github("ropensci/binman")
}
want <- c(want, "RSelenium")

Load all packages
junk <- lapply(want, library, character.only = TRUE)
rm(have, want, junk)

Set up the parameters for the scraping

The code below will save some useful parameters that will be used for the scraping.

Specifically:

 17

• user: the Facebook ID of the user performing the scraping.

• user_path: a folder on the local hard drive in which the user will insert the

newly-created Chrome profile, e.g. “C: \User\Desktop”.

• post_id: the numeric ID of the public post the reactions to which the user

wants to scrape. For this example, we will use a post by the Italian politician

Giulio Cavalli which can be found at this link.

• timeout: the minimum and maximum “sleep” time –that is, the time in which

the program will be idle, to avoid clogging the Facebook server with repeated

requests.

• seed: the number used to initialize the pseudo-randomization for the MD5 hash

conversion of the user links (that is, the unique user IDs that can be used to trace

individual users within the network of the collected data). Once user links are

encrypted, it is impossible to reverse the process and go back to the original user

links. However, if the seed number is the same across runs of the function

(e.g. to scrape reactions to different posts) the encrypted ID will be the same for

each individual user.

The password to the Facebook profile will be asked directly while the routine is

running, so it is not necessary to store it into an object.

user <- "user@email.com"
user_path <- "folder"
post_id <- "10155919157297756"
timeout <- c(2,4)
seed <- 1234

Create a new Chrome profile

The code below will create a brand-new Google Chrome profile, necessary to store

all the login information that will be used to automatically access Facebook via

browser.

#===

==========
CREATES PROFILE FOLDER
#===
==========
Loads the right version of chromedriver and passes the profile

https://www.facebook.com/cavalli.giulio/posts/10155919157297756

 18

options.
It creates the folder needed to scrape the data.

cDrv <- wdman::chrome(version = "2.40", verbose = FALSE, check =

TRUE)
eCaps <- RSelenium::getChromeProfile(dataDir = user_path,
 profileDir = "Profile 1")
eCaps$chromeOptions$args[[3]] <- "--disable-notifications"
remDr <- RSelenium::remoteDriver(remoteServerAddr = "localhost",
 browserName = "chrome",
 port = 4567L,
 extraCapabilities = eCaps)

Gets the password
pass <- getPass::getPass("Enter your Facebook profile's password: ")

Opens an automatic Chrome session and saver user and password in
the folder
tryCatch({
 suppressMessages({

 remDr$open()
 remDr$navigate("http://www.facebook.com")

 remDr$findElement("id",

"email")$sendKeysToElement(list(user))
 remDr$findElement("id",

"pass")$sendKeysToElement(list(pass))
 remDr$findElements("id", "loginbutton")[[1]]$clickElement()

 })
},
error = function(e) {
 remDr$close()
 cDrv$stop()
 stop("something went wrong. Check your internet connection and
try again.",
 call. = FALSE)
}
)
string <- substr(remDr$getCurrentUrl()[[1]], 1, 49)
if (string == "https://www.facebook.com/login.php?login_attempt=") {
 remDr$close()
 cDrv$stop()
 stop(paste0("something went wrong. Check your e-mail and
password
 and try again.\n
 Please erase the folder in ", user_path),
 call. = FALSE)

 19

} else {
 # Close ports
 remDr$close()
 cDrv$stop()
}

Scrape the reactions to a post from a public page

In the code below, we instruct the headless browser to go on the page showing the

reactions to the post, find the “See more” button in case the reactions are not all

loaded, click on the button until it disappears, and download the whole HTML of the

page. Then, the code parses the HTML to obtain the list of reactions by type, together

with the URL of the users performing the reaction. The latter is particularly valuable,

as it will be used to trace the users among different posts in the data.

#===

==========
SCRAPES REACTIONS
#===
==========
Loads the right version of chromedriver
and passes the profile options from 'user_path'
cDrv <- wdman::chrome(version = "2.40", verbose = FALSE, check =

TRUE)
eCaps <- RSelenium::getChromeProfile(dataDir = user_path,
 profileDir = "Profile 1")
eCaps$chromeOptions$args[[3]] <- "--disable-notifications"
remDr<- RSelenium::remoteDriver(remoteServerAddr = "localhost",
 browserName = "chrome",
 port = 4567L,
 extraCapabilities = eCaps)

Opens a session and goes to the chosen page
remDr$open(silent = TRUE)
fr <-

"https://www.facebook.com/ufi/reaction/profile/browser/?ft_ent_ident
ifier="
url_id <- paste0(fr, post_id)
tryCatch({
 remDr$navigate(url_id)
},
error = function(e) {
 remDr$close()

 20

 cDrv$stop()
 stop("something went wrong. Check your internet connection and
try again.",
 call. = FALSE)

}
)

Scrapes the html by type of reaction
var <- remDr$findElements("class name", "_5i_p")

Prepare lists
elemtxt <- list(NULL)
elemxml <- list(NULL)
link_list <- list(NULL)

Loop around reaction types
i <- 1
while(i <= length(var)) {
 elemtxt[[i]] <- var[[i]]$getElementAttribute("outerHTML")[[1]]
 reac <- as.numeric(sub(".*reaction_profile_browser(\\d+).*",

"\\1",
 elemtxt[[i]]))
 reac_t <- ifelse(reac == 1, "Like",
 ifelse(reac == 8, "Angry",
 ifelse(reac == 7, "Sad",
 ifelse(reac == 3, "Wow",
 ifelse(reac == 2, "Love",
 ifelse(reac == 4,
"Haha",
 ""))))))

 print(reac_t)
 elemxml[[i]] <- XML::htmlTreeParse(elemtxt[[i]],
 useInternalNodes = T,
 encoding = "UTF-8")
 repeat{
 delayedAssign("break.func", {break})
 tryCatch({
 suppressMessages({

 # Find "See more" button
 butt <- paste0('//a[contains(@href,
"reaction_type=',
 reac,
 '")]')

 seemorecounter <- remDr$findElement(using = 'xpath',

butt)

 21

 seemorecounter$clickElement()
 Sys.sleep(stats::runif(1, min = min(timeout),
 max = max(timeout)))
 })
 },
 error = function(e) {
 force(break.func)
 }
)
 }
 var <- remDr$findElements("class name", "_5i_p")
 elemtxt[[i]] <- var[[i]]$getElementAttribute("outerHTML")[[1]]
 elemxml[[i]] <- XML::htmlTreeParse(elemtxt[[i]],
 useInternalNodes = TRUE,
 encoding = "UTF-8")
 ## Parse list of user links
 prof_link <- unique(XML::xpathSApply(elemxml[[i]], "//a",
 XML::xmlGetAttr,
 "href"))
 prof_link <- prof_link[!grepl("/browse/mutual_friends/",

prof_link)]
 prof_link <- prof_link[prof_link!="#"]
 prof_link <- gsub("profile.php\\?id=", "", prof_link)
 prof_link <- sub("[?].*$", "", prof_link)
 prof_link <- sub("[&].*$", "", prof_link)
 link_list[[i]] <- prof_link
 names(link_list)[[i]] <- reac_t
 i <- i + 1
}

[1] "Like"
[1] "Love"

Close ports
remDr$close()
cDrv$stop()

[1] TRUE

As reported by the output, the post in this example had only “Like” and “Love”

reactions.

Encrypt the data and put them into a data frame

In the code below we put all the information together into a data frame, i.e. an R table

object which can be saved in various formats and used for subsequent analyses.

Importantly, the code randomizes the order of the vector of scraped reactions (so

 22

e.g. the first user reacting with a “Like” in the data is not the first user reacting with a

“Like” in the reactions page) and performs the pseudonymization by applying MD5

encryption to the user URLs, based on the seed specified at the beginning.

Randomize the order of the scraped reactions so even by going to
the post URL
it is not possible to match the users who performed the reactions
with those
in the data
link_list <- lapply(link_list, function(x) sample(x, length(x)))

Make data frame and encrypt the user links
link_data <- data.frame(post_id = post_id,
 user_id =

sapply(as.character(unlist(link_list)),
 function(x)

digest::digest(x, "md5",

seed = seed)),
 reaction = rep(names(link_list),
 sapply(link_list, length)),
 stringsAsFactors = FALSE)
row.names(link_data) <- 1:nrow(link_data)

Show the data
head(link_data)

post_id user_id reaction
1 10155919157297756 1fca391750e53b9c30fee19063c4991a Like
2 10155919157297756 1a8d52ad7f1088ecdc57f95fec0be9c5 Like
3 10155919157297756 7f8a5fcdc91cd0dc35077f5da8001237 Like
4 10155919157297756 1d87d97ac2cda3087a966f3fee780cbc Like
5 10155919157297756 9d59e137505e45ed61defeec1979cf05 Like
6 10155919157297756 fa2073ed23231847660e91a021abc8bc Like

