
Supplementary Information
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Sampling from Lognormals

Supplementary Information A. Validating the assumption that the sum
Y (n) can be approximated by the maximum M(n)

We approximate Y (n) by the maximal productivity M(n) := max{X1, . . . , Xn}
in the city. This quantity can be written as M(n) = eσL(n)−σ

2/2, where L(n) :=
max{Z1, . . . , Zn} denotes the maximum of i.i.d. standard normal random variables.
Then

Y (n) =

n∑
i=1

Xi

=

n∑
i=1

eσZi−σ
2/2

= eσL(n)−σ
2/2

n∑
i=1

eσ(Zi−L(n))

= M(n)

n∑
i=1

eσ(Zi−L(n)). (16)

The main difficulty for validating the assumption that Y (n) can be approximated by
M(n) is in analyzing the last sum in Equation (16). Since it is doubtful that this quantity
can be tackled analytically, we suggest the following argument. First write

∆n :=

n∑
i=1

eσ(Zi−L(n)) =

n∑
i=1

eσ(Li(n)−L(n)),

where we have re-ordered the terms in the summation such that Li(n) denotes the
ith largest value among Z1, . . . , Zn. For the first term, we have L1(n) = L(n), so
eσ(L1(n)−L(n)) = 1. For the second term, we can use that L(n)− L2(n) is of order
(ln(n))−1/2 (see Leadbetter et al. 1983, Section 2.3). By our assumption that σ �√

2 ln(n), the quantity σ(L2(n)− L(n)) is negatively large and so eσ(L2(n)−L(n)) is
close to 0. The remaining terms eσ(Li(n)−L(n)) for i ≥ 3 decay to 0 much faster since so
do exponents with larger negative powers.

Thus, we have ∆n ≈ 1 when σ �
√

ln(n). Moreover, our simulations (not shown)
reveal that a similar conclusion applies even when σ is larger than, but comparable to,√

2 ln(n), in which case ∆n is rather close to 1, being of constant order.
Figure 6 illustrates the fact that the maximum can indeed become comparable to the

sum. We use a proxy of the share M(n)/Y (n) as the ratio of the quantile Q(1− 1/n)
over

∑
iQ(i/n− 1/n), where Q(Pr(X ≤ xp)) = xp. The figure shows the curves for

this proxy of the share M(n)/Y (n) as a function of σ, for four distinct values of n.



0.0

0.2

0.4

0.6

0.8

2 4 6
s

M
(n
)
Y
(n
)

3

4

5

6

7
LOG10.pop

Figure 6. Proxy for the share of the maximum over the total sum, M(n)/Y (n), constructed
as the ratio of the quantile of the lognormal associated with the percentile (n− 1)/n over the
sum of all the n quantiles, as a function of parameter σ. The color of the line represents a
fixed population size. We show the curves for n = 103, 104, 105, 106, and 107. The lighter the
blue is, the larger the population is.

According to our derivations, for σ = 4, the maximum is comparable to the sum when
n < eσ

2/2 ≈ 3, 000. Indeed, the figure shows that for σ = 4 and for n = 103 (darkest
blue line), the maximum can account for 50% of the sum. For σ = 4 one needs to increase
size to n = 107 (a ten-thousand-fold increase) in order to decrease the dominance of the
maximum to about 10% (see lightest blue line). Figure 6 provides evidence in support of
replacing the sum Y (n) with the maximum M(n), and using this to find an approximate
result for how the sum scales with size.

Supplementary Information B. Data
In the main text we use data of the formal workforce in Colombia to analyze the
unconditional elasticity of nominal wages on municipality population size. These come
from the administrative records of the social security system in Colombia (abbreviated as
PILA in Spanish, meaning the Integrated Report of Social Security Contributions). The
PILA is maintained by the Colombia Ministry of Finance and Public Credit (“Ministerio
de Hacienda y Crédito Público”). PILA consists of individual contributions to health and
pensions reported by workers, firms, public institutions, and other formal entities like
associations, universities, cooperatives and multilateral organizations.

The dataset was obtained from the Ministry of Finance and Public Credit, under a data
use agreement that is part of the development of www.datlascolombia.com, a joint
project between the Center for International Development and the Colombian Foreign
Trade Bank (Bancoldex) to map the industrial economic activity in Colombia. The data
are stored on secure computers at the Harvard-MIT Data Center. Access is restricted to
identified and authorized researchers by means of a confidential account. The use of the
PILA for research purposes has been reviewed by the Harvard’s Institutional Review
Board (IRB). In the database individuals and firms have been previously anonymized
in order to protect their habeas data. Harvard IRB determined that this dataset is not

www.datlascolombia.com


human subjects as defined by the Department of Health and Human Services (DHHS)
regulations.

Each row of the dataset consists of a monthly contribution to the social security system,
with more than seventy different fields with information about the worker and the firm,
and with the values of the contribution to health and pension, according to the days the
worker worked at the firm in that month. The raw microdata consists of 122,287,562 rows
(i.e., social security contributions), from 10,535,587 unique workers (i.e., each worker
had an average of 11.6 contributions per year). As explained below, we aggregate and
keep a subset of all these observations, and we only use two fields for this study: the list
of nominal wages earned, and the municipalities of work to which the wage values where
attached.

As a start, these data must be cleaned, as is often the case with datasets built
from observations resulting from administrative transactions. Common problems include
misreported or missing wages, no municipality of work reported, no age reported,
duplicated observations, or missing contribution to pension or health. In addition to
dropping these problematic observations, we keep only those workers that are categorized
as “dependent” or “independent”, which means they are either employed in a firm or are
self-employed, respectively (by keeping these type of social security contributors we
exclude those individuals that contribute to social security through means other than a
formal job). Finally, we keep those individuals who worked for at least 30 days during
the whole year, and had ages between 15 and 64.

We compute the monthly average wage of workers by first adding their net wage
earned during the year, then dividing it by the total number of days worked, and finally
multiplying by thirty. By law, firms are required to pay a minimum wage to workers,
or more. However, there exist special cases in the dataset in which this does not hold.
Hence, we make sure this is the case by dropping observations which report average
monthly wages below the minimum wage ($616,000 Colombian Pesos, or COP, in 2014).
At the end, our population of analysis consists of 6,713,975 formal Colombian workers
(approximately 64% of the unique individuals that appear originally in the dataset).

Supplementary Information C. Derivation of βave(nmin, σ, α)

Here we shall indicate the relevant steps for the derivation of Equation (12).
The derivation becomes relatively easy once some changes of variables are carried

out first. We start with the change of variable U = α ln(N). Together with equation (10)
where N ∼ Pareto(nmin, α), and the conservation of probability, we get that p(u) =

p(n)
∣∣du
dn

∣∣−1 = e−(u−q), for u ≥ q, where q ≡ α ln(nmin). That is, a shifted standard
exponential,

U ∼ q + Exp(1).

With the additional change of variable V = ln(Y ), the piecewise function in
equation (9) can be re-written as

E [V |U ] =

{
σ2U
2w , for U ≥ w
−σ

2

2 + σ2
√
w

√
U , for U < w,



where w ≡ ασ2/2. Using the indicator function, we express the equation above more
concisely as

E [V |U ] =
σ2

2w

[
U +

(
2w1/2U1/2 − w − U

)
1{U<w}

]
.

For the computation of βave(nmin, σ, α) we have to get analytic expressions of the
different terms in the following relation (see main text):

βave(nmin, σ, α) =
E [(U/α)V ]− E [(U/α)] E [V ]

Var [(U/α)]

= α

(
E [UV ]− E [U ] E [V ]

Var [U ]

)
.

The easy terms are those in which U is alone:

E [U ] = 1 + q,

Var [U ] = 1.

The piecewise form of E [V |U ], however, complicates the rest. Let us compute E [V ]
using the law of total expectations E [V ] = E [E [V |U ]]:

E [V ] =

∫ ∞
q

σ2

2w

[
u+

(
2w1/2u1/2 − w − u

)
1{u<w}

]
p(u)du.

The first term is trivial, since it is simply the expectation of U . For the second term, since
the integral starts at q, the indicator function 1{u<w} can only be true whenever w is
also larger than q. Hence, we can compute the second term in the integral by taking the
indicator function out of the integral and replacing it with 1{q<w}, and evaluating the
integral only between q and w:

E [V ] =
σ2

2w

[
(1 + q) + 1{q<w}

∫ w

q

(
2w1/2u1/2 − w − u

)
p(u)du

]
.

An almost identical expression can be derived for E [UV ].
Now, given that p(u) = eqe−u, one recognizes that most terms become integrals of the

form ∫ w

q

use−udu = γ(s+ 1, w)− γ(s+ 1, q),

for some constant s, where we use “lower incomplete gamma functions”, defined as
γ(s+ 1, x) =

∫ x
0
use−udu. We use the recurrence relationship

γ(s+ 1, x) = sγ(s, x)− xse−x

iteratively, as many times as necessary until we either get to terms like γ(1/2, x), or terms
like γ(1, x). For the former, we use the fact that

√
πerf(

√
x) = γ(1/2, x), to express



everything in terms of “error functions”, defined as erf(x) = (2/
√
π)
∫ x
0

e−t
2

dt. For the
latter, we use the (trivial) fact that γ(1, x) = 1− e−x.

After reducing the relevant integrals of E [V ] and E [UV ] to simple exponentials and
error functions, it is just a matter of collecting terms. Finally, we arrive to the final
expression:

βave(nmin, σ, α) =


1, for q ≥ w

eq−w(1− q) + (wq)1/2

+ eq(πw)1/2

2 (1− 2q)
(
erf(w1/2)− erf(q1/2)

)
, for q < w.

With some minor replacements, the reader can check that this is the same as equation (12)
in the main text.



Supplementary Information D. Tables for goodness-of-fit statistics for
monthly wages and municipality sizes in Colombia
Here, we show some tables comparing different alternative distributions and their
goodness-of-fit for wages and sizes, and we show some comparative graphs.

Wages



Table 1. Distributions fitted to individual wages. The number of total workers (1, 325, 950 observations) analyzed in this table differ from the
number mentioned in the main text (6, 633, 449) because wages are clustered on the minimum wage. The fits of continuous distributions to
data with repeated values, such as the minimum value which is repeated several times, was much improved when we removed repeated
values. The list of the distributions are ordered from top to bottom by increasing AIC values.

dist numobs loglik AIC BIC Parameter 1 C.I. Parameter 2 C.I.

trunclnorm 1, 325, 950 -19, 940, 740 39, 881, 484 39, 881, 508 l̂n(x0) = 10.23 [2, 10.15] σ̂ = 2.00 [1.99, 2.02]
powerlaw 1, 325, 950 -19, 952, 047 39, 904, 095 39, 904, 108 α̂ = 1.16 [1.16, 1.16]

trunccauchy 1, 325, 950 -19, 960, 472 39, 920, 948 39, 920, 972 l̂ = 120, 766.20 [190129.96, 114817.91] ŝ = 190, 130.00 [174740.73, 206786.87]
truncgamma 1, 325, 950 -20, 018, 427 40, 036, 859 40, 036, 883 â = 0.0000 [0, 0] λ̂ = 0.0000 [0, 0]
truncweibull 1, 325, 950 -20, 077, 580 40, 155, 164 40, 155, 188 â = 0.72 [0.72, 1109695.37] b̂ = 1.11× 106 [1109654.53, 1111878.12]
truncgumbel 1, 325, 950 -20, 330, 914 40, 661, 832 40, 661, 856 â = 0.13 [0.13, 1332540.63] b̂ = 1.33× 106 [1330795.1, 1332942.21]

lnorm 1, 325, 950 -20, 344, 669 40, 689, 342 40, 689, 366 l̂n(x0) = 14.19 [0.76, 14.19] σ̂ = 0.76 [0.76, 0.76]
gamma 1, 325, 950 -20, 626, 561 41, 253, 126 41, 253, 151 â = 1.41 [0, 1.41] λ̂ = 0.0000 [0, 0]
weibull 1, 325, 950 -20, 667, 064 41, 334, 133 41, 334, 157 â = 1.05 [1.05, 2219332.54] b̂ = 2.22× 106 [2219270.9, 2222105.32]
gumbel 1, 325, 950 -20, 825, 629 41, 651, 261 41, 651, 285 â = 1.30× 106 [1135954.33, 1297516.1] b̂ = 1.14× 106 [1134178.33, 1137906.37]

logis 1, 325, 950 -21, 163, 576 42, 327, 155 42, 327, 179 m̂ = 1.61× 106 [1016667.06, 1607560.29] ŝ = 1.02× 106 [1015054.41, 1017887.2]
norm 1, 325, 950 -21, 750, 706 43, 501, 417 43, 501, 441 µ̂ = 2.17× 106 [3220115.06, 2161041.21] σ̂ = 3.22× 106 [3216296.98, 3223985.48]



Figure 7. Diagnostic graphical comparison for the distributions of individual monthly wages
(for workers living in municipalities with sizes above nmin = 287), fitted by a
truncated-lognormal, a Pareto, and a normal distributions, along with some descriptive
statistics. Distributions that fit well the data should line up with the black solid line in the Q-Q
and P-P plots. Clearly, the normal distribution (green line) is not a good fit for the distribution
of monthly wages across workers. Ultimately, the relative best fit among many alternative
distributions is given by the smallest AIC, according to which the (truncated) log-normal
distribution is the preferred model for monthly wages among Colombian formal workers.

Sizes Figure 8 plots the full empirical complementary cumulative distribution function
of municipality sizes. We have followed the methodology proposed by Clauset et al.
(2009) to visualize and fit Pareto distributions. We observe in this empirical distribution
a natural small-size scale, determined by the estimated minimum size, n̂min ≈ 287
(vertical dashed line), above which the Pareto distribution is well fit (see Clauset et al.
2009 for how to estimate this parameter). We will carry out all our subsequent analyses
on the municipalities above n̂min. Dropping the small-sized municipalities allows us to
satisfy the assumption we used for Equation (12), that city sizes are Pareto distributed.‡

Dropping municipalities that have less than 287 formal workers, means dropping from
our analysis 80, 526 workers (only 1.2 percent of total workers in our sample) and 564
municipalities (approximately half of all municipalities).

‡Dropping the municipalities with the smallest sizes is typically done as this reduces the potential bias
introduced by the fact that their formal employment is overrepresented by public servants whose wages are
less determined by economic forces.



Figure 8. The complementary cumulative empirical distribution of number of workers across
municipalities (blue circles) is well-fit by a Pareto distribution (solid purple line).



Table 2. Distributions fitted to municipality sizes. The list of the distributions are ordered from top to bottom by increasing AIC values.

dist numobs loglik AIC BIC Parameter 1 C.I. Parameter 2 C.I.

powerlaw 553 -4, 733.51 9, 469.02 9, 473.33 α̂ = 0.67 [0.61, 0.72]
trunclnorm 553 -4, 733.02 9, 470.05 9, 478.68 l̂n(x0) = −22.96 [-50, 0.44] σ̂ = 6.87 [3.46, 9.63]

truncweibull 553 -4, 733.08 9, 470.16 9, 478.79 â = 0.04 [0.03, 0.11] b̂ = 0 [0, 0]
trunccauchy 553 -4, 755.53 9, 515.06 9, 523.69 l̂ = 0.001 [0, 186.88] ŝ = 428.74 [354.78, 531.55]
truncgamma 553 -4, 931.69 9, 867.38 9, 876.02 â = 0 [0, 0] λ̂ = 0.0000 [0, 0]

lnorm 553 -4, 942.60 9, 889.21 9, 897.84 l̂n(x0) = 7.16 [7.04, 7.27] σ̂ = 1.44 [1.35, 1.52]
weibull 553 -5, 115.31 10, 234.61 10, 243.24 â = 0.50 [0.47, 0.55] b̂ = 2, 882.57 [2377.31, 3424.19]
gamma 553 -5, 299.62 10, 603.24 10, 611.87 â = 0.31 [0.28, 0.34] λ̂ = 0.0000 [0, 0]

truncgumbel 553 -5, 937.73 11, 879.45 11, 888.09 â = 0.0002 [0, 3980.75] b̂ = 10, 684.55 [9403.29, 11307.02]
trunclogis 553 -6, 003.80 12, 011.61 12, 020.24 m̂ = 0.0001 [0, 5064.15] ŝ = 10, 458.00 [9169.54, 11040.73]
gumbel 553 -6, 188.90 12, 381.81 12, 390.44 â = 2, 211.40 [1374.19, 3351.65] b̂ = 10, 582.62 [9954.13, 11198.11]
norm 553 -7, 178.59 14, 361.17 14, 369.80 µ̂ = 11, 995.39 [4325.07, 22479.46] σ̂ = 105, 053.80 [100241.97, 111087.68]



Figure 9. Diagnostic graphical comparison for the distributions of municipality sizes (with
sizes above nmin = 287), fitted by a truncated-lognormal, a Pareto, and a normal
distributions, along with some descriptive statistics. Distributions that fit well the data should
line up with the black solid line in the Q-Q and P-P plots. Clearly, the normal distribution
(green line) is not a good fit for the distribution of municipality sizes. Ultimately, the relative
best fit among many alternative distributions is given by the smallest AIC, according to which
the Pareto distribution is the preferred model for Colombian municipality sizes.


