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Abstract

This online-only addendum contains some additional material related to the paper “Class,

Power, and the Structural Dependence Thesis: Distributive Conflict in the UK, 1892-2018”.

Section 1 displays the short-runWSER cycles not shown in the paper. Section 2 describes the

estimation methodology adopted in the paper. Section 3 presents the causality analysis of the

Vector Error Correction Model (VECM). Section 4 compares our union density variable with

various measures of collective bargaining coverage. Section 5 reports on the results obtained

with different specifications of the VECM. Section 6 contains a description of trends in the

functional distribution of income and WSER cycles focusing on manual production workers.
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1 Additional WSER cycles

This section provides the scatter plots of the short run WSER cycles describing deviations from

trend values not included in section 4 of the paper. Figures A1 and A2 each display four additional

clockwise cycles. As mentioned in the main paper there are five cycles that display anticlockwise

patterns, displayed as Figure A3, and one, Figure A4, that has a pattern difficult to discern.

Finally, Figure A5 portrays a clockwise but possibly incomplete cycle encompassing the last few

years of our sample.

Figure A 1: Four WSER Clockwise Cycles, UK, 1892-1951
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Figure A 2: Four More WSER Clockwise Cycles, UK, 1951-2002
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Figure A 3: Five WSER Anti-Clockwise Cycles, UK, 1914-2008
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Figure A 4: One Period With No Clear Cyclical Pattern, UK, 1981-86

Figure A 5: One Incomplete Clockwise Cycle, UK, 2013-2018
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2 Estimation of long-run relations: methodology

This section provides a general description of the econometric methodology adopted in the paper,

mostly following Lütkepohl and Krätzig [4]. Consider a set of K time series variables, yt =

(y1t, ..., yKt)
′. Using a vector auto-regressive approach (VAR), the dynamic interactions of the

vector components are:

yt =

p∑
j=1

Φjyt−j + vt, (1)

where vt = (v1t, ..., vKt)
′ is a sequence of independently and identically distributed shocks, with

E(vt) = 0, E(vtv
′
t) = Ω , with rank(Ω) = K, p is the finite number of lags and the order of the

VAR model, and Φj is a K ×K matrix.

In general, a process such as (1) is stable if the polynomial defined by the determinant of the

autoregressive operator has no roots in and on the complex unit circle, i.e. det(IK−
∑p

j=1 Φjz
p) 6=

0 for |z| ≤ 1, where IK is the K ×K identity matrix. On the assumption that it has initiated in

the infinite past (t = 0,±1,±2, ...), it generates stationary time series that have time-invariant

means, variances, and covariance structure. If the variables in yt are integrated of order 1 (I(1))

the process is not stationary, but if they have a common stochastic trend so that there are linear

combinations of them that are I(0), they are cointegrated.

A convenient representation of (1) with cointegrated relations is the Vector Error Correction

Model (VECM):

∆yt =

p−1∑
j=1

Γj∆yt−j + Πyt−1 + vt. (2)

If the V AR(p) process has unit roots, i.e. det(IK −
∑p

j=1 Φjz
p) = 0 for z = 1, the matrix

Π = (IK −
∑p

j=1 Φj) is singular. If rank(Π) = r, then Π can be written as a product of

(K × r) matrices A and B, with rank(A) = rank(B) = r as follows: Π = AB′. In a VECM

representation, long- and short-run dynamics are modelled separately and Byt−1 expresses the

effects of deviations from each long-run equilibrium. The matrices Γj express the short-term

interactions among the variables of interest.
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If the multivariate process yt is not stationary, the shocks may also have permanent effects.

Hence, there may be r nontrivial 1 ×K vectors βi, i = 1, ..., r, such that β′iyt is stationary for

all i. In this case the deviations from the linear relation β′iyt are only temporary, and β′iyt is a

stable relationship in the long-run. For all i, the variables in yt with nonzero coefficients in β′iyt

are then cointegrated and βi is the cointegrating vector and r is the cointegrating rank.

A stationary yt can also be expressed in its Wold moving average representation, i.e. as a function

of the original shocks vt, yt =
∑∞

j=0 Ψjvt−jwhere Ψ0 = IK and

Ψs =

s∑
j=0

Ψs−jΦj , s = 1, 2, ... (3)

can be computed recursively from the reduced-form coefficients of the VAR in levels in (1). The

coefficient of this representation can be interpreted as reflecting the responses to impulses hitting

the system. The (i, j)th elements of the matrices Ψs trace out the expected response of yi,t+s

to a unit change in yit holding constant all past values of yt. Since the change in yit given its

past is measured by the innovation vit, the elements of Ψs represent the impulse responses of the

components of yt with respect to the vt innovations. In the stationary case, Ψs → 0 as s→∞,

hence the effect of an impulse vanishes over time. When yt is nonstationary the Ψs impulse

response matrices can be computed in the same way as in (3) based on VARs with integrated

variables, even though aWold representation as such does not exist for nonstationary cointegrated

processes. In this case the Ψs may not converge to zero as s → ∞ and some shocks may have

permanent effects. As the impulse responses have been criticized because underlying shocks are

not likely to occur in isolation if the components of ut are instantaneously correlated, orthogonal

innovations are preferred by adopting a Choleski decomposition of the covariance matrix. As

the ordering of the variables in the vector yt may produce different shocks, we followed standard

practice of trying various triangular orthogonalizations, checking the robustness of the results

with respect to the ordering of the variables (Lütkepohl and Krätzig [4], p.167).

As in our analysis yt is a K × 1 vector, there may be only r ≤ (K − 1) nontrivial cointegrating

vectors, which can be stacked in a r × (K − 1) cointegrating matrix B with cointegrating rank

r. The cointegrating rank can be estimated using a likelihood-ratio test known as the trace test,

whose null hypothesis is that there are no more than r cointegrating relations. The method

7



starts by testing r = 0 and accepts as r̂ the first value of r for which the trace statistic fails to

reject the null (Johansen [3]). Finding the r stable long-run relationships is of interest for the

economic interpretation of SDT since they provide information concerning the determinants of

long-run income distribution. But it is also important for statistical reasons, for when yt is not

stationary, the estimates of the VAR in (1) and of the IRF are consistent but less efficient, unless

integration and cointegration are properly accounted for.

Given the cointegration rank r, simultaneous estimation of Γj , A and B can be obtained using

the full information maximum likelihood framework (Johansen [3]).

3 Causality analysis

In this section, we provide the results of our Granger-causality analysis for the four key variables

logGDPt, ut, et, wt using our main model, that is, the VECM estimated in Table 3, Model 2

(with restrictions). According to Granger-causality, “variable x Granger-causes y” means that

past values of x provide information that helps predict y above and beyond the information

contained in past values of y alone.

Table 1, reporting standard χ-squared tests, suggests that the structure of causality goes from

logGDPt to all other variables, and from ut and et to wt, whereas wt does not help predict any

other variables, as shown by the Granger-causality scheme presented in Figure A6.

4 Collective bargaining coverage

There exists no continuous, long-run series providing information on the coverage of collective

pay-setting institutions in the United Kingdom. The OECD dataset starts in 1960 and annual

data are available only from 1993. In his authoritative study, Milner [5] provided a set of

estimates starting in 1895, but the reconstructed series has major gaps. Therefore we cannot

estimate our VECM model using collective bargaining coverage as an alternative measure of

workers’ bargaining power. However, Figure A7 shows the time path of the two indices of the

power resources of the working class.
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Table A 1: Granger-causality analysis

Dependent variable: ∆wt

Excluded Chi-sq df Prob.
∆et 10.211 1 0.001
∆ut 6.474 1 0.011
∆logGDPt 5.856 1 0.016
All 12.644 3 0.006

Dependent variable: ∆et
Excluded Chi-sq df Prob.
∆wt 0.256 1 0.613
∆ut 0.009 1 0.924
∆logGDPt 5.355 1 0.021
All 8.742 3 0.033

Dependent variable: ∆ut
Excluded Chi-sq df Prob.
∆wt 0.061 1 0.805
∆et 0.293 1 0.588
∆logGDPt 18.599 1 0.000
All 33.817 3 0.000

Dependent variable: ∆logGDPt

Excluded Chi-sq df Prob.
∆wt 3.305 1 0.069
∆et 0.326 1 0.568
∆ut 0.034 1 0.854
All 3.676 3 0.299

Notes: Sample: 1892 2018. Included observations: 125

Figure A 6: Granger-causality scheme

logGDPt

et

wt

ut
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Figure A 7: Collective bargaining coverage and Union Density, UK, 1892-2018

The time series of the union density variable is the same as in the paper. The time series of

the collective bargaining index is constructed as follows: from 1895 to 1975 we use the midpoint

of Milner’s [5] estimates of the coverage of collective pay-setting machinery in Britain; from

1975 onwards we use OECD data. The dashed line represents interpolated values for missing

years. The correlation coefficient between union density and collective bargaining coverage thus

constructed is 0.946. This result does not change if either the lower or the upper bound of Milner’s

estimates are used instead, or if one drops the interpolated values of the collective bargaining

coverage index and measures the point correlation between the two variables: in all cases, the

correlation coefficient is above 0.92.

Data on collective bargaining after 1960 can be found on the OECD website at

https://stats.oecd.org/Index.aspx?DataSetCode=CBC
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5 Alternative specifications of the VECM model

We have run a host of different robustness checks on the main econometric model, testing –

among other things – a set of different definitions of all variables. In this section we present in

more detail only the results of the estimation of the most significant alternative specifications of

the Vector Error Correction Model (VECM), which are summarized in section 6 of the paper.

The other results are available from the authors upon request.

First, we estimated the VECM using an alternative measure of trade union density, namely the

ratio of trade union membership as measured in the paper to total employment in heads plus

claimant count unemployment, i.e. total labour force. Second, we estimated the model using

an alternative measure of the employment rate as the ratio of employees in employment to the

sum of total employment and claimant count unemployment. Third, we replaced logGDP with

a measure of accumulation of capital, i.

We then estimated the VECM including various measures of the power resources of capitalists.

Here we present the results of the model in which we replaced logGDP first with the log of

total non-dwellings capital stock, logK, and then with an openness index, k, capturing property

income from overseas as a percentage of the sum of property income from overseas, total domestic

profits, and an estimated profits component of mixed income.

In each of the robustness checks, our strategy has been to replace one variable at the time (either

union density or the employment rate or logGDP ) and closely replicate – step by step – the

estimation procedure of the VECM outlined in section 5 of the paper (see also section 2 above).

In this section, for each of the robustness checks, we present only the estimated VECM and

the Impulse Response Functions (IRFs). Details of the results of all other tests (the modified

Dickey–Fuller t test, the Schwarz’s Bayesian information criterion, and so on) underlying the

estimates below are available from the authors upon request.
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Concerning data sources for the robustness checks in this section, the time series data are for

the whole UK economy. Apart from data on trade union membership and claimant count un-

employment, all time series data are taken from Thomas and Dimsdale [6]. Claimant count

unemployment data for 1971-2018 are electronically available from the Office for National Statis-

tics at http://www.ons.gov.uk/ (each series has a 4 digit identifier, as listed below). Prior to

1971 they are taken from Hills et al [2]. The main series are described in Appendix A of the

paper. Therefore here we only describe data sources for the additional variables.

In Table A2:

Trade union density is the ratio of trade union membership as measured in the paper to total

employment in heads (Worksheet A50, column B) plus Claimant Count unemployment (ONS,

Series BCJD for 1971-2018, and prior to 1971 Worksheet 22, column O from Hills et al [2].

In Table A3:

The employment rate is [Total employment in heads (Worksheet A50, column B, updated by

ONS Series MGRZ) less Self-employment (Worksheet A50, column D), updated by ONS Series

MGRQ] divided by [Total employment in heads (as above) plus Claimant Count unemployment

(as above)]

In Table A5:

Total nominal non-dwellings capital stock is taken from Worksheet A55, column V. Then natural

logs are taken.

In Table A4:

The variable i is the growth rate of total nominal non-dwellings capital stock as constructed in

Table A5.

In Table A6:

Investment income inflows to total property income:

(i) Investment income inflows to the UK from 1946-2018 are from ONS HMBN. Data from 1892-

1946 is from Thomas and Dimsdale [6] Worksheet A36, Column X. These latter are adjusted

by splicing backwards from 1946 using the 1946 ratio of ONS to Thomas and Dimsdale [6], and

then growth rates backwards.
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Table A 2: Estimated VECM, with an alternative measure of ut and Impulse Response Functions
of the restricted model (Cholesky decomposition, shocks of 1 standard deviation).

Model 1 Model 2
(unrestricted) (with restrictions)

wt−1 1.000 1.000

et−1 0.163 0.000
(0.220)

ut−1 -0.710 -0.850
(0.117) (0.123)

logGDPt−1 2.223 0.000
(1.654)

t -0.089 0.000
(0.115)

constant -70.587 -35.501

LR test for binding restrictions (rank = 1): (β1 = 1, β2 = 0, β4 = 0, β5 = 0)
Chi-square(3) 3.801
Probability 0.284

Notes: Standard errors in parentheses.
The coefficient β1 is normalized to one.
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Table A 3: Estimated VECM, with an alternative measure of et and Impulse Response Functions
of the restricted model (Cholesky decomposition, shocks of 1 standard deviation).

Model 1 Model 2
(unrestricted) (with restrictions)

wt−1 1.000 1.000

et−1 -0.104 0.000
(0.173)

ut−1 -0.597 -0.825
(0.094) (0.105)

logGDPt−1 3.217 0.971
(1.386) (0.395)

t -0.158 0.000
(0.098)

constant -56.14972 -45.10190

LR test for binding restrictions (rank = 1): (β1 = 1, β2 = 0, β5 = 0)
Chi-square(3) 0.967
Probability 0.617

Notes: Standard errors in
parentheses.
The coefficient β1 is normal-
ized to one.

14



Table A 4: Estimated VECM, using the percentage change of total nominal non-dwellings capital
stock, i, instead of logGDP and Impulse Response Functions of the restricted model (Cholesky
decomposition, shocks of 1 standard deviation).

Model 1

wt−1 1.000

et−1 -0.769
(0.257)

ut−1 -0.796
(0.114)

it−1 2.059
(0.216)

constant 16.209

Notes: Standard errors in parentheses.
The coefficient β1 is normalized to one.
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Table A 5: Estimated VECM, using the log of total nominal non-dwellings capital stock, logK,
instead of logGDP and Impulse Response Functions of the restricted model (Cholesky decom-
position, shocks of 1 standard deviation).

Model 1 Model 2
(unrestricted) (with restrictions)

wt−1 1.000 1.000

et−1 -0.234 0.000
(0.158)

ut−1 -0.457 -0.509
(0.074) (0.084)

logKt−1 4.126 4.455
(1.051) (1.081)

t -0.237 -0.251
(0.072) (0.077)

constant -55.781 -76.618

LR test for binding restrictions (rank = 1): (β1 = 1, β2 = 0)
Chi-square(3) 1.680
Probability 0.195

Notes: Standard errors in parentheses.
The coefficient β1 is normalized to one.

16



Table A 6: Estimated VECM, using property income from overseas, k, instead of logGDP
and Impulse Response Functions of the restricted model (Cholesky decomposition, shocks of 1
standard deviation).

Model 1 Model 2
(unrestricted) (with restrictions)

wt−1 1.000 1.000

et−1 1.090 1.127
(0.328) (0.349)

ut−1 -0.146 0.000
(0.098)

kt−1 0.914 0.992
-0.153 (0.166)

constant -168.1687 -177.4133

LR test for binding restrictions (rank = 1): (β1 = 1, β2 = 0, β4 = 0, β5 = 0)
Chi-square(3) 1.482
Probability 0.224

Notes: Standard errors in parentheses. The coefficient β1 is normalized to one.
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Total domestic profits are calculated as follows.

(ii) For 1948-2018, the gross operating surplus (GOS) of all corporations is calculated as GOS

of the UK (ONS ABNF) less GOS of general government (ONS NMXV) less GOS of households

and nonprofit institutions serving households (ONS QWLS).

(iii) For 1892-1948, the GOS of all corporations is calculated as the sum of the GOS for private

companies, the gross trading surplus of public corporations and the gross trading surplus of

other public enterprises (Thomas and Dimsdale [6] Worksheet A17, Columns AD, AE and AF

respectively).

(iv) A complete series is then obtained by splicing (ii) on to (i).

(v) Total mixed income: for 1948-2018 is from ONS QWLT; for 1892-1948 self-employment

income is from Thomas and Dimsdale [6] Worksheet A17 column N, which is then spliced on to

the ONS series using the common 1948 figure.

(vi) The profit component of mixed income is determined by applying the ratio of the sum of

(ii) and (iv) to GDP at factor cost.

(vi) Then the openness variable, k, is the ratio of (i) to the sum of (i) and (iv) and (vi).

6 Disentangling the wage share

Unfortunately, only very limited data exist for the UK economy that precisely distinguish dif-

ferent categories of employees. Census of Production data provide a continuous series for the

Production Industries (Mining, Manufacturing and Utilities) for the years 1974-1995. Data are

reported on wages paid to manual workers (operatives) and gross value added, and hence a man-

ual worker wage share in production industries can be constructed. But there is no analogous

sectoral employment rate, and so we have to assume that the economy-wide employment rate

used in the paper can be used as a proxy for that of Production industries. This is difficult

because of the secular decline of employment in Production industries. With that caveat, if

WSER cycles can be found for the economy as a whole, then one would expect them to exist in

Production industries.

We apply the same methodology as in section 4 of the paper to the raw data. First, Figure A8
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displays three cycles in deviations from trend of the wage share in gross value added of manual

workers (operatives) in production industries (horizontal axis) plotted against the deviations from

trend of the national employment rate (vertical axis). As in the paper, the 1976-81 and 1986-93

cycles are clockwise, but unlike in the paper the 1981-86 data appear to show an anti-clockwise

rather than an indeterminate pattern.

However, the long-run behaviour of the income share of the manual working class confirms,

indeed further strengthens the doubts on the empirical validity of SDT discussed in the paper.

For the equilibrium values, the centres of the WSER cycles, around which the wage share and the

rate of employment fluctuate, vary significantly over time, and there is a pronounced long-run

decline in the operatives’ wage share in production industries, as illustrated in Figure A9.

Concerning the data sources for Figures A8 and A9:

The wage share is Wages and Salaries of Operatives in Production Industries (mining and quar-

rying; manufacturing; and electricity, gas and water supply) divided by Gross Value Added in

Production Industries, both from Business Monitor (Census of Production), PA1002, Table 2,

Annual Years [1]. (Employers’ National Insurance Contributions are not included in Wages and

Salaries of Operatives.)

The employment rate and trend is the same as in the main paper.

Trends and deviations from trend are derived in the same way as in the main paper (from a

Hodrick-Prescott filter using the default Eviews specification for annual data).
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Figure A 8: Three WSER Cycles, UK Operatives, 1976-1993.
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Figure A 9: Production Industries: Operatives’ Wage Share (Raw Data and Trend), UK, 1974-
1995
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