Supplementary Info – "No Effect of Attachment Avoidance on Visual Disengagement From Stranger's

Faces"

Contents:

- 1. Participant Demographics
- 2. Threat Prime and Analyses
- 3. Sample Stimuli
- 4. Eye-tracking Information and Calibration
- 5. Trial Overview
- 6. Analysis Syntax for Model Presented in Text
- 7. Random Effects Testing
- 8. BIC Comparisons
- 9. Analyses Full Output
- 10. Attachment Anxiety Results
- **11. Control Analyses**
- 12. Unaggregated (Full Trial) Analyses
 - a. Full Trial Analyses- Overview
 - b. Full Trial Analyses Output
 - c. Full Trial Analyses With Threat Prime
- 13. Unaggregated (Full Trial) Analysis Trial Number Controls
- 14. Power Analysis Syntax
- **15. Additional Tables**

Section 1. Participant Demographics.

Participants had been in their relationships between 3 months to 132 months (M = 23.52, SD = 21.56) and the majority identified as exclusively dating (78.7%) with the remaining participants reporting they were casually dating (6.4%), engaged (2.1%), in a common law relationship (9.6%), or married (3%). Participants predominantly identified as East/Southeast Asian (46.81%) or White/Caucasian (42.55%), with the remaining identifying as South Asian (4.26), Latin/Central/South American (3.19%), Caribbean (3.19%), Pacific Islander (1.06%), Aboriginal (1.06%) or other (2.13%).

Section 2. Threat Prime and Analyses.

Threat Manipulation. To activate participants' attachment systems (and consequently activate defensive reactions; Dewitte & Koster, 2012; Mikulincer et al., 2000), we randomly assigned participants to either a threat prime condition or control condition. Participants had to recall and write a paragraph about either: a situation where they felt their partner did not love them (threat condition; Dewitte & Koster, 2012), or the most recent errand they performed with their partner (control condition). To check whether our threat manipulation worked participants were asked to rate how rejected and how unloved they felt on a scale from 1 (*Very slightly or not at all*) to 5 (*Extremely*).

Manipulation Check. To test whether our threat manipulation worked as intended, we ran two independent samples t-tests to see whether the threat prime made participants feel (1) more rejected and (2) more unloved, which we embedded within a larger Positive and Negative Affect Scale. Contrary to our expectations the threat prime did not make participants report greater feelings of rejection (M = 1.33, SD = .69) than control condition participants (M = 1.43, SD = .78); t(92) = .67, p = .506. Similarly, participants in the threat prime did not report feeling more unloved (M = 1.21, SD = .42) than control participants (M = 1.15, SD = .46); t(92) = -.62, p = .538. Because these manipulation checks have not been previously tested, our manipulation checks may not have been optimal for detecting any effects of the threat prime (e.g., the threat prime may have only implicitly affected participants and thus they would not consciously report a change). Accordingly, we conducted the following analyses with threat (despite the failed manipulation check) to determine whether it had any effect on participants' performance.

Results for threat models.

To test for effects by threat prime we created an effects code for threat (-1 = no threat, 1 = threat). We ran a model that included this threat effect code and its interactions. The BIC for the critical four-way interaction between attachment avoidance, emotion, face type and threat condition suggested strong evidence that the model without the fourway interaction was a better fit than the model with this interaction (BIC difference = -12.31; see Raftery, 1995). Aside from the main effect of face type (b = 14.74, SE = 2.62, p < 0.000

.001), all interactions and main effects were non-significant (all BIC differences \leq -5.46; all *ps* > .204). There was a trending main effect of threat suggesting participants in the threat prime condition were slower to look away from all faces, though this effect did not meet traditional cutoffs for significance (*b* = 8.26, *SE* = 4.46, *p* = .068). In other words, <u>including the threat prime condition in our analyses did not meaningfully alter our conclusions.</u>

Note. Sample happy stranger face from STOIC database.

Note. Sample neutral face from STOIC database (same actor as above).

Section 4. Eye-tracking Information and Calibration.

We displayed stimuli on a standard CRT monitor using a grey background and monitored eye position using an Eyelink CL eye-tracker by SR Research Ltd. We stabilized participants' head position using a chin rest, with their eyes resting 61.0 cm from the computer display. We calibrated and validated participants' eye gaze using a nine-point calibration scheme. The eye-tracking experimenter instructed participants to maintain fixation until a peripheral target appeared, at which point they should saccade to the target as quickly as possible (target trial). To discourage anticipatory responses we instructed participants that if no target appeared, they should maintain fixation on the face (catch trial). Participants could initiate each trial by pressing the "Enter" button, but the trial could only begin if they fixated their eyes centrally.

Section 5. Trial Overview.

Table S5

Overview of the stimuli set presented to a participant in a relationship with a

man.

Face Actor	Emotion	# of Trials	# of Target Trials
Partner	Нарру	15	12
Partner	Angry	15	12
Partner	Neutral	15	12
Stranger 1 (Man)	Нарру	15	12
Stranger 1 (Man)	Angry	15	12
Stranger 1 (Man)	Neutral	15	12
Stranger 2 (Man)	Нарру	15	12
Stranger 2 (Man)	Angry	15	12
Stranger 2 (Man)	Neutral	15	12
Stranger 3 (Man)	Нарру	15	12
Stranger 3 (Man)	Angry	15	12
Stranger 3 (Man)	Neutral	15	12
Baseline Stimuli (Grey Oval)	N/A	45	5 36

Note. Breakdown and nesting of target trials.

Section 6. Analysis Syntax for Model Presented in Text.

Note. FE = face (partner = 1, stranger = -1), EC 1 = Emotion Effect Code 1 (Happy = 1, Angry = 0,

Neutral = -1), EC 2 = Emotion Effect Code 2 (Happy = 0, Angry = 1, Neutral = -1).

MIXED MEDIANSRT WITH Cavoidance Canxiety EC1 EC2 FE /CRITERIA=CIN(95) MXITER(100) MXSTEP(50) SCORING(1) SINGULAR(0.00000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE) /FIXED= Cavoidance EC1 EC2 FE Canxiety EC1*FE EC2*FE Cavoidance*EC1 Cavoidance*EC2 Cavoidance*FE Cavoidance*EC1*FE Cavoidance*EC2*FE Canxiety*EC1 Canxiety*EC2 Canxiety*FE Canxiety*EC1*FE Canxiety*EC2*FE | SSTYPE(3) /METHOD=ML /PRINT=SOLUTION TESTCOV /RANDOM = INTERCEPT FE | SUBJECT(PID).

Section 7. Random Effects Testing.

Procedure. Our goal was to use the most maximal random effects structure that could achieve convergence. We began by testing the most maximal random effects structure (Barr, Levy, Scheepers, & Tily, 2014) and reduced the model when it could not converge, suggesting an overly complex random effects structure or redundant parameters (Bates, Kliegl, Vasishth, & Baayen, 2015). Models were reduced in the following order: maximal effects (random slopes and random interactions), random interactions only, random slopes only, random intercept only and no random effects. We selected the model keeping the random slope for face type because it was the best fitting model (based on BIC) and also the most maximal convergent model, as the random slopes and interactions of emotion were estimated to be zero in all other models (indicating non-convergence).

Table S7

	BIC	BIC Difference
Maximal Model	5536.02	
Random Interactions	5772.45	236.43
Random Slopes	5523.40	-12.63
Partner Slope [chosen model]	5510.77	-12.63
Random Intercept	5759.82	249.05
No Random Effects	6060.18	300.36

BICs of Random Effects Models

Maximal Effects Model

Estimates of Covariance Parameters^a

						95% Confide	ence Interval
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound
Residual		390.044417	28.754456	13.565	.000	337.569077	450.677085
Intercept [subject = PID]	Variance	1803.527694	275.542149	6.545	.000	1336.831366	2433.150677
FE [subject = PID]	Variance	567.569691	93.391447	6.077	.000	411.109204	783.576120
EC1 [subject = PID]	Variance	.000000 ^b	.000000		-		

EC2 [subject = PID]	Variance	.000000 ^b	.000000		
EC1 * FE [subject = PID]	Variance	.000000 ^b	.000000		
EC2 * FE [subject = PID]	Variance	.000000 ^b	.000000		

a. Dependent Variable: MEDIANSRT.

b. This covariance parameter is redundant. The test statistic and confidence interval cannot be computed.

Random Interactions Model

Estimates of Covariance Parameters^a

						95% Confidence Interval	
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound
Residual		1071.128047	70.628092	15.166	.000	941.271314	1218.899668
Intercept [subject = PID]	Variance	1690.013756	275.751833	6.129	.000	1227.449315	2326.895670
EC1 * FE [subject = PID]	Variance	.000000 ^b	.000000				
EC2 * FE [subject = PID]	Variance	.000000 ^b	.000000				

a. Dependent Variable: MEDIANSRT.

b. This covariance parameter is redundant. The test statistic and confidence interval cannot be computed.

Random Slopes Model

Estimates of Covariance Parameters^a

						95% Confidence Interval	
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound
Residual		390.044417	28.754456	13.565	.000	337.569077	450.677085
Intercept [subject = PID]	Variance	1803.527694	275.542149	6.545	.000	1336.831366	2433.150677
FE [subject = PID]	Variance	567.569691	93.391447	6.077	.000	411.109204	783.576120
EC1 [subject = PID]	Variance	.000000 ^b	.000000				
EC2 [subject = PID]	Variance	.000000 ^b	.000000				

a. Dependent Variable: MEDIANSRT.

b. This covariance parameter is redundant. The test statistic and confidence interval cannot be computed.

Partner Slope Model ** chosen model**

						95% Confidence Interval	
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound
Residual		390.044417	28.754456	13.565	.000	337.569077	450.677085
Intercept [subject = PID]	Variance	1803.527694	275.542149	6.545	.000	1336.831366	2433.150677
FE [subject = PID]	Variance	567.569691	93.391447	6.077	.000	411.109204	783.576120

Estimates of Covariance Parameters^a

a. Dependent Variable: MEDIANSRT.

Random Intercept Only Model

Estimates of obvariance rarameters							
						95% Confide	ence Interval
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound
Residual		1071.128047	70.628092	15.166	.000	941.271314	1218.899668
Intercept [subject = PID]	Variance	1690.013756	275.751833	6.129	.000	1227.449315	2326.895670

Estimates of Covariance Parameters^a

a. Dependent Variable: MEDIANSRT.

No Random Effects Model

Estimates of Covariance Parameters^a

					95% Confidence Interval	
Parameter	Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound
Residual	2761.141803	166.201206	16.613	.000	2453.874791	3106.883889

a. Dependent Variable: MEDIANSRT.

Section 8. BIC Comparisons.

Table S8

BICs difference tests for Emotion Effects

	BIC (with term)	BIC (without)	BIC Difference
Avoidance*Face*Emotion	5510.77	5498.63	-12.14
Anxiety*Face*Emotion	5510.77	5503.23	-7.54
Avoidance*Emotion	5498.63	5486.22	-12.40
Anxiety*Emotion	5503.23	5493.52	-9.70
Face*Emotion	5492.82	5480.64	-12.18
Emotion main effect	5459.53	5447.56	-11.97

Note. Effect considered significant if BIC difference between model containing the term and model omitting the term is greater than or equal to 12. As the BICs of the models without the terms were always lower than the term-containing models, none of the effects were considered significant.

Section 9. Analysis – Full Output.

Model	Dimon	aion	a
widdei	Dimen	ISIOII	

	Model Dimension ^a						
			Covariance	Number of			
		Number of Levels	Structure	Parameters	Subject Variables		
Fixed Effects	Intercept	1		1			
	Cavoidance	1		1			
	EC1	1		1			
	EC2	1		1			
	FE	1		1			
	Canxiety	1		1			
	EC1 * FE	1		1			
	EC2 * FE	1		1			
	Cavoidance * EC1	1		1			
	Cavoidance * EC2	1		1			
	Cavoidance * FE	1		1			
	Cavoidance * EC1 * FE	1		1			
	Cavoidance * EC2 * FE	1		1			
	Canxiety * EC1	1		1			
	Canxiety * EC2	1		1			
	Canxiety * FE	1		1			
	Canxiety * EC1 * FE	1		1			
	Canxiety * EC2 * FE	1		1			
Random Effects	Intercept + FE	2	Variance	2	PID		
			Components				
Residual				1			
Total		20		21			

a. Dependent Variable: MEDIANSRT.

Information Criteria^a

-2 Log Likelihood	5378.185
Akaike's Information Criterion	5420.185
(AIC)	
Hurvich and Tsai's Criterion	5421.929
(AICC)	
Bozdogan's Criterion (CAIC)	5531.770
Schwarz's Bayesian Criterion	5510.770
(BIC)	

The information criteria are displayed in

smaller-is-better form.

a. Dependent Variable: MEDIANSRT.

Type II	I Tests	of Fixed	Effects ^a

Type III Tests of Fixed Effects									
Source	Numerator df	Denominator df	F	Sig.					
Intercept	1	92.000	3555.028	.000					
Cavoidance	1	92.000	.012	.912					
EC1	1	368	.265	.607					
EC2	1	368	.670	.414					
FE	1	92	31.417	.000					
Canxiety	1	92.000	.479	.491					
EC1 * FE	1	368	.162	.687					
EC2 * FE	1	368	.072	.789					
Cavoidance * EC1	1	368	.218	.641					
Cavoidance * EC2	1	368	.089	.765					
Cavoidance * FE	1	92	1.049	.308					
Cavoidance * EC1 * FE	1	368	.385	.535					
Cavoidance * EC2 * FE	1	368	.001	.969					
Canxiety * EC1	1	368	1.866	.173					
Canxiety * EC2	1	368	2.555	.111					
Canxiety * FE	1	92	.184	.669					
Canxiety * EC1 * FE	1	368	4.835	.029					
Canxiety * EC2 * FE	1	368	2.443	.119					

a. Dependent Variable: MEDIANSRT.

Estimates of Fixed Effects^a

						95% Confide	ence Interval
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound
Intercept	268.706522	4.506680	92.000	59.624	.000	259.755866	277.657177
Cavoidance	670578	6.075073	92.000	110	.912	-12.736197	11.395042
EC1	.611413	1.188783	368	.514	.607	-1.726247	2.949073
EC2	972826	1.188783	368	818	.414	-3.310486	1.364833
FE	14.697464	2.622182	92	5.605	.000	9.489584	19.905343
Canxiety	-3.365128	4.864623	92.000	692	.491	-13.026690	6.296433
EC1 * FE	.479167	1.188783	368	.403	.687	-1.858493	2.816826
EC2 * FE	.318841	1.188783	368	.268	.789	-2.018819	2.656500
Cavoidance * EC1	747631	1.602497	368	467	.641	-3.898832	2.403569
Cavoidance * EC2	.479353	1.602497	368	.299	.765	-2.671848	3.630553
Cavoidance * FE	-3.620384	3.534741	92	-1.024	.308	-10.640685	3.399917
Cavoidance * EC1 * FE	994124	1.602497	368	620	.535	-4.145325	2.157076
Cavoidance * EC2 * FE	.061990	1.602497	368	.039	.969	-3.089210	3.213191
Canxiety * EC1	-1.752796	1.283202	368	-1.366	.173	-4.276124	.770533

Canxiety * EC2	2.051022	1.283202	368	1.598	.111	472307	4.574350
Canxiety * FE	1.212582	2.830449	92	.428	.669	-4.408933	6.834098
Canxiety * EC1 * FE	-2.821473	1.283202	368	-2.199	.029	-5.344801	298144
Canxiety * EC2 * FE	2.005776	1.283202	368	1.563	.119	517553	4.529104

a. Dependent Variable: MEDIANSRT.

Estimates of Covariance Parameters^a

						95% Confidence Interval	
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound
Residual		390.044417	28.754456	13.565	.000	337.569077	450.677085
Intercept [subject = PID]	Variance	1803.527694	275.542149	6.545	.000	1336.831366	2433.150677
FE [subject = PID]	Variance	567.569691	93.391447	6.077	.000	411.109204	783.576120

a. Dependent Variable: MEDIANSRT.

Section 10. Attachment Anxiety Results.

Main model. For interested readers, we report here the results of attachment anxiety from the main model conducted in text. The three-way interaction between attachment anxiety, emotion and face type was non-significant (BIC difference = -7.54), as was the two-way interaction between attachment anxiety and emotion (BIC difference = -12.41). Further, there was no interaction with face type (b = 1.21, SE = 2.83, p = .428), nor was there a main effect of attachment anxiety (b = -3.37, SE = 4.86, p = .491). Follow-ups within each emotion condition also found no significant main effects of attachment anxiety or interactions with face type (ps > .302).

Models with threat. None of the interactions between attachment anxiety and emotion were significant (BIC differences \leq - 6.31). All other interactions with or main effects of attachment anxiety were non-significant (*ps* > .415). Similarly, there were no main effects or interactions with anxiety within emotion conditions (*ps* > .128).

Summary. As with attachment avoidance, we found no effects or interactions for attachment anxiety. Individuals high in attachment anxiety were not more vigilant or captured by their partner's face or by threatening emotional expressions. Though some studies have shown attachment anxiety may influence attention to emotional faces (e.g., Davis et al., 2014; Westphal, 2014), similar to attachment avoidance, there has been a lack of consistency in these effects (e.g., Chun, Shaver, Gillath, Mathews, & Jorgensen, 2015; Cooper, Rowe, Penton-Voak, & Ludwig, 2009). Our findings suggest that on a saccadic level, individuals' visual attention is captured by their partner regardless of levels of attachment anxiety. Like attachment avoidance, effects of attachment anxiety might play a role at later stages of visual attention or in different tasks.

Section 11. Control Analyses.

We also ran analyses controlling for face gender, for relationship length and for the interaction between attachment anxiety and attachment avoidance. There were no significant main effects or interactions with face gender (ps > .492, *BIC differences* < -10.09), relationship length (ps > .484, *BIC differences* < -12.24) or with the interaction between attachment avoidance and attachment anxiety (ps > .169, *BIC differences* < -7.45). All results from the main model remained the same, and the face main effect remained significant across models (ps < .04). In other words, <u>the inclusion of these additional variables did not meaningfully alter our results.</u>

Section 12. Unaggregated (Full Trial) Analyses

12a. Full Trial Analyses Overview

Methods. In addition to analyzing median SRT, we also conducted an unaggregated analysis fitting a model to the individual trial data. Because reaction time distributions are skewed, we log-transformed the SRTs to normalize their distribution. To keep the analysis consistent, we used a similar random effects structure as the median trial model and did not include random effects by stimuli.

Results. Results were the same as the median trial analysis reported in the main text. There was no three-way interaction between avoidance, face type and emotion (BIC difference = -17.58; see Raftery, 1995). Indeed, BIC comparisons suggested that all interactions with, and main effects of, emotion were non-significant (all BIC differences \leq -12.34). As with the aggregate analysis, there was no significant main effect of attachment avoidance ($b = -1.66 \ge 10^{-3}$, $SE = 8.17 \ge 10^{-3}$, p = .84; see section 12b for all estimates), and no interaction between attachment avoidance and face type ($b = -3.95 \times 10^{-3}$, $SE = 4.21 \times 10^{-3}$, p = .351). The main effect of face type remained significant when analyzing all trials (b = .02, $SE = 3.10 \times 10^{-3}$, p < .001). All other effects and interactions were non-significant (ps > .542).

12b. Full Trial Analyses - Output

Mixed Model Analysis

Model Dimension ^a							
			Covariance	Number of			
		Number of Levels	Structure	Parameters	Subject Variables		
Fixed Effects	Intercept	1		1			
	Cavoidance	1		1			
	EC1	1		1			
	EC2	1		1			
	FE	1		1			
	Canxiety	1		1			
	FC1 * FF	1		1			

	EC2 * FE	1		1	
	Cavoidance * EC1	1		1	
	Cavoidance * EC2	1		1	
	Cavoidance * FE	1		1	
	Cavoidance * EC1 * FE	1		1	
	Cavoidance * EC2 * FE	1		1	
	Canxiety * EC1	1		1	
	Canxiety * EC2	1		1	
	Canxiety * FE	1		1	
	Canxiety * EC1 * FE	1		1	
	Canxiety * EC2 * FE	1		1	
Random Effects	Intercept + FE	2	Variance	2	PID
			Components		
Residual				1	
Total		20		21	

a. Dependent Variable: SRTLOG.

Information Criteria^a

-2 Log Likelihood	-24367.768
Akaike's Information Criterion	-24325.768
(AIC)	
Hurvich and Tsai's Criterion	-24325.695
(AICC)	
Bozdogan's Criterion (CAIC)	-24148.308
Schwarz's Bayesian Criterion	-24169.308
(BIC)	

The information criteria are displayed in smalleris-better form.

a. Dependent Variable: SRTLOG.

Fixed Effects

Source	Numerator df	Denominator df	F	Sig.
Intercept	1	91.583	163803.462	.000
Cavoidance	1	91.568	.041	.840
EC1	1	12526.559	.497	.481

Type III Tests of Fixed Effects^a

EC2	1	12524.285	.198	.656
FE	1	88.536	45.508	.000
Canxiety	1	91.583	.375	.542
EC1 * FE	1	12526.353	.314	.575
EC2 * FE	1	12524.234	.510	.475
Cavoidance * EC1	1	12525.922	2.474	.116
Cavoidance * EC2	1	12524.837	1.342	.247
Cavoidance * FE	1	88.494	.879	.351
Cavoidance * EC1 * FE	1	12525.593	.883	.347
Cavoidance * EC2 * FE	1	12524.754	.010	.919
Canxiety * EC1	1	12526.560	.113	.736
Canxiety * EC2	1	12524.834	2.862	.091
Canxiety * FE	1	88.543	.209	.649
Canxiety * EC1 * FE	1	12526.053	5.735	.017
Canxiety * EC2 * FE	1	12524.602	3.965	.046

a. Dependent Variable: SRTLOG.

Estimates of Fixed Effects^a

						95% Confide	ence Interval
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound
Intercept	2.426997	.005997	91.583	404.726	.000	2.415086	2.438908
Cavoidance	001656	.008175	91.568	203	.840	017893	.014580
EC1	000931	.001320	12526.559	705	.481	003518	.001657
EC2	.000586	.001317	12524.285	.445	.656	001995	.003167
FE	.020839	.003089	88.536	6.746	.000	.014701	.026977
Canxiety	004008	.006550	91.583	612	.542	017017	.009000
EC1 * FE	.000740	.001320	12526.353	.561	.575	001848	.003328
EC2 * FE	.000940	.001317	12524.234	.714	.475	001641	.003521
Cavoidance * EC1	002833	.001801	12525.922	-1.573	.116	006363	.000698
Cavoidance * EC2	.002083	.001798	12524.837	1.159	.247	001441	.005607
Cavoidance * FE	003947	.004211	88.494	937	.351	012314	.004420
Cavoidance * EC1 * FE	001692	.001801	12525.593	940	.347	005223	.001838
Cavoidance * EC2 * FE	000182	.001798	12524.754	101	.919	003706	.003342
Canxiety * EC1	000487	.001445	12526.560	337	.736	003319	.002346
Canxiety * EC2	.002438	.001441	12524.834	1.692	.091	000387	.005263
Canxiety * FE	.001541	.003374	88.543	.457	.649	005164	.008245
Canxiety * EC1 * FE	003461	.001445	12526.053	-2.395	.017	006293	000628
Canxiety * EC2 * FE	.002869	.001441	12524.602	1.991	.046	4.465978E-5	.005694

a. Dependent Variable: SRTLOG.

Covariance Parameters

						95% Confidence Interval	
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound
Residual		.008223	.000104	79.129	.000	.008022	.008429
Intercept [subject = PID]	Variance	.003224	.000488	6.602	.000	.002396	.004338
FE [subject = PID]	Variance	.000796	.000132	6.043	.000	.000576	.001102

Estimates of Covariance Parameters^a

a. Dependent Variable: SRTLOG.

12c. Full Trial Analyses – With Threat Prime

As with the median trial analyses reported in text, we also ran a model including the threat condition. The BIC for the critical four-way interaction between attachment avoidance, emotion, face type and threat condition suggested strong evidence that the model without the four-way interaction was a better fit than the model with this interaction (BIC difference = -16.57). Aside from a main effect of face type (b = .02, SE = <.01, p < .001), and a trending main effect of threat condition (b = .01, SE = <.01, p = .064), all interactions and main effects were non-significant (all BIC differences ≤ -8.96 ; all ps > .332). Thus, there were no differences between this model and the unaggregated model reported in Section 2.

Section 13. Unaggregated (Full Trial) Analyses – Trial Number Controls

Because it was possible the face type effect (partner vs. stranger) was an artifact of early trials (e.g., participants may have been initially surprised to see their partner's face in the study), we accounted for this possibility through two different analytic approaches (both using the unaggregated full trial model described in section 12a). In the first model we split the dataset by trial number (trial =< 20 vs. trials > 20) and reran the full trial analysis. The face type main effect remained significant in both conditions (first 20 trials: b = .02, SE = <.01, p < .001; after 20 trials: b = .02, SE = <.01, p < .001). Thus, the face type effect persisted (and perhaps strengthened) even after the participants initial encounters with the face stimuli. Next, we reran the full trial model, this time controlling for trial number. The face type effect remained even when controlling for trial number (b = .02, SE = <.01, p < .001). In short, we found no evidence that a participant's response to partner vs. stranger faces was driven by the beginning of the experiment.

Section 14. Power Analysis Syntax and Output

Syntax for power simulation using the simr package and r2glmm package in R

```
> ####Median Model####
> m1 = mediandata %>%
    lmer(MEDIANSRT ~ FE*(EC1+EC2)*(Cavoidance+Canxiety) + (1 + FE | PID) + 1,
         na.action = "na.exclude", data=.)
> ##### FE:EC1:Cavoidance #####
> Elist = seq(from=-.5,to=-6,by=-.5)
> est = rep(NA, length(Elist))
> r2 = rep(NA, length(Elist))
> pr2 = rep(NA, length(Elist))
> power = rep(NA, length(Elist))
> ciL = rep(NA, length(Elist))
> ciU = rep(NA, length(Elist))
> x = "FE:EC1:Cavoidance"
> cell = 15
> #####Simulation Loop#####
> for (j in 1:length(Elist)) {
    set.seed(27)
    E = Elist[j] #Pick the jth value for N
   fixef(mF)[x] <- E
   est[j] <- fixef(mF)[x]</pre>
    s <- powerSim(mF, test = fixed(x, "lr"), nsim=500)</pre>
    ci <- summary(s, level=.95, method= getSimrOption("binom"))</pre>
    sortr2 <- r2beta(mF)</pre>
    sortr2 <- arrange(sortr2, as.numeric(row.names(sortr2)))</pre>
    r2[j] <- round(sortr2$Rsg[1], digits=3)</pre>
    pr2[j] <- round(sortr2$Rsg[cell],digits=3)</pre>
    ciL[j] <- round(ci[4],digits=3)</pre>
    ciU[j] <- round(ci[5],digits=3)</pre>
> f2 <- (pr2/(1-r2))
> f2 <- round(f2, digits=3)
> simresult <- data.frame(est, r2, pr2, f2, power)</pre>
> simresult
               pr2
   est r2
                       f2 power
  -0.5 0.208 0.000 0.000 0.074
2 -1.0 0.209 0.000 0.000 0.100
3 -1.5 0.209 0.001 0.001 0.160
  -2.0 0.210 0.001 0.001 0.224
5 -2.5 0.211 0.002 0.003 0.358
6 -3.0 0.212 0.003 0.004 0.480
  -3.5 0.213 0.004 0.005 0.584
  -4.0 0.214 0.005 0.006 0.702
9 -4.5 0.216 0.006 0.008 0.766
10 -5.0 0.217 0.007 0.009 0.868
11 -5.5 0.219 0.009 0.012 0.930
12 -6.0 0.221 0.011 0.014 0.966
> ciL
```

Table S15a

	Means, Medians, and SDs of Saccadic Reaction Time for each emotion					
	and each face type					
	М	Median	SD			
Нарру	269.32 (268.46)	263 (258)	56.68 (75.12)			
Angry	267.73 (269.32)	264 (260)	53.69 (73.71)			
Neutral	269.07 (270.54)	266.50 (259)	54.51 (76.65)			
Partner	283.40 (289.47)	272 (273)	64.63 (88.62)			
Stranger	254.01 (262.82)	252 (254)	37.73 (68.89)			

Note. Values in parentheses reflect values from the unaggregated dataset with all trials (versus the dataset aggregated by condition).

Table S15b

Means, Medians, and SDs of Saccadic Reaction Time for each face

	М	Median	SD
Happy Stranger	254.14 (261.73)	251 (253)	38.67 (68.79)
Happy Partner	284.50 (289.07)	273.25 (272)	67.08 (88.72)
Angry Stranger	252.71 (262.19)	250.75 (254)	34.91 (66.00)
Angry Partner	282.75 (290.72)	269.75 (272)	64.20 (89.80)
Neutral Stranger	255.17 (264.55)	256.50 (255)	39.81 (71.76)
Neutral Partner	282.97 (288.62)	272.25 (274)	63.24 (87.38)

emotion condition

Note. Values in parentheses reflect values from the unaggregated dataset with all trials (versus the dataset aggregated by condition).