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Appendix 

It is assumed that the ground consists of a number, 𝑛, of parallel layers of different materials. The 

𝑛th layer overlies a half-space or a rigid foundation, which is identified as ‘layer’ number (𝑛 + 1). 

For the 𝑗th layer the material constants are: elastic modulus, 𝐸𝑗, Poisson ratio, 𝜐𝑗, density, 𝜌𝑗, loss 

factor, 𝜂𝑗 and layer thickness, ℎ𝑗 . Each layer is only subjected to external forces on the boundaries, 

and the stress, deformation and displacement of each are all zero at the initial state. Thus, the stresses 

at the bottom of the 𝑗th layer with those at the top can be expressed as (Sheng et al., 1999) 

�̅�𝑗1 = e𝛼𝑗1ℎ𝑗𝐀𝑗1𝐀𝑗0
−1�̅�𝑗0 (1) 

where �̅�𝑗0 is the (Fourier transformed) state vector containing displacements and stresses of the top 

interface of the 𝑗th layer, and �̅�𝑗1 is the corresponding vector for the bottom; e𝛼𝑗1ℎ𝑗𝐀𝑗1𝐀𝑗0
−1 is the 

transformed matrix of a single layer, and 𝐀𝑗0, 𝐀𝑗1 are 6×6 dynamic flexibility matrices dependent on 

wavenumber 𝑘𝑥 and 𝑘𝑦, frequency 𝛺 and material parameters. For the special case of 𝑘𝑥 = 0, the 

detailed expressions for 𝐀𝑗0, 𝐀𝑗1 and other formulae can be found in (Sheng et al., 1999). For the case 

of 𝑘𝑥 ≠ 0, the matrices are given as follows. 

(1) ω = 0 

𝐀𝑗0 =

[
 
 
 
 
 
 
 
 
 
 

0 1 0 0 1 0
0 0 1 0 0 1

𝜆𝑗 + 3𝜇𝑗

2𝜇𝑗𝛼𝑗1
−

i𝑘𝑥

𝛼𝑗1
−

i𝑘𝑦

𝛼𝑗1
−

𝜆𝑗 + 3𝜇𝑗

2𝜇𝑗𝛼𝑗1

i𝑘𝑥

𝛼𝑗1

i𝑘𝑦

𝛼𝑗1

i𝜇𝑗𝑘𝑥

𝛼𝑗1

𝜇𝑗(𝑘𝑥
2 + 𝛼𝑗1

2 )

𝛼𝑗1

𝜇𝑗𝑘𝑥𝑘𝑦

𝛼𝑗1
−

i𝜇𝑗𝑘𝑥

𝛼𝑗1
−

𝜇𝑗(𝑘𝑥
2 + 𝛼𝑗1

2 )

𝛼𝑗1
−

𝜇𝑗𝑘𝑥𝑘𝑦

𝛼𝑗1

i𝜇𝑗𝑘𝑦

𝛼𝑗1

𝜇𝑗𝑘𝑥𝑘𝑦

𝛼𝑗1

𝜇𝑗(𝑘𝑦
2 + 𝛼𝑗1

2 )

𝛼𝑗1
−

i𝜇𝑗𝑘𝑦

𝛼𝑗1
−

𝜇𝑗𝑘𝑥𝑘𝑦

𝛼𝑗1
−

𝜇𝑗(𝑘𝑦
2 + 𝛼𝑗1

2 )

𝛼𝑗1

𝜆𝑗 + 2𝜇𝑗 −2i𝜇𝑗𝑘𝑥 −2i𝜇𝑗𝑘𝑦 𝜆𝑗 + 2𝜇𝑗 −2i𝜇𝑗𝑘𝑥 −2i𝜇𝑗𝑘𝑦 ]
 
 
 
 
 
 
 
 
 
 

 (2) 

𝐀𝑗1 =

[
 
 
 
 
 
𝑎1𝑗

𝑎2𝑗

𝑎3𝑗

𝑎4𝑗

𝑎5𝑗

𝑎6𝑗]
 
 
 
 
 

[
 
 
 
 
 
1      
 1     
  1    
   e−2𝛼𝑗1ℎ𝑗   
    e−2𝛼𝑗1ℎ𝑗  
     e−2𝛼𝑗1ℎ𝑗]
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where 

𝑎1𝑗 = [
i(𝜇𝑗 + 𝜆𝑗)𝑘𝑥ℎ𝑗

2𝜇𝑗𝛼𝑗1
1 0

i(𝜇𝑗 + 𝜆𝑗)𝑘𝑥ℎ𝑗

2𝜇𝑗𝛼𝑗1
1 0] 

𝑎2𝑗 = [
i(𝜇𝑗 + 𝜆𝑗)𝑘𝑦ℎ𝑗

2𝜇𝑗𝛼𝑗1
0 1

i(𝜇𝑗 + 𝜆𝑗)𝑘𝑦ℎ𝑗

2𝜇𝑗𝛼𝑗1
0 1] 

𝑎3𝑗 = [(
3𝜇𝑗 + 𝜆𝑗

2𝜇𝑗𝛼𝑗1
−

𝜇𝑗 + 𝜆𝑗

2𝜇𝑗
) −

i𝑘𝑥

𝛼𝑗1
−

i𝑘𝑦

𝛼𝑗1
(−

3𝜇𝑗 + 𝜆𝑗

2𝜇𝑗𝛼𝑗1
−

𝜇𝑗 + 𝜆𝑗

2𝜇𝑗
)

i𝑘𝑥

𝛼𝑗1

i𝑘𝑦

𝛼𝑗1
] 

𝑎4𝑗 = [i𝑘𝑥 (−𝜆𝑗ℎ𝑗 − 𝜇𝑗ℎ𝑗 +
𝜇𝑗

𝛼𝑗1

) 𝜇𝑗 (
𝑘𝑥

2

𝛼𝑗1

+ 𝛼𝑗1)
𝑘𝑥𝑘𝑦𝜇𝑗

𝛼𝑗1

i𝑘𝑥 (−𝜆𝑗ℎ𝑗 − 𝜇𝑗ℎ𝑗 −
𝜇𝑗

𝛼𝑗1

) 𝜇𝑗 (
𝑘𝑥

2

𝛼𝑗1

+ 𝛼𝑗1) −
𝑘𝑥𝑘𝑦𝜇𝑗

𝛼𝑗1
] 

𝑎5𝑗 = [i𝑘𝑦 (−𝜆𝑗ℎ𝑗 − 𝜇𝑗ℎ𝑗 +
𝜇𝑗

𝛼𝑗1

)
𝑘𝑥𝑘𝑦𝜇𝑗

𝛼𝑗1

𝜇𝑗 (
𝑘𝑦

2

𝛼𝑗1

+ 𝛼𝑗1) i𝑘𝑦 (−𝜆𝑗ℎ𝑗 − 𝜇𝑗ℎ𝑗 −
𝜇𝑗

𝛼𝑗1

)
𝑘𝑥𝑘𝑦𝜇𝑗

𝛼𝑗1

−𝜇𝑗 (
𝑘𝑦

2

𝛼𝑗1

+ 𝛼𝑗1)] 

𝑎6𝑗 = [(𝜆𝑗 + 2𝜇𝑗) − 𝛼𝑗1ℎ𝑗(𝜆𝑗 + 𝜇𝑗) −2i𝜇𝑗𝑘𝑥 −2i𝜇𝑗𝑘𝑦 (𝜆𝑗 + 2𝜇𝑗) + 𝛼𝑗1ℎ𝑗(𝜆𝑗 + 𝜇𝑗) −2i𝜇𝑗𝑘𝑥 −2i𝜇𝑗𝑘𝑦] 

(2) ω ≠ 0 

𝐀𝑗0 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i𝑘𝑥

𝜉𝑗1
2 1 0 −

i𝑘𝑥

𝜉𝑗1
2 1 0

i𝑘𝑦

𝜉𝑗1
2 0 1 −

i𝑘𝑦

𝜉𝑗1
2 0 1

−
𝛼𝑗1

𝜉𝑗1
2 −

i𝑘𝑥

𝛼𝑗2

−
i𝑘𝑦

𝛼𝑗2

𝛼𝑗1

𝜉𝑗1
2

i𝑘𝑥

𝛼𝑗2

i𝑘𝑦

𝛼𝑗2

−
2i𝜇𝑗𝑘𝑥𝛼𝑗1

𝜉𝑗1
2

𝜇𝑗(𝑘𝑥
2 + 𝛼𝑗2

2 )

𝛼𝑗2

𝜇𝑗𝑘𝑥𝑘𝑦

𝛼𝑗2

2i𝜇𝑗𝑘𝑥𝛼𝑗1

𝜉𝑗1
2 −

𝜇𝑗(𝑘𝑥
2 + 𝛼𝑗2

2 )

𝛼𝑗2

−
𝜇𝑗𝑘𝑥𝑘𝑦

𝛼𝑗2

−
2i𝜇𝑗𝑘𝑦𝛼𝑗1

𝜉𝑗1
2

𝜇𝑗𝑘𝑥𝑘𝑦

𝛼𝑗2

𝜇𝑗(𝑘𝑦
2 + 𝛼𝑗2

2 )

𝛼𝑗2

2i𝜇𝑗𝑘𝑦𝛼𝑗1

𝜉𝑗1
2 −

𝜇𝑗𝑘𝑥𝑘𝑦

𝛼𝑗2

−
𝜇𝑗(𝑘𝑦

2 + 𝛼𝑗2
2 )

𝛼𝑗2

𝜆𝑗 −
2𝜇𝑗𝛼𝑗1

2

𝜉𝑗1
2 −2i𝜇𝑗𝑘𝑥 −2i𝜇𝑗𝑘𝑦 𝜆𝑗 −

2𝜇𝑗𝛼𝑗1
2

𝜉𝑗1
2 −2i𝜇𝑗𝑘𝑥 −2i𝜇𝑗𝑘𝑦

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4) 

𝐀𝑗1 = 𝐀𝑗0

[
 
 
 
 
 
1      
 e(𝛼𝑗2−𝛼𝑗1)ℎ𝑗     
  e(𝛼𝑗2−𝛼𝑗1)ℎ𝑗    
   e−2𝛼𝑗1ℎ𝑗   
    e−(𝛼𝑗2+𝛼𝑗1)ℎ𝑗  
     e−(𝛼𝑗2+𝛼𝑗1)ℎ𝑗]

 
 
 
 
 

 (5) 

where 

𝜆𝑗 =
𝜐𝑗𝐸𝑗[1 + i𝜂𝑗sgn(𝛺)]

(1 + 𝜐𝑗)(1 − 2𝜐𝑗)
, 𝜇𝑗 =

𝐸𝑗[1 + i𝜂𝑗sgn(𝛺)]

2(1 + 𝜐𝑗)
 

𝑐𝑗1 = √
(𝜆𝑗 + 2𝜇𝑗)

𝜌𝑗
, 𝑐𝑗2 = √

𝜇𝑗

𝜌𝑗
 

𝜉𝑗1
2 =

𝛺2

𝑐𝑗1
2 , 𝜉𝑗2

2 =
𝛺2

𝑐𝑗2
2  

α𝑗1
2 = 𝑘𝑥

2 + 𝑘𝑦
2 − 𝜉𝑗1

2 , α𝑗2
2 = 𝑘𝑥

2 + 𝑘𝑦
2 − 𝜉𝑗2

2  
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where 𝑘𝑦 denotes the wavenumber in the 𝑦-direction, rad/m; 𝜆𝑗 and 𝜇𝑗 denote the Lame constants of 

the 𝑗th layer, respectively; 𝑐𝑗1 and 𝑐𝑗2 denote the compression wave velocity and shear wave velocity 

of the 𝑗th layer, respectively, and the corresponding wavenumbers are 𝜉𝑗1 and 𝜉𝑗2. 
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