
SUPPLEMENTAL MATERIAL 

Methods 

Data Analysis 

Data were analyzed using R (Version 3.3.1; R Core Team, 2016), R Studio (Version 

1.0.136), Python (van Rossum and Drake, 2001), and depthmapX (Version 0.5b; Varoudis, 

2015b). Points (x,y) defining the maze boundaries were imported into Adobe Illustrator’s graph 

tool, converted to lines, and then exported to .dxf format. The maze and human data were 

imported into depthmapX (Figure 1B), and then binned at a variety of spatial resolutions. 

Spatial binning. Because the walls of the maze corridors in the present study were 1.25m 

wide, employing bin sizes larger than 1.0m did not produce sensible results (e.g., a bin size of 

1.1m produced cells that straddled both maze corridors and the inaccessible spaces between 

corridors). Due to the combinatorial explosion associated with computing space syntax measures 

at very high spatial resolution, it was impractical to compute space syntax measures for bin sizes 

smaller than .01 meters (3.94 inches).  

Agent analysis. Default depthmapX settings for agent analysis were used, with the 

exception of a few parameters that were set to approximate those of the experimental design (for 

a detailed discussion of setting parameters for agent-based analysis using visibility graphs, see 

Turner 2003). First, the “Analysis length (timesteps)” parameter was set to 43,200 in order to 

approximate the parameters of the exploration phase (12 mins of exploration x 60 seconds per 

min x 60 Hz walking data sampling rate). Agents were released from a position at the center of 

the maze roughly corresponding to the location at which participants began the experiment. 

Finally, “Record trails for N” agents was set to N = 36, corresponding to the number of 



participants in the experiment. As Turner (2003) notes, these agent based analyses “approximate 

a Markov chain operating through locations on the visibility graph.” 

Data alignment and correlation method. Due to minor inconsistencies between 

depthmapX’s coordinate system and the coordinate system employed in R (which ranged from -

10 to 10), a custom R script was used to align the configurational bins and binned pedestrian 

count data. Matrices containing binned walking data (Figure 1C) and syntactic measures 

computed with the same spatial resolution (Figure 1D) were superimposed and then 

systematically shifted (up, down, left, and right) until an optimal overlap was found using a least-

squares criterion (maximum Pearson’s product moment R2 value).  

Data Transformation Analysis: Examining whether (Q1) correlations are sensitive 

to data transformations. Silva (2013) explicitly recommends log transforming pedestrian 

movement data to ensure that both movement and syntactic data follow normal distributions, 

enabling statistical comparisons between them. Exploratory data analysis suggested a variety of 

possible related data transformations beyond those recommended by Silva (2013), so we decided 

to systematically examine the impact of additional data transformations on correlation strength. 

First, raw walking data (W) values were correlated with raw syntactic (S) values (W vs S). 

Second, because it was possible to obtain syntactic or walking data values of zero, the analysis 

was restricted to values that were greater than 0 for both the walking data and space syntax data 

(W>0 vs S>0). Third, the natural logarithm of values produced using the previous method was 

also examined. Finally, because log10(0) and ln(0) are undefined, and because the log+1 

transformation is commonly used to correct for departures from normality, log+1 transformed 

walking data was also compared to raw syntactic values [e.g., log(W+1) vs. S, and ln(W+1) vs. 

S].  



Regression Analysis: Examining whether (Q2) correlations depend on the spatial 

resolution of the sampling grid. We wished to be conservative in testing (Q2) whether 

correlations would decrease with increased spatial resolution. This required identifying data 

transformations that would be most charitable (i.e., that would allow space syntax measures the 

greatest chance to remain high as we increased the spatial resolution of the underlying sampling 

grid) toward a wide variety of measures and spatial resolutions (bin sizes). To accomplish this, 

two complementary approaches were taken. First (Part 1), we identified and opportunistically 

applied whichever data transformation (of the 11 transformations examined) produced the 

highest correlation for a given measure-bin pair. Second (Part 2), we identified a single (best 

overall) data transformation that produced maximal correlations for the largest percentage of 

measure-bin size pairs (see Table 2). 

Simulations: Examining whether (Q3) a small sample of spatial locations would 

yield spuriously high correlations. Past research has generally sampled pedestrian data at 

subsets of locations (“gates” or grid cells) within the overall VGA sampling grid, rather than 

sampling pedestrian data at all possible sampling grid locations. Historically, the number of 

“gate” locations (NGATES) has been limited due to data collection constraints (e.g., needing large 

numbers of researchers to collect data, or relative ease of counting pedestrians passing through 

doorways), and because gates are often positioned at locations convenient for researchers, it is 

possible that high correlations obtained in previous studies may be due to selection bias. In 

contrast, the motion tracking system used in the present study recorded all possible locations 

within the sampling grid, providing a more comprehensive assessment of syntactic predictions. 

In addition, we examined how correlations vary as increasingly large subsets of grid cells are 

randomly selected, simulating how stationing an increasing number of randomly located 



“experimenters” (NGATES) to record gate counts impacts correlations. We evaluated whether 

using small subsets (n = 3) of grid cells to compute R2 values would yield spuriously high 

correlations, and whether sampling from an increasing number of locations (up to n = 100) 

would yield more reliable or “stable” correlations (denoted R2
S). 

 Several approaches were used to quantify how syntactic-behavioral correlations (R2 

values) vary as the number of “gates” (NGATES) is increased. First, 100 replications (R2 values) 

were computed for each simulated value of NGATES (this corresponds to randomly distributing 

100 distinct sets of N “experimenters” to count pedestrian flows for each NGATES value, where N 

= NGATES), yielding a total of 100,000 simulated R2 values [(100 gates) * (100 replications/gate) 

* (10 bin sizes)] for each syntactic measure. Exploratory data analysis suggested that (a) R2 

values were highest when the number of sampling grid locations (NGATES) was relatively low, 

and that (b) the mean R2 value appeared to decline exponentially, before stabilizing above a 

critical value of NGATES. Therefore, a change point approach was used quantify the presence of 

inflections or “change points” (CP, the gate count at which correlations tended to stabilize) in 

simulation data; thus, CP is the critical measure used to assess the minimum number of sampling 

grid locations (NGATES) required to obtain reliable estimates of correlation strength at a given grid 

resolution.   

Change points were detected by first computing local polynomial regression (LPR) fits 

for simulated R2 values as a function of NGATES (using the “loess” function from R’s “stats” 

package), and then obtaining the first detected change point in these regression fits (using R’s 

“cpm” package) (Ross, 2015). The initial LPR fitted the R2 value at the minimum number of 

gates examined (NGATES = 3), indicated by R2
I. The arithmetic mean of the LPR fitted R2 values 

between NGATES = CP and NGATES = 100 was used to estimate the point at which R2 stabilized at a 



relatively constant value (R2
S). Finally, the difference between the two R2 values (R2 = R2

I – 

R2
S) was computed to examine how correlations vary as the number of sampling grid locations 

(NGATES) was increased. 

Results 

Q2: Do correlations depend on the spatial resolution of the sampling grid? 

Heatmaps for Leading Syntactic Measures 

 

This section examines whether (Q2) correlations depend on the spatial resolution of the 

sampling grid by discussing data for a syntactic measure that generally performs well in the 

space syntax literature [Visual Integration (R3)], and for the syntactic measure that yielded the 

highest correlation obtained in the present study [Metric Node Count (R1)]. Heatmaps in Figures 

5 and 6 plot syntactic values and binned walking data at corresponding grid resolutions for 

Visual Integration (R3) and Metric Node Count (R1) respectively. Heatmap values and 

correlations were computed at each bin size after applying a Log10(W)>0 vs. S data 

transformation; color scales indicate data ranges and color mappings.  

Heatmaps and Correlations for Visual Integration (R3). As previously noted, 

Integration is a commonly reported measure in the space syntax literature. Visualizations of 

Visual Integration (R3) and binned walking data for all 10 bin sizes appear in Figure 5.   

[Insert Figure 5] 

For this measure, R2 values increased from R2 = .17 at the lowest spatial resolution (1.0m) to a 

maximum of R2 = .37 at an intermediate resolution (0.7m), and decreased to R2 = .13 at the 

highest spatial resolution (0.1m) examined. Thus, we found that (Q2) correlation strength 

decreased (by .05) as spatial resolution was increased. It is worth nothing that R2 values reached 



a peak at R2 = .37, which may provide support for the notion that there is an ideal resolution for 

syntactic measures (Al Sayed et al., 2014; Turner et al., 2001). 

Heatmaps and Correlations for Metric Node Count (R1).  Visualizations of Metric 

Node Count (R1) and binned walking data for all 10 bin sizes appear in Figure 6.  

[Insert Figure 6] 

Metric Node Count (R1) yielded the highest correlation value found in the present study. For this 

measure, R2 values increased from R2 = .18 at the lowest spatial resolution (1.0m) to a maximum 

of R2 = .41 at an intermediate resolution (0.6m), and decreased to R2 = .19 at the highest spatial 

resolution (0.1m) examined. With respect to Q2, this syntactic measure exhibited a more 

complex pattern of results than we predicted, with correlations peaking at intermediate bin sizes 

(see Figures 2 and 3), which may be consistent with the claim that there is an ideal spatial scale 

for computing syntactic-behavioral correlations (Al Sayed et al., 2014; Turner et al., 2001). 

Q3: Does a small sample of spatial locations yield spuriously high correlations? 

Each boxplot (Figures 4 and 7) shows simulated R2 values (y-axis) against the number of 

randomly sampled gate locations (x-axis NGATES) for a given bin size. Boxes and whiskers 

summarize the distribution of the results from all 100 replications at each value of NGATES; 

whiskers extend to the minimum and maximum simulated R2 values, and extend no further than 

1.5 times the interquartile range (IQR); box hinges indicate the 25th and 75th percentiles of the 

simulated R2 values; outlying points are indicated as black dots. 

Metric Node Count (R1).  At all ten spatial resolutions examined, correlations between 

Metric Node Count (R1) and walking data decreased (R2; M = -.18, SD = .042) as NGATES 

increased. The first value of NGATES (Figure 7, x-axis) at which a significant change (Ross, 2015) 



in LPR fitted R2 values (Figure 7, y-axis, blue best fit line) was detected was NGATES = 23, just as 

we found for Visual Integration (R3).  

[Insert Figure 7] 

This value was consistent across all ten of the spatial resolutions examined. Beyond 23 gates, 

correlations tended to stabilize (R2
S) at a low but relatively constant value (mean R2

S = .258; SD 

= .151). With respect to Q3, when fewer than 23 gates were used to compute correlations, perfect 

positive correlations (R2 = 1) between random noise and walking data were obtained, strongly 

suggesting that using a small number of sampling grid locations can inflate correlations. 

Comparisons to random noise. To assess whether this measure correlated with walking data 

above chance levels, random noise was substituted for syntactic data, and correlated with 

walking data. Initial correlations (R2
I) between syntactic data and walking data (mean R2

I = .43, 

SD = .13) were 72% higher than correlations between random noise and walking data (mean R2
I 

= .25, SD = .01), t(9) = 4.37, p < .01. Stabilized correlations (R2
S; beyond NGATES = 23) with 

walking data were also higher for syntactic data (M = .257, SD = .15) than random noise data (M 

= .02, SD = .001), t(9) = 4.98, p < .001. Thus, syntactic measures performed better than chance. 

However, with respect to Q3, when fewer than 23 gates were used to compute correlations, 

perfect positive correlations (R2 = 1) between random noise and walking data were obtained, 

strongly suggesting that using a small number of sampling grid locations can inflate correlations. 

Discussion 

Local maxima. Some measures exhibited a small “hump” or local maximum in 

correlation strength (R2) at an intermediate spatial resolution near 0.7m (see Figures 2 and 3). In 

an effort to adopt a scale of analysis commensurate with typical human walking behavior, Turner 

et al. (2001) employed a 1m grid spacing, and Al Sayed et al. (2014; depthmapX handbook) 



recommends that researchers depthmapX users select “a sensible grid spacing values that match 

the human scale (0.6 - 0.7 meters).” Thus, our results could be interpreted as supporting the 

claim that there is an optimal spatial scale for correlating space syntax measures with pedestrian 

behavior; the large number of syntactic measures examined in the present seems to support the 

recommendations made by other researchers. However, we urge caution with respect to this 

interpretation of our results. While several previous studies (Emo et al., 2012; Ferguson et al., 

2012; Turner, 2003) cite Gibson’s (1950, 1986) ecological approach to visual perception as the 

theoretical basis for positing a causal relationship between syntactic variables and pedestrian 

behavior, they do not clearly articulate why syntactic-behavioral correlations should be maximal 

at human scale. Moreover, operational definitions of “human scale” have been extensively 

debated, and remain controversial (see Ewing & Handy, 2009 for a review). 

 

  



Table 2
Summary of syntactic-behavioral correlations found in selected previous studies 

Study Mode Environment Syntactic Measure(s) Data Transformations Correlations

Hillier et al. (1996) Walking Museum Integration ln (movement rates) .37 < R2 < .86

de Arruda Campos 
(1997)

Walking Urban area Integration (R3)
Integration (RN)

(Unknown) .81 < R2 < .88
.80 < R2 < .80

Penn, Hillier, Banister, 
and Xu (1998)

Vehicle Urban area Integration (R3, R5, R7, R9) Fourth root of
flow rates

.34 < R2 < .83

Walking Urban area Mean integration (R3) and 
development density

Net capacity R2 = .98

Turner & Penn (1999) Walking Museum Isovist Integration Log of mean 
occupancy levels

R2 = .585

Store Isovist Area .324 < R2 = .578

Desyllas & Duxbury 
(2001)

Walking
(5m and 3m)

Urban area Axial Map Analysis ln (mean visibility) and ln (mean 
pedestrian movement data)

R2 = .456 (5m)
R2 = .625 (3m)

Turner (2003) Walking 
(3m)

Urban area Various Log transformed agent simulation 
data

.29 < R2 < .73

Turner (2007) Walking Museum Through vision 
(agent simulation)

ln (movement rates) .68 < R2 <.74

Mora, Astudillo, and 
Bravo (2014)

Walking Urban area Gate counts 
(NGATES = 203)

Mean gate counts over six 
consecutive workdays

.142 < R2 < .271

Okamoto et al. (2013) Walking Commuter rail mall Gate counts 
(NGATES = 50)

Connectivity, visual step depth, 
shortest distance, integration

.2 < R2 < .598

Note: Mode column indicates whether pedestrian (walking) data or vehicular data were correlated with syntactic measure(s). Correlations column includes 
minimum and maximum syntactic-behavioral correlations found in the study. NGATES = the reported number of gate locations at which pedestrian flows were 
counted.
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