Appendix Information

Wei-fa Yang, Na Qin, Xueyao Song, Canhua Jiang, et al. Genomic signature of mismatch repair deficiency in areca nut-related oral cancer.
Appendix Methods 3
Appendix Figure 1. Mutational spectrum of 113 OSCC patients from our SCOCC study and 316 OSCC patients from the TCGA project 11
Appendix Figure 2. Mutation rates between patients with different exposure status 12
Appendix Figure 3. The mutational spectrum of WEE1 and ATG2A in 89 AN-relative OSCC patients compared to 340 AN-negative OSCC patients. 13
Appendix Figure 4. Mutual exclusivity pattern of mutations in ATG2 homologues (ATG2A and $A T G 2 B$) and CASP8 in SCOCC, TCGA and Taiwan studies 14
Appendix Figure 5. Differential expression analysis of WEE1 and ATG2 homologues (ATG2A and $A T G 2 B$) between 40 AN-related patients and 326 AN-negative patients 15
Appendix Figure 6. The expression levels of $A T G 2 A$ and $A T G 9 A$ in the CAL27 cell line treated with ANE (1 or $2 \mathrm{ug} / \mathrm{mL}$) for 5 days 16
Appendix Figure 7. Correlation between mutational signatures derived in SCOCC study and previously defined signatures from COSMIC. 17
Appendix Figure 8. Proportions of different mutational signature types among three groups of OSCC patients from the SCOCC study 18
Appendix Figure 9. The fraction of MMR signature is higher, but not statistically significant, in AN-related patients than AN-negative patients in the Taiwanese study 19
Appendix Figure 10. MMR signature is linearly associated with mutation burden of OSCC patients 20
Appendix Figure 11. Kaplan-Meier plot for overall survival by the mutation signature for OSCC patients 21
Appendix Figure 12. Kaplan-Meier plot for overall survival by the mutation signature for 311OSCC patients from TCGA. No significant difference in overall survival was found forsubgroups stratified according to the fraction of MMR signature.22
Appendix Figure 13. Copy-number alterations in 113 OSCC patients from SCOCC study. 23
Appendix Figure 14. The proportion of dMMR signature was significantly higher in WEE1 mutated samples. 24

Appendix Table 1. Demographic characteristics of 113 OSCC patients from SCOCC, 325 from the TCGA project, and 50 from the Taiwanese study. 25

Appendix Table 2. Significantly mutated genes identified in 113 OSCC samples from SCOCC study. 26

Appendix Table 3. Significantly mutated genes identified in 89 AN-related OSCC patients from SCOCC study. 27
Appendix Table 4. Univariate analysis of overall survival (OS) in 75 OSCC patients from SCOCC study 28
Appendix Table 5. Differential expression analysis of MMR genes between AN-related and AN-negative OSCC patients 29
Appendix Table 6. Copy number alterations identified in 113 OSCC patients from SCOCC study. 30
Appendix Table 7. Primers for quantitative real-time PCR (qPCR) assays and sequences of siRNAs 34
Appendix Table 8. Statistics of whole-exome sequencing for 113 tumor-blood paired OSCC patients from SCOCC study. 35

Appendix Methods

Study subjects

Surgical resected tumors and matched normal and peripheral blood samples were obtained from 113 newly diagnosed OSCC patients without any treatment or neoadjuvant therapy prior to operation in the South China Oral Cancer Cohort (SCOCC). All patients had pathological diagnosis of OSCC from Xiangya Hospital of Central South University (98 OSCC patients) and Jiangsu Stomatological Hospital of Nanjing Medical University (15 OSCC patients) in China. Demographic information (age, gender, smoking, and AN chewing history) was collected from each patient. Among all 113 patients, 89 had a history of AN chewing, which was defined as the behavioral use of AN for at least three years. Frozen tumor and paired normal specimens were stained with hematoxylin and eosin and microscopically evaluated by two independent pathologists. Samples were frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$. Only OSCC tissues with the malignant cell purity of over 70% were selected for DNA and/or RNA extraction and subsequent sequencing. The study was approved by the local ethics committee and written informed consent was obtained from each participant. Detailed demographic and clinical characteristics are provided in Appendix Table 1.

To further compare the genomic and transcriptome features of patients with different AN exposure, we integrated sequencing data of 325 OSCC patients from TCGA database and 50 OSCC patients from a published Taiwan study (43 patients with AN chewing history)(Chen et al., 2017) (Appendix Table 1). The 325 non-Asian and non-Indian TCGA OSCC patients were considered AN-negative since AN chewing is rare in Europe and the United States(Humans, 2012). Clinical and follow-up information for these patients was obtained from the Firehose Broad GDAC (http://gdac.broadinstitute.org/runs/stddata_2016_01_28/data/HNSC/20160128/).

DNA extraction and whole-exome sequencing

Genomic DNA was extracted from frozen oral tissues using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) and from blood samples using the DNeasy Blood \& Tissue Kit (Qiagen, Hilden, Germany) following the manufacturer's instructions. The quality and quantity of the extracted samples were assessed using the NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE, USA), Qubit 2.0 Fluorometer (Life Technologies, CA, USA) and 1% agarose
gel electrophoresis.

Whole-exome sequencing was performed on matched tumor-blood samples from 113 OSCC Chinese patients. Exome capture was performed on $1.5 \mu \mathrm{~g}$ of high-quality genomic DNA per sample by SureSelect Human All Exon V6 (Agilent Technologies, Inc., Santa Clara, CA, USA) followed by the 150 -bp paired-end sequencing on the HiSeq X Ten instrument (Illumina, San Diego, CA, USA) according to the manufacturer's protocols.

In 325 TCGA OSCC patients, 316 tumor-blood pairs were examined by whole-exome sequencing and 320 tumor samples were subjected to RNA sequencing. Additionally, 50 tumorblood OSCC pairs from Taiwan were detected by whole-exome sequencing.

Total RNA extraction and RNA sequencing

Total RNA was extracted from 46 matched tumor-normal samples (40 AN-related and 6 ANnegative) using the RNeasy Mini Kit (Qiagen, Hilden, Germany). The quality and quantity of extracted RNA were assessed using the NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE, USA), Qubit 2.0 Fluorometer (Life Technologies, CA, USA) and 1% agarose gel electrophoresis. RNA integrity was assessed using the RNA Nano 6000 Assay Kit (Agilent Technologies, CA, USA).

A total of $3 \mu \mathrm{~g}$ of high-quality RNA per sample was used for ribosomal RNA removal by the Epicentre Ribo-zero rRNA Removal Kit (Epicentre, USA) and the sequencing library was prepared using the rRNA-depleted RNA by the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (NEB, USA) following manufacturer's recommendations. The clustering of the index-coded samples was performed on a cBot Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumina, San Diego, CA, USA), followed by the 150-bp paired-end sequencing on the HiSeq X Ten instrument (Illumina, San Diego, CA, USA) according to the manufacturer's protocols.

Areca nut extract preparation

The method of preparing ANE has been described in a previous study(Xu et al., 2017). In brief, we first ground and extracted 30 g of tender AN from dried nuts at $4^{\circ} \mathrm{C}$ for 1 h with deionized water, and then centrifuged the squeezed extract at $12,000 \mathrm{~g}$ for 10 minutes. The supernatant was harvested, filtered and concentrated by lyophilization. The weighted dry powder was stored
at $-20^{\circ} \mathrm{C}$ before dissolved in deionized water as ANE for research use.

RNA and protein expression detection

Total RNA was isolated from OSCC cell lines using Trizol reagent (Invitrogen). 1000 ng of RNA was reverse transcribed into cDNA using PrimeScript ${ }^{\mathrm{TM}}$ RT Master Mix (Takara) according to the manufacturer's instructions. Quantitative RT-PCR (RT-qPCR) was performed with the SYBR PCR Master Mix reagent kit (Takara) and QuantStudio 7 Flex real-time PCR System (Applied Biosystems) according to the manufacturer's instructions. The primers were described in Appendix Table 7.

Cells were lysed with the mammalian protein extraction reagent RIPA (Beyotime). Protein lysates were cleared by centrifugation and concentrations were determined using the BCA protein assay kit (Beyotime). The lysate was combined with $4 \times$ LDS Sample Buffer and $10 \times$ Sample Reducing Agent (Life technologies) followed by denaturation at $95^{\circ} \mathrm{C}$ for 5 min . For Western blotting, $40 \mu \mathrm{~g}$ of protein was separated by 10% SDS-PAGE and transferred to a $0.45-\mu \mathrm{m}$ PVDF membrane (Millipore). Membranes were then blocked in 5% skim milk and incubated with rabbit anti-ATG2A (1:1000, ab226931, Abcam), anti-ATG9A (1:1000, ab108338, Abcam), anti-MLH1 (1:1000, ab92312, Abcam), anti-MSH2 (1:1000, ab227941, Abcam) and mouse anti-GAPDH (1:1000, AG019, Beyotime), respectively. Immunoreactive proteins were visualized using a molecular imager (Bio-Rad).

Cell viability assessment in vitro

Cell culture and Cell transfection

Oral and laryngeal cancer cells (CAL27 and HEP2) were maintained in DMEM supplemented with 10% FBS. Transfection of OSCC cells $\left(1.0 \times 10^{5}\right.$ cells) with specific siRNAs targeting ATG2A and WEE1 (Invitrogen U.S.A) constructs was carried out using lipofectamine 2000 (Invitrogen) according to the manufacturer's protocol. The sequences of siRNAs are described

in Appendix Table 7.

Cell proliferation and Colony formation assays

Cell viability was measured with a Cell Counting Kit-8 (CCK8, Dojindo, Japan) according to the manufacturer's instructions. The transfected cells were incubated in 60 mm culture plates for 24 hours, and then 3,000 cells in 200 ul of culture medium were seeded in E-Plate 96. 96-
well plates were incubated overnight at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO} 2$. Next, $10 \mu \mathrm{l}$ of CCK 8 was added to each well with 100μ l of medium at the indicated time points, and the absorbance was measured at 450 nm after two hours using a microplate reader. For the colony formation assay, 800 transfected cells were seeded into 60 mm culture plates and incubated for 12 days at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$.

Transwell migration assays

Cell migration was measured in Costar Transwell plates (6.5 mm diameter insert, 8.0 mm pore size, polycarbonate membrane, Corning Sparks, MD). The lower chamber was filled with 600 $\mu \mathrm{l}$ of medium containing 10% fetal bovine serum. Next, 3×10^{4} cells in $300 \mu \mathrm{l}$ of serum-free medium were added to the upper chamber of the Transwell system. After incubation at $37^{\circ} \mathrm{C}$ for 24 hours, non-migrated cells were removed from the upper surface of the membrane using a cotton swab.

Whole-exome sequencing data processing

Read mapping

The quality score and base-call distributions of raw sequencing reads were accessed with the FastQC tool (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). The sequenced reads were mapped to the reference genome (GRCh37) using Burrows-Wheeler Aligner (BWA-MEM) algorithm (http://bio-bwa.sourceforge.net/) with default parameters(Li and Durbin, 2009). The duplicates were marked with Picard (v1.70, http://broadinstitute.github.io/picard/) and discarded for further analyses. We then performed local realignment and base quality score recalibration (BQSR) using the Genome Analysis Toolkit (GATK, version 3.7) with default settings(McKenna et al., 2010). The mapping rate and sequencing coverage for each sample are listed in Appendix Table 8.

Somatic variants calling

Somatic single-nucleotide variations (SNVs) and small insertions and deletions (indels) were detected using the Mutect2 mode in GATK following the best practice (https://software.broadinstitute.org/gatk/best-practices/). Then, we excluded somatic variants if they were found in: (1) a panel of normal built by the 113 matched normal samples; (2) the segmental duplication or simple Repeat regions marked by UCSC browser
(http://genome.ucsc.edu); (3) the 1000 genomes project (the Phase III integrated variant set release, across 2,504 samples) with the same mutation direction.

Putative driver genes identification

We applied the MutSigCV algorithm (version 1.4)(Lawrence et al., 2013) and the IntOGen platform(Gonzalez-Perez et al., 2013) to identify significantly mutated genes (SMGs). MutSigCV was used to detect genes with higher mutation rates than the background after correcting for the nucleotide context, gene expression, replication time, silent mutations and mutations in surrounding regions. IntOGen included two algorithms (OncodriveCLUST(Tamborero et al., 2013) and OncodriveFM(Gonzalez-Perez and LopezBigas, 2012)) to find genes with highly clustered mutations and non-random distribution of functional mutations, respectively. P-values were corrected from multiple testing using the false discovery rate (Benjamini-Hochberg FDR) and genes with a q value <0.05 in any algorithm were reported in this study. Then, the putative driver genes were determined with one of the following conditions met: (1) the gene with a mutation rate $>5 \%$ in 113 OSCC or 89 AN -related OSCC patients; or (2) the gene was only mutated in 89 AN -related OSCC patients. We also downloaded somatic variants of 316 TCGA OSCC samples from the Firehose Broad GDAC (http://gdac.broadinstitute.org/, version 2016_01_28) and compared the mutational profiles between 89 AN-related patients from SCOCC and 340 AN-negative patients (316 samples form TCGA and 24 AN-negative samples from SCOCC). To further validate the identified ANrelated genomic features, we retrieved the whole-exome sequencing data of 50 OSCC patients (43 AN-related and 7 AN-negative samples) from a Taiwan study(Chen et al., 2017) and performed the same analysis.

Mutational signature analysis

The Bioconductor package SomaticSignatures was used to perform mutational signature analysis(Gehring et al., 2015). The algorithm was developed based on the non-negative matrix factorization (NMF) method. Briefly, six possible substitutions ($\mathrm{C}>\mathrm{A}, \mathrm{C}>\mathrm{G}, \mathrm{C}>\mathrm{T}, \mathrm{T}>\mathrm{A}, \mathrm{T}>\mathrm{C}$ and $\mathrm{T}>\mathrm{G}$) were considered in NMF, and SNVs together with their 5 ' and 3' neighboring bases could then be organized into the 96 trinucleotide contexts representing specific cancer-causing processes. Signatures identified in this study were compared to the COSMIC signatures
(http://cancer.sanger.ac.uk/cosmic/signatures) with cosine similarity distance. Then, we further estimated the contribution of 30 COSMIC mutational signatures to each sample's mutational spectrum with the R package deconstructSigs(Rosenthal et al., 2016), and mutational signatures attributed to the same cancer-causing process were combined. The signatures associated with mismatch repair deficiency (dMMR) include COSMIC Signature 6, Signature 15, Signature 20 and Signature 26. APOBEC related signatures include COSMIC signature 2 and Signature 13. The same analysis was applied to 316 TCGA and 50 Taiwan OSCC samples.

Copy number variations analysis

Somatic copy number variations (CNVs) were detected following the GATK best practice (https://software.broadinstitute.org/gatk/best-practices/) with default parameters. The copy number segments were analyzed with GISTIC2 to identify significantly amplified/deleted regions. FDR q values were computed for the aberrant regions. Peak regions with q values of <0.05 were defined as highly amplified/deleted regions.

RNA quantification and differential expression analysis

For the RNA-seq data of 46 tumor-normal pairs from SCOCC, the FastQC package (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) was used to access the quality score distribution of the sequencing reads, and low-quality reads were removed prior to analysis. The remaining qualified reads were aligned to the GENCODE v19 genome assembly with STAR (version 2.4.1) and quantified with RSEM (version 1.2.25). Additionally, level 3 RNASeqV2 data of 320 OSCC samples in TCGA from the Firehose Broad GDAC (http://gdac.broadinstitute.org/, version 2016_01_28) was included. Differential expression analysis was performed with R package DESeq2(Love et al., 2014) in 40 AN-related patients from SCOCC and 326 AN-negative samples (320 samples from TCGA and 6 AN-negative samples from SCOCC). The batch effect was removed by sva package and raw read counts data was normalized by DESeq2. The magnitude ($\log 2$ transformed fold change) and significance (P-value) of differential expression between groups were calculated.

Statistical analysis

All statistical tests were performed using the Wilcoxon rank-sum test for continuous data, and the Spearman's rank correlation was used for the estimation of correlation. Student's t test was
used to analyze data from RT-qPCR, cell proliferation and migration. The Fisher's exact test was used to assess the difference in count data. The Kaplan-Meier method and the Log-rank test were used to estimate the difference in survival time between different subgroups categorized by the dMMR signature proportion. Multivariate Cox proportional hazard regression analysis was performed to estimate the HR and $95 \% \mathrm{CI}$, with the adjustment of age, smoking status, AN chewing status, clinical stage, recurrence and metastatic status. General statistical analysis was performed using R (R version 3.2.2). Two-sided P values less than 0.05 were considered statistically significant.

REFERENCES

Chen TW, Lee CC, Liu H, Wu CS, Pickering CR, Huang PJ et al. (2017). APOBEC3A is an oral cancer prognostic biomarker in Taiwanese carriers of an APOBEC deletion polymorphism. Nature communications 8(1):465.

Gehring JS, Fischer B, Lawrence M, Huber W (2015). SomaticSignatures: inferring mutational signatures from single-nucleotide variants. Bioinformatics 31(22):3673-3675.

Gonzalez-Perez A, Lopez-Bigas N (2012). Functional impact bias reveals cancer drivers. Nucleic acids research 40(21): e169.

Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Tamborero D, Schroeder MP, Jene-Sanz A et al. (2013). IntOGen-mutations identifies cancer drivers across tumor types. Nature methods 10(11):1081-1082.

Humans IWGotEoCRt (2012). Personal habits and indoor combustions. Volume 100 E. A review of human carcinogens. IARC monographs on the evaluation of carcinogenic risks to humans $100(\mathrm{Pt} \mathrm{E}): 1$ 538.

Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al. (2013). Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214-218.

Li H, Durbin R (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754-1760.

Love MI, Huber W, Anders S (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 15(12):550.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research 20(9):1297-1303.

Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C (2016). DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome biology 17(31.

Tamborero D, Gonzalez-Perez A, Lopez-Bigas N (2013). OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics 29(18):2238-2244.

Xu Z, Huang CM, Shao Z, Zhao XP, Wang M, Yan TL et al. (2017). Autophagy Induced by Areca Nut Extract Contributes to Decreasing Cisplatin Toxicity in Oral Squamous Cell Carcinoma Cells: Roles of Reactive Oxygen Species/AMPK Signaling. International journal of molecular sciences 18(3).

Appendix Figure 1. Mutational spectrum of 113 OSCC patients from our SCOCC study and 316 OSCC patients from the TCGA project.

(200-1

Appendix Figure 2. Mutation rates between patients with different exposure status.

Appendix Figure 3. The mutational spectrum of $W E E 1$ and $A T G 2 A$ in 89 AN-relative OSCC patients compared to 340 AN-negative OSCC patients.

Appendix Figure 4. Mutual exclusivity pattern of mutations in ATG2 homologues (ATG2A and $A T G 2 B$) and CASP8 in SCOCC, TCGA and Taiwan studies.

Appendix Figure 5. Differential expression analysis of WEE1 and ATG2 homologues (ATG2A and ATG2B) between 40 AN-related patients and 326 AN-negative patients.

Appendix Figure 6. The expression levels of ATG2A and ATG9A in the CAL27 cell line treated with ANE (1 or $2 \mathrm{ug} / \mathrm{mL}$) for 5 days.

Appendix Figure 7. Correlation between mutational signatures derived in SCOCC study and previously defined signatures from COSMIC.

Appendix Figure 8. Proportions of different mutational signature types among three groups of OSCC patients from the SCOCC study.

Appendix Figure 9. The fraction of MMR signature is higher, but not statistically significant, in AN-related patients than AN-negative patients in the Taiwanese study.

Appendix Figure 10. MMR signature is linearly associated with mutation burden of OSCC patients.

Appendix Figure 11. Kaplan-Meier plot for overall survival by the mutation signature for OSCC patients.

(A) Higher fraction of Signature 15 is significantly associated with worse overall survival in 75 OSCC patients.
(B) Higher fraction of Signature 15 is significantly associated with worse overall survival in 59 AN-related OSCC patients.

Appendix Figure 12. Kaplan-Meier plot for overall survival by the mutation signature for 311 OSCC patients from TCGA. No significant difference in overall survival was found for subgroups stratified according to the fraction of MMR signature.

Appendix Figure 13. Copy-number alterations in 113 OSCC patients from SCOCC study.

B

(A) GISTIC analysis of focal copy-number alterations.
(B) The copy number alteration status of cancer-related gene in 8 q 24.22 and 3 q 26.32 in AN-related and AN-negative OSCC patients.
(C) The association of cancer-related genes copy number alteration and the proportion of dMMR signature.

Appendix Figure 14. The proportion of dMMR signature was significantly higher in WEE1 mutated samples.

Appendix Table 1. Demographic characteristics of 113 OSCC patients from SCOCC, 325
from the TCGA project, and 50 from the Taiwanese study.

	$\operatorname{SCOCC}(\mathbf{n}=\mathbf{1 1 3})$	TCGA (n=325)	Taiwan (n=50)
Age (median; range)	$49 \cdot 3(27 \cdot 8-78 \cdot 9)$	$61 \cdot 8(20 \cdot 0-90 \cdot 1)$	$51 \cdot 4(31 \cdot 1-79 \cdot 7)$

Gender (frequency; percentage)
Male
Female

$111(98.2)$	$221(68 \cdot 0)$	$44(88 \cdot 0)$
$2(1 \cdot 8)$	$104(32 \cdot 0)$	$6(12 \cdot 0)$

Smoking history (frequency; percentage)
Ever smoker
Lifelong non-smoker
N/A
Areca nut chewing history (frequency; percentage)
Ever areca nut chewing

N/A
$89(78 \cdot 8)$
$24(21 \cdot 2)$
n / a
$57(50.4)$
$39(34 \cdot 5)$
$5(4 \cdot 4)$
$11(9.7)$
$1(0.9)$
n / a
n / a
$148(45.5)$
$21(6.5)$
$59(18.2)$
$17(5.2)$
$7(2.2)$
$2(0.6)$
$71(21.8)$
$19(38 \cdot 0)$
$21(42 \cdot 0)$
$1(2 \cdot 0)$
$7(14.0)$
$2(4 \cdot 0)$
n / a
n / a

Stage (frequency; percentage)

I	$15(13 \cdot 3)$	$19(5 \cdot 8)$	$1(2 \cdot 0)$
II	$44(38 \cdot 9)$	$50(15 \cdot 4)$	$12(24 \cdot 0)$
III	$30(26 \cdot 5)$	$59(18 \cdot 2)$	$1(2 \cdot 0)$
IV	$24(21 \cdot 2)$	$159(48.9)$	$21(42 \cdot 0)$
V	n/a	$7(2 \cdot 2)$	$6(12 \cdot 0)$
N/A	n/a	$31(9 \cdot 5)$	$9(18 \cdot 0)$

Appendix Table 2. Significantly mutated genes identified in 113 OSCC samples from SCOCC study.

symbol	gene	$\begin{aligned} & \text { SIGN } \\ & \text { ALS } \end{aligned}$	SIGNAL_ COUNT	MUTS_CS_S AMPLES	KNOWN_ DRIVER	CONNECTE D_TO_DRIV ER	OncodriveCLUST							OncodriveFM					MutSigCV	
							$\begin{gathered} \text { MUTS } \\ \text { _IN_C } \\ \text { LUST } \end{gathered}$	$\begin{gathered} \text { NUM_CLUS } \\ \text { TERS } \end{gathered}$	$\underset{\text { RDS }}{\substack{\text { CLUST_COO }}}$	$\begin{gathered} \hline \text { GEN } \\ \text { E_S } \\ \text { COR } \\ \text { E } \\ \hline \end{gathered}$	$\begin{gathered} \text { zSCO } \\ \text { RE } \end{gathered}$	p-value	q-value	PPH2 SCOR E_PVALUE	MA_SCOR E_PVALU E	SIFT_SCO RE_PVAL UE	p-value	q-value	p-value	q-value
TP53	ENSG00000141510	CFR	3	86	TRUE	TrUE	64	10	$\begin{aligned} & {[124,125]: 4,[13} \\ & 6,141]: 3,[152,1 \\ & 55]: 3,[158,166]: \\ & 7,[173,179]: 13,[\\ & 193,196]:[213 \\ & , 214]: 4,[237,25 \\ & 8]: 16,[298,298]: \\ & 2,[337,347]: 6 \end{aligned}$	0.62	2.63	4.22E-03	8.44E-03	1.00E-08	$1.00 \mathrm{E}-08$	1.00E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Notchı	ENSG00000148400	FR	2	23	true	true	2	1	[1418, 1418]:2	0.13	-1.12	8.69E-01	8.69E-01	1.00E-08	1.00E-08	2.50E-03	2.22E-16	7.82E-14	4.48E-13	8.45E-10
CDKN2A	ENSG00000147889	CFR	3	20	true	true	7	1	[113,113]:7	1.00	5.55	$1.46 \mathrm{E}-08$	8.76E-08	1.00E-08	$1.00 \mathrm{E}-08$	1.00E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00
fati	ENSG00000083857	FR	2	20		true								1.00E-08	1.00E-08	1.00E-04	0.00E+00	OvooE+00	5.55E-16	1.16E-12
DST	ENSG00000151914	F	1	10		true								2.00E-03	1.69E-01	2.71E-02	7.33E-04	4.92E-02	1.20E-02	1.00E+00
hras	ENSG00000174775	CFR	3	8	true	true	7	2	$\begin{aligned} & {[12,13]: 5,[61,61} \\ &]: 2 \end{aligned}$	0.84	4.30	8.43E-06	2.53E-05	1.08E-02	1.00E-04	1.60E-03	3.88E-07	$7.82 \mathrm{E}-05$	0.00E+00	0.00E+00
CASP8	ENSG00000064012	CR	2	7	TRUE	true	4	2	$\begin{aligned} & {[268,268]: 2,247} \\ & 2,472]: 2 \end{aligned}$	0.57	2.25	1.22E-02	1.84E-02	5.83E-02	1.40E-02	1.07E-01	4.71E-03	1.19E-01	0.00E+00	0.00E+00
$\begin{aligned} & \text { RASA1 } \\ & \text { TSC2 } \end{aligned}$	ENSG00000145715 ENSG00000103197	FR F	2 1	6	TRUE	TRUE TRUE								$\begin{aligned} & 4.00 \mathrm{E}-04 \\ & 1 \cdot 40 \mathrm{E}-03 \end{aligned}$	9.00E-04 6.50E-02	$\begin{array}{r} 3.00 \mathrm{E}-03 \\ 2 \cdot 40 \mathrm{E}-02 \\ \hline \end{array}$	$\begin{aligned} & 2 \cdot 54 \mathrm{E}-07 \\ & 2 \cdot 16 \mathrm{E}-04 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.95 \mathrm{E}-05 \\ 2.03 \mathrm{E}-02 \\ \hline \end{array}$	$\begin{aligned} & 8.64 \mathrm{E}-07 \\ & 8.18 \mathrm{E}-02 \end{aligned}$	$\begin{aligned} & 1 \cdot 36 \mathrm{E}-03 \\ & 1 \cdot 00 \mathrm{E}+00 \end{aligned}$

Appendix Table 3. Significantly mutated genes identified in 89 AN-related OSCC patients from SCOCC study.

symbol	gene	$\begin{aligned} & \text { SIGNA } \\ & \text { LS } \end{aligned}$	$\begin{aligned} & \text { SIGNAL_C } \\ & \text { OUNT } \end{aligned}$	MUTS_C S_SAMP LES	KNOWN DRIVER	$\begin{aligned} & \text { CONNECTE } \\ & \text { D_TO_DRIV } \\ & \text { ER } \end{aligned}$	OncodriveCLUST							OncodriveFM					MutSigCV	
							$\underset{\text { LUST }}{\text { MUTS_IN_C }}$	NUM_ clus TERS	CLUST_COORDS	GENE_S CORE	$\begin{gathered} \text { zSCo } \\ \text { RE } \end{gathered}$	p-value	q-value	PPH2_SC ORE_PV alue	ma_sco RE_PVA LUE	$\begin{aligned} & \text { SIFT- } \\ & \text { SCOR } \\ & \text { E_PV } \\ & \text { ALUE } \end{aligned}$	p-value	q-value	p-value	q-value
TP53	ENSG00000141510	CFR	3	66	true	true	48	9	$\begin{aligned} & {[124,124]: 2,[141,141]: 2,[152,155]: 3,1} \\ & 59,166]: 6,173,179]: 10,[194,196]: 5[21 \\ & 3,214]:[238,250]: 13,[337,342]: 4 \end{aligned}$	0.64	2.81	2.45E-03	3.27E-03	1.00E-08	1.00E-08	$\begin{aligned} & \text { 1.00E- } \\ & 08 \end{aligned}$	0.00E+00	0.00E+00	1-11E-16	$\begin{aligned} & 2.62 \mathrm{E}- \\ & 13 \end{aligned}$
CDKN2A	ENSG00000147889	CFR	3	14	TRUE	true	5	1	[113, 113]:5	1.00	5.55	1.46E-08	5.84E-08	1.00E-08	1.00E-08	$\begin{aligned} & 1.00 \mathrm{E}- \\ & 08 \end{aligned}$	0.00E+00	0.00E+00	5.55E-12	$\begin{aligned} & 1 \cdot 16 \mathrm{E}- \\ & 08 \end{aligned}$
HRAS	ENSG00000174775	CFR	3	7	true	true	6	2	[12, 13]:4,[61,61]:2	0.82	4.13	1.85E-05	3.70E-05	2.66E-02	3.00E-04	$\begin{aligned} & 2 \cdot 30 \mathrm{E}- \\ & 03 \end{aligned}$	3.26E-06	5-40E-04	6.81E-06	$\begin{aligned} & \text { 1.07E- } \\ & 02 \end{aligned}$
NOTCH1	ENSG00000148400	FR	2	15	TRUE	true								2-40E-03	1.00E-04	$\begin{aligned} & 2 \cdot 92 \mathrm{E}- \\ & 02 \end{aligned}$	1.37E-06	2.73E-04	$6.91 \mathrm{E}-08$	$\begin{aligned} & 1 \cdot 18 \mathrm{E}- \\ & 04 \end{aligned}$
FAT1	ENSG00000083857	FR	2	13		true								1.00E-08	1.00E-08	$\begin{aligned} & 1.00 \mathrm{E}- \\ & 08 \end{aligned}$	0.00E+00	0.00E+00	9.88E-11	$\begin{aligned} & 1.86 \mathrm{E}- \\ & 07 \end{aligned}$
CASP8	ENSG00000064012	FR	2	6	TRUE	true	2	1	[472,472]:2	0.33	0.42	3.38E-01	3.38E-01	1.29E-02	8-00E-03	$\begin{aligned} & \text { 7.02E- } \\ & 02 \end{aligned}$	6.00E-04	4.27E-02	$\begin{aligned} & 0.00 \mathrm{E}+0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.00 \mathrm{E}+ \\ & 00 \end{aligned}$
RASA1	ENSG00000145715	FR	2	5		TRUE								4.20E-03	3.50E-03	$\begin{aligned} & 7 \cdot 10 \mathrm{E}- \\ & 03 \end{aligned}$	1.53E-05	2.17E-03	1.48E-05	$\begin{aligned} & 2 \cdot 15 \mathrm{E}- \\ & 02 \end{aligned}$
ATG2A	ENSG00000110046	F	1	6										1.86E-02	5.02E-02	$\begin{aligned} & \text { 3.10E- } \\ & 03 \end{aligned}$	2.75E-04	2.28E-02	1.57E-01	$\begin{aligned} & \text { 1.00E+ } \\ & 00 \end{aligned}$
WEE1	ENSG00000166483	F	1	2										1.68E-02	8.70E-03	$\begin{aligned} & \text { 7.99E- } \\ & 02 \end{aligned}$	8.98E-04	3-89E-02	7.22E-03	$\begin{aligned} & 1.00 \mathrm{E}+ \\ & 00 \\ & \hline \end{aligned}$

Appendix Table 4. Univariate analysis of overall survival (OS) in 75 OSCC patients from

 SCOCC study.| Characteristics | $\begin{gathered} \operatorname{SCOCC}(\mathrm{n}=75) \\ \text { (frequency; percentage) } \end{gathered}$ | Hazards ratio | p-value |
| :---: | :---: | :---: | :---: |
| Age (median: 49.6) | | | $0 \cdot 34$ |
| < 49.6 y | 37 (49.3) | $1 \cdot 00$ (Reference) | |
| $\geq 49 \cdot 6 y$ | 38 (50.7) | 0.55 | |
| Stage | | | $0 \cdot 35$ |
| I-II | 42 (56.0) | $1 \cdot 00$ (Reference) | |
| III-IV | 33 (44.0) | 1.76 | |
| Smoking History | | | $0 \cdot 49$ |
| Lifelong non-smoker | 9 (12.0) | $1 \cdot 00$ (Reference) | |
| Ever smoker | 66 (88.0) | $0 \cdot 58$ | |
| Areca nut chewing History | | | $0 \cdot 34$ |
| Lifelong non-areca nut chewing | 16 (21.3) | 1.00 (Reference) | |
| Ever areca nut chewing | 59 (78.7) | 2.75 | |
| Recurrence | | | $1 \cdot 44 \mathrm{E}-04$ |
| No | 51 (68.0) | 1.00 (Reference) | |
| Yes | 15 (20.0) | 19.7999 | |
| N/A | 9 (12.0) | | |

Appendix Table 5. Differential expression analysis of MMR genes between AN-related and AN-negative OSCC patients.

Gene_ID	Gene_Name	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
ENSG00000062822	POLD 1	$1946 \cdot 16$	$1 \cdot 12$	0.06	20.06	$1.73 \mathrm{E}-89$	$3 \cdot 14 \mathrm{E}-88$
ENSG00000049541	RFC2	$1666 \cdot 38$	$1 \cdot 24$	0.06	19.99	6.78E-89	$1 \cdot 21 \mathrm{E}-87$
ENSG00000119684	MLH3	691.47	-1.29	0.07	-18.05	7.25E-73	7.92E-72
ENSG00000132646	PCNA	$6119 \cdot 27$	$1 \cdot 04$	0.07	$15 \cdot 60$	7.14E-55	4.81E-54
ENSG00000163918	RFC4	$1230 \cdot 68$	0.75	0.06	11.74	8.15E-32	$2 \cdot 98 \mathrm{E}-31$
ENSG00000064933	PMS1	$483 \cdot 10$	-0.77	0.07	-10.90	$1 \cdot 09 \mathrm{E}-27$	$3 \cdot 59 \mathrm{E}-27$
ENSG00000113318	MSH3	784.03	-0.73	0.07	$-10 \cdot 68$	$1 \cdot 32 \mathrm{E}-26$	$4 \cdot 21 \mathrm{E}-26$
ENSG000000204410	MSH5	272.05	-0.88	0.08	-10.43	$1.78 \mathrm{E}-25$	$5 \cdot 50 \mathrm{E}-25$
ENSG00000057468	MSH4	2.32	-2.71	0.29	-9.37	7.57E-21	$2 \cdot 04 \mathrm{E}-20$
ENSG00000174371	EXO1	$607 \cdot 62$	0.50	0.06	$7 \cdot 72$	$1 \cdot 13 \mathrm{E}-14$	$2 \cdot 52 \mathrm{E}-14$
ENSG00000111445	RFC5	$924 \cdot 45$	0.40	0.05	$7 \cdot 35$	$2 \cdot 01 \mathrm{E}-13$	$4 \cdot 30 \mathrm{E}-13$
ENSG00000122512	PMS2	$1177 \cdot 11$	0.35	0.06	6.20	5.52E-10	$1 \cdot 05 \mathrm{E}-09$
ENSG00000133119	RFC3	717.51	$0 \cdot 25$	0.07	3.54	$3.97 \mathrm{E}-04$	$5.71 \mathrm{E}-04$
ENSG00000095002	MSH2	1420.91	$0 \cdot 15$	0.05	2.77	$5 \cdot 69 \mathrm{E}-03$	$7 \cdot 58 \mathrm{E}-03$
ENSG00000035928	RFC1	$2496 \cdot 20$	-0.17	0.06	$-2 \cdot 76$	$5 \cdot 82 \mathrm{E}-03$	$7.75 \mathrm{E}-03$
ENSG00000076242	MLH1	1077.14	0. 13	0.05	2.71	$6 \cdot 78 \mathrm{E}-03$	$8 \cdot 98 \mathrm{E}-03$
ENSG00000116062	MSH6	3038.25	0.04	$0 \cdot 05$	$0 \cdot 86$	$3 \cdot 91 \mathrm{E}-01$	$4 \cdot 38 \mathrm{E}-01$

Appendix Table 6. Copy number alterations identified in 113 OSCC patients from SCOCC study.

Unique Name	cytoband $^{\text {a }}$	wide peak boundaries	q value	residual q value	genes in wide peak
Amplification Peak 1	7p11.2	chr7:48560238-56119892	$1 \cdot 01 \mathrm{E}-31$	$1 \cdot 01 \mathrm{E}-31$	CCT6A,DDC,EGFR,GBAS,GRB10,HPVC1,PSPH,IKZF1,ZPBP,COBL,SEC61G,MRPS17,LAN
					CL2,FIGNL1,VOPP1,ABCA13,CDC14C,VSTM2A,POM121L12,LOC285878,14-
					Sep,ZNF713,FKBP9L,VWC2, FLJ45974,LOC100129427,C7orf72,
					hsa-mir-548k,hsa-mir-3164,CCND1,DHCR7,CTTN,
Amplification Peak 2	11q13.3	chr11:68777784-71192730	$1.75 \mathrm{E}-19$	$2 \cdot 07 \mathrm{E}-13$	FGF3,FGF4,PPFIA1,FADD,FGF19,SHANK2,MYEOV,ANO1,NADSYN1,MRGPRF,TPCN2,O
					RAOV1,FLJ42102,MIR $548 \mathrm{~K}, \mathrm{MIR} 3664$,
Amplification Peak 3	7q22.1	chr7:102141437-102467866	7-14E-08	7-14E-08	RASA4,FAM185A,FBXL13,POLR2J2,SPDYE2,POLR2J3,UPK3BL,SPDYE2L,
					BIRC2,BIRC3,MMP1,MMP3,MMP7,MMP8,MMP10,MMP12,MMP13,PGR,TRPC6,MMP20,Y
Amplification Peak 4	11q22.2	chr 11:100847633-103027792	$1 \cdot 62 \mathrm{E}-07$	$1 \cdot 59 \mathrm{E}-03$	AP1,KIAA1377,MMP27,DYNC2H1,TMEM133,DCUN1D5,C11orf70,TMEM123,ARHGAP42,
					ANGPTL5,LOC100288077,MIR3920,
Amplification Peak 5	9p13.3	chr9:35396680-35754480	$2 \cdot 14 \mathrm{E}-07$	$2 \cdot 42 \mathrm{E}-07$	CA9,CD72,RMRP,TESK1,TLN1,TPM2,RGP1,RUSC2,CREB3,UNC13B,SIT1,GBA2,C9orf100,
					ATP8B5P,CCDC107,MSMP,FAM166B,MIR4667,
					hsa-mir-101-2,MLANA,GLDC,INSL4,JAK2,RLN1,
Amplification Peak 6	9p24.1	chr9:4618369-7165643	$1 \cdot 67 \mathrm{E}-06$	$1.93 \mathrm{E}-06$	RLN2,RCL1,INSL6,KDM4C,RANBP6,CD274,AK3,C9orf68,CDC37L1,C9orf46,KIAA1432,ER
					MP1,PDCD1LG2,TPD52L3,IL33,UHRF2,KIAA2026,PPAPDC2,MIR101-2,MIR4665,
Amplification Peak 7	1q21.2	chr1:147126767-148589439	4.48E-05	$4 \cdot 48 \mathrm{E}-05$	GJA5,GJA8,NBPF14,ACP6,GPR89B,PPIAL4A,NBPF11,NBPF15,FLJ39739,PPIAL4D,PPIAL4
					B,NBPF24,GPR89C,NBPF16,PDZK1P1,PPIAL4F,
Amplification Peak 8	2q11.2	chr2:97493697-98263772	$1 \cdot 29 \mathrm{E}-04$	$1 \cdot 59 \mathrm{E}-04$	COX5B,CNNM3,ANKRD39,FAM178B,SEMA4C,ANKRD36B,FAHD2B,ANKRD23,ANKRD3
					6,LOC100506123

Amplification Peak 9	3q27.1	chr3:183775108-184289462	4.08E-04	4.08E-04
Amplification Peak 10	19 p 12	chr19:23845269-30206014	7.60E-04	9.64E-04
Amplification Peak 11	6 p 12.1	chr6:53409662-55113889	$1.05 \mathrm{E}-03$	$1.05 \mathrm{E}-03$
Amplification Peak 12	8p11.23	chr8:38110875-38458507	$1 \cdot 85 \mathrm{E}-03$	1.85E-03
Amplification Peak 13	14q11.2	chr14:22539249-22991344	3.24E-03	3.24E-03
Amplification Peak 14	2p11.2	chr2:89619431-95815146	4.68E-03	7.70E-03
Amplification Peak 15	20q11.23	chr20:33370081-36488689	2.25E-02	2.25E-02
Amplification Peak 16	22q11.21	chr22:20891808-21965620	2.25E-02	2.25E-02
Amplification Peak 17	8 q 24.22	chr8:133591056-134261297	2.62E-02	2.62E-02
Deletion Peak 1	5 q 31.3	chr5:140056738-140167722	$2 \cdot 67 \mathrm{E}-10$	8.29E-10
Deletion Peak 2	4 4 3.2	chr4:186384468-191154276	2.54E-09	2.54E-09
Deletion Peak 3	7q22.1	chr7:102113787-102467866	5.02E-09	5.02E-09

hsa-mir-1224,AP2M1,CLCN2,DVL3,EIF4G1,
EPHB3,POLR2H,PSMD2,THPO,CHRD,EIF2B5,ECE2,ALG3,ABCF3,VWA5B2,CAMK2N2,F AM131A,HTR3C,HTR3E,SNORD66,MIR1224
UQCRFS1,ZNF254,POP4,PLEKHF1,C19orf12,LOC148145,LOC148189,ZNF681,ZNF675,LOC 284395,VSTM2B,RPSAP58,ZNF726,LOC100101266,LOC100505835

GCLC,HCRTR2,TINAG,LRRC1,MLIP,FAM83B,KLHL31
FGFR1,DDHD2,WHSC1L1,PPAPDC1B,LETM2,RNF5P1,C8orf86
[DAD1]
MAL,MRPS5,ZNF514,LOC90499,TEKT4,ACTR3BP2,LOC442028,GGT8P,LOC654342,ANK RD20A8P
hsa-mir-1289-1,hsa-mir-499,EPB41L1,GGT7,GHRH,
GSS,EIF6,NNAT,RBL1,RPN2,SPAG4,SRC,GDF5,CPNE1,NFS1,RBM39,RBM12,MYL9,PROC R,MMP24,BLCAP,CEP250,DLGAP4,NCOA6,SAMHD1,C20orf4,TRPC4AP,PHF20,SCAND1, ERGIC3,UQCC,EDEM2,ACSS2,C20orf24,CTNNBL1,NDRG3,MYH7B,TGIF2,MANBAL,DSN 1,FER1L4,SLA2,HMGB3P1,FAM83C,C20orf132,KIAA0889,C20orf118,ROMO1,C20orf173,C2 0orf152,MIR499A,LOC647979,LOC100287792,TGIF2-C20ORF24,MIR499B hsa-mir-649,CRKL,SERPIND1,PI4KA,SLC7A4,

UBE2L3,LZTR1,P2RX6,SNAP29,HIC2,POM121L8P,MED15,THAP7,TMEM191A,MGC16703 ,AIFM3,RIMBP3C,POM121L4P,PI4KAP2,LOC400891,BCRP2,THAP7-
AS1,P2RX6P,RIMBP3B,TMEM191C
SLA,TG,WISP1,NDRG1,LRRC6,PHF20L1,TMEM71
HARS2,VTRNA1-3,VTRNA1-2,VTRNA1-1,ZMAT2
F11,FAT1,FRG1,HSP90AA4P,KLKB1,MTNR1A,TLR3,SORBS2,DUX4,FAM149A,DUX2,PD LIM3,ZFP42,TRIML2,CYP4V2,LOC285441,LOC339975,TRIML1,LOC401164,DUX4L4,FRG 2,FLJ38576,DUX4L6,DUX4L5,DUX4L3,DUX4L2,LOC100288255
RASA4,FAM185A,POLR2J2,SPDYE2,POLR2J3,UPK3BL,SPDYE2L

Deletion Peak 4	2q34	chr2:208576795-215812597	1.07E-07	1.07E-07
Deletion Peak 5	19p13.3	chr 19:811020-871374	6.01E-07	6.01E-07
Deletion Peak 6	3 p 12.3	chr3:74536064-88175577	6.82E-09	3.63E-06
Deletion Peak 7	18 q 22.2	chr18:64172758-71740872	3.02E-05	3.02E-05
Deletion Peak 8	11 q 24.2	chr 11:123448478-124493627	5.57E-05	1.01E-04
Deletion Peak 9	2 q 11.1	chr2:89105239-95815146	2.01E-04	2.01E-04
Deletion Peak 10	21 q 22.3	chr21:47636729-47879407	4.41E-05	2.01E-04
Deletion Peak 11	8p23.2	chr8:2091648-6267164	3.46E-04	3.42E-04
Deletion Peak 12	1 q 21.2	chr 1:148591523-149804881	4.45E-04	6.24E-04
Deletion Peak 13	5q13.2	chr5:67591605-68651952	1.81E-04	2.23E-03
Deletion Peak 14	10 q 21.3	chr10:70066913-70680063	2.84E-03	2.84E-03
Deletion Peak 15	13q12.11	chr 13:20660350-23903889	3.44E-03	3.44E-03

hsa-mir-548f-2,ACADL,BARD1,CPS1,CRYGA,
CRYGB,CRYGC,CRYGD,ERBB4,IDH1,MAP2,MYL1,PTH2R,RPE,FZD5,LANCL1,IKZF2,CP S1-
IT1,SPAG16,C2orf67,PIKFYVE,UNC80,PLEKHM3,C2orf80,VWC2L,LOC100130451,MIR548 F2,LOC100507443,MIR4776-1,MIR4775,MIR4776-2
hsa-mir-3187,AZU1,CFD,ELANE,PRTN3,LPPR3, MIR3187
hsa-mir-4273,hsa-mir-1324,GBE1,HTR1F,POU1F1
ROBO1,ROBO2,CGGBP1,CHMP2B,CADM2,VGLL3,LOC401074,LOC440970,FLJ20518,FA M86DP,ZNF717,FRG2C,MIR1324,MIR4273,MIR4795,MIR4444-1
SOCS6,CD226,RTTN,TMX3,CCDC102B,NETO1,DSEL,CBLN2,DOK6,LOC400655,LOC6435 42,LOC100505776,LOC100505817

VWA5A,ZNF202,OR8G2,OR8B8,OR8G1,OR8B2,SCN3B,PANX3,OR8B12,OR8G5,OR10G8, OR10G9,OR10S1,OR6T1,OR4D5,OR8D1,OR8D2,OR8B4,TMEM225,OR8D4,OR6X1,OR6M1, OR10G4,OR10G7,OR8B3,OR8A1
MAL,MRPS5,LOC90499,TEKT4,ACTR3BP2,LOC442028,GGT8P,LOC654342,ANKRD20A8P ,MIR4436A

PCNT,MCM3AP,C21orf58,YBEY,MCM3AP-AS1
CSMD1,LOC100287015
FCGR1A,HIST2H4A,FAM91A2,PPIAL4A,LOC388692,HIST2H2BF,HIST2H4B,PPIAL4D,LO C645166,PPIAL4B,PPIAL4C,HIST2H3D,LOC728855,NBPF16,PPIAL4F,PPIAL4E,FCGR1C CCNB1,CDK7,SLC30A5,CENPH,MRPS36,CCDC125
hsa-mir-1254,DNA2,HNRNPH3,SLC25A16, RUFY2,CCAR1,TET1,STOX1,SNORD98 FGF9,GJA3,GJB2,SGCG,IFT88,SAP18,GJB6,LATS2,CRYL1,IL17D,XPO4,MRP63,N6AMT2, SKA3,EFHA1,ZDHHC20,BASP1P1,MIR4499
hsa-mir-31,CDKN2A,CDKN2B,ELAVL2,

Deletion Peak 16	9p21.2	chr9:21305545-26917503	$3 \cdot 07 \mathrm{E}-03$	4.54E-03	IFNA1,IFNA2,IFNA6,IFNA8,IFNA13,MTAP,C9orf53,KLHL9,DMRTA1,C9orf82,TUSC1,IFN
					E,MIR31,FLJ35282,MIR31HG,CDKN2B-AS1,LOC100506422
Deletion Peak 17	11p15.4	chr11:9445758-9595741	$2 \cdot 00 \mathrm{E}-02$	$2 \cdot 00 \mathrm{E}-02$	ZNF143,LOC644656,SNORA23
					hsa-mir-935,hsa-mir-373,NDUFA3,PRKCG,
Deletion Peak 18	19q13.42	chr19:54261807-54618960	$1 \cdot 35 \mathrm{E}-02$	$2 \cdot 25 \mathrm{E}-02$	CACNG8,CACNG7,CACNG6,NLRP12,MYADM,OSCAR,VSTM1,TARM1,MIR371A,MIR372
					,MIR373,MIR516A2,MIR519A2,MIR935,MIR371B

Appendix Table 7. Primers for quantitative real-time PCR (qPCR) assays and sequences of siRNAs.

Name	Primer sequence (5'-3')
$A T G 2 A$-qPCR_F	ACTCGCTGCTGAAGATGACC
ATG2A -qPCR_R	TCCGTGTACTCAGGCTCAGA
ATG9A -qPCR_F	GCTGTTCCTGAGGTGGTCAA
ATG9A -qPCR_R	GTGCAATACGGAAGGGCAGA
WEE1 -qPCR_F	CGATATTTCTCTGCGTGGGC
WEE1 -qPCR_R	CACATACCACTGTGAGGGCA
GAPDH -qPCR_F	AGCCACATCGCTCAGACAC
GAPDH -qPCR_R	GCCCAATACGACCAAATCC
$M L H 1-q P C R _F$	CTCTTCATCAACCATCGTCTGG
$M L H 1-q P C R _R$	GCAAATAGGCTGCATACACTGTT
$M S H 2$-qPCR_F	ATCCAGGCATGCTTGTGTTG
$M S H 2$-qPCR_R	CTTCACCTGATAAAGCATAG
$W E E 1$ siRNA1	CCUCAGGACAGUGUCGUCGUAGAAA
WEE1 siRNA2	GGCAUGAAAUCAGACAGGGUAGAUU
$A T G 2 A ~ s i R N A 1 ~$	CCGAAGACCUGUGGCUGAUUGAGCA
$A T G 2 A$ siRNA2	

Appendix Table 8. Statistics of whole-exome sequencing for 113 tumor-blood paired

OSCC patients from SCOCC study.

Sample ID	Sample Type	Mapped reads	Mapping Rate (\%)	Reads in target rate (\%)	Coverage (X)
Sample_N001	blood	73,617,465	99.87\%	83.09\%	$120 \cdot 144$
Sample_N002	blood	67,795,991	99.65\%	80.50\%	105.237
Sample_N003	blood	66,765,050	99.68\%	81.03\%	104.548
Sample_N004	blood	73,865,458	99.92\%	83.62\%	121.591
Sample_N005	blood	77,001,535	99.57\%	79.05\%	116.460
Sample_N006	blood	73,851,151	99.89\%	81-29\%	116.707
Sample_N007	blood	74,194,394	99.90\%	82.01\%	118.272
Sample_N008	blood	73,845,454	99.62\%	79.86\%	113.225
Sample_N009	blood	77,981,160	99.91\%	81.54\%	124.101
Sample_N010	blood	75,323,087	99.88\%	79.81\%	115.233
Sample_N011	blood	74,587,459	99.90\%	81.91\%	118.843
Sample_N012	blood	74,208,412	99.68\%	81.36\%	117.388
Sample_N013	blood	74,711,346	99.87\%	81.77\%	119.136
Sample_N014	blood	74,965,301	99.90\%	82.90\%	122.708
Sample_N015	blood	78,328,582	99.86\%	80.70\%	121.713
Sample_N016	blood	76,137,524	99.69\%	81.26\%	120.018
Sample_N017	blood	69,141,017	99.69\%	81.54\%	109.542
Sample_N018	blood	75,077,599	99.86\%	79.44\%	114.761
Sample_N019	blood	77,995,718	99.92\%	82.65\%	$126 \cdot 615$
Sample_N020	blood	77,986,213	99.88\%	80.94\%	121.799
Sample_N021	blood	75,552,763	99.90\%	80.82\%	118.186
Sample_N022	blood	74,065,319	99.88\%	81.35\%	117.026
Sample_N023	blood	72,117,579	99.74\%	81.82\%	115.108
Sample_N024	blood	70,207,834	99.72\%	82.72\%	113.773
Sample_N025	blood	75,731,715	99.87\%	81.37\%	119.475
Sample_N026	blood	76,109,407	99.90\%	80.38\%	118.471
Sample_N027	blood	76,139,605	99.87\%	82.91\%	$123 \cdot 886$
Sample_N028	blood	67,668,610	99.70\%	81.28\%	106.953
Sample_N029	blood	75,350,151	99.67\%	81.03\%	118.274
Sample_N030	blood	76,677,968	99.87\%	82.04\%	122.679
Sample_N031	blood	76,942,014	99.87\%	81.66\%	122.482
Sample_N032	blood	76,727,178	99.85\%	83.17\%	125.449
Sample_N033	blood	72,779,610	99.91\%	81.71\%	116.086
Sample_N034	blood	66,863,523	99.66\%	81.24\%	105.188
Sample_N035	blood	77,246,687	99.87\%	81.62\%	122.313
Sample_N036	blood	79,043,428	99.86\%	81.01\%	123.890
Sample_N037	blood	77,460,696	99.76\%	80.60\%	$120 \cdot 561$

Sample_N038	blood	72,168,086	99.71\%	79.95\%	111.088
Sample_N039	blood	77,505,703	99.91\%	81.60\%	123.036
Sample_N040	blood	101,330,380	99.87\%	80.55\%	156.492
Sample_N041	blood	96,532,469	99.87\%	80.83\%	150.231
Sample_N042	blood	106,197,504	99.87\%	79.03\%	162.975
Sample_N043	blood	95,814,598	99.76\%	79.81\%	144.852
Sample_N044	blood	99,681,300	99.77\%	81-16\%	153.524
Sample_N045	blood	73,300,742	99.71\%	77.67\%	$108 \cdot 160$
Sample_N046	blood	91,551,299	99.75\%	80.03\%	138.226
Sample_N047	blood	101,578,083	99.74\%	80.22\%	153.682
Sample_N048	blood	107,028,563	99.77\%	80.92\%	164.504
Sample_N049	blood	107,095,543	99.76\%	81.24\%	165.597
Sample_N050	blood	92,111,506	99.74\%	80.29\%	$139 \cdot 102$
Sample_N051	blood	115,272,590	99.75\%	80.52\%	175.075
Sample_N052	blood	86,117,546	99.71\%	81.08\%	131.581
Sample_N053	blood	97,998,792	99.75\%	80.67\%	149.674
Sample_N054	blood	99,656,094	99.77\%	81.12\%	153.420
Sample_N055	blood	102,561,303	99.76\%	80.65\%	156.992
Sample_N056	blood	94,951,885	99.77\%	80.86\%	$146 \cdot 139$
Sample_N057	blood	102,964,309	99.77\%	80.37\%	156.721
Sample_N058	blood	97,236,476	99.77\%	80.37\%	148.145
Sample_N059	blood	114,087,072	99.81\%	82.43\%	181.931
Sample_N060	blood	105,901,364	99.77\%	81.44\%	165.159
Sample_N061	blood	110,815,591	99.79\%	81.66\%	173.572
Sample_N062	blood	110,642,167	99.77\%	77.12%	166.554
Sample_N063	blood	114,246,077	99.78\%	79.27\%	177.062
Sample_N064	blood	97,249,091	99.77\%	79.59\%	149.087
Sample_N065	blood	84,213,416	99.77\%	81.58\%	132.686
Sample_N066	blood	94,849,701	99.76\%	80.04\%	145.348
Sample_N067	blood	92,888,127	99.88\%	80.60\%	142.518
Sample_N068	blood	91,495,511	99.88\%	80.22\%	138.750
Sample_N069	blood	95,864,708	99.86\%	82.06\%	149.939
Sample_N070	blood	91,367,181	99.75\%	80.60\%	141.699
Sample_N071	blood	101,440,204	99.74\%	81.18\%	159.123
Sample_N072	blood	114,780,380	99.80\%	80.65\%	176.385
Sample_N073	blood	104,260,861	99.80\%	80.38\%	158.774
Sample_N074	blood	100,811,800	99.78\%	80.68\%	154.507
Sample_N075	blood	105,752,261	99.82\%	80.33\%	161.540
Sample_N076	blood	84,366,375	99.76\%	78.99\%	124.586
Sample_N077	blood	90,465,266	99.82\%	81.38\%	140.680
Sample_N078	blood	113,038,880	99.83\%	79.26\%	170.682
Sample_N079	blood	120,436,683	99.82\%	80.08\%	182.918
Sample_N080	blood	102,785,101	99.82\%	80.95\%	158.564
Sample_N081	blood	110,128,573	99.80\%	78.96\%	$163 \cdot 230$

Sample_N082	blood	98,118,390	99.75\%	80.50\%	148.619
Sample_N083	blood	82,353,016	99.74\%	79.45\%	121.912
Sample_N084	blood	111,699,689	99.78\%	81.83\%	173.956
Sample_N085	blood	98,344,459	99.74\%	80.51\%	149.650
Sample_N086	blood	109,684,249	99.77\%	79.94\%	165.277
Sample_N087	blood	99,271,355	99.77\%	81.17\%	$153 \cdot 133$
Sample_N088	blood	97,212,737	99.79\%	82.00\%	152.468
Sample_N089	blood	99,791,982	99.78\%	81.30\%	154.302
Sample_N090	blood	104,819,256	99.76\%	80.68\%	$160 \cdot 142$
Sample_N091	blood	99,840,053	99.86\%	79.12%	153.702
Sample_N092	blood	97,923,740	99.87\%	79.07\%	$150 \cdot 344$
Sample_N093	blood	99,799,420	99.86\%	78.69\%	$151 \cdot 300$
Sample_N094	blood	103,161,277	99.79\%	78.38\%	154.963
Sample_N095	blood	91,284,792	99.81\%	80.21\%	141.474
Sample_N096	blood	105,122,562	99.80\%	80.38\%	163.303
Sample_N097	blood	104,707,663	99.80\%	80.41\%	$162 \cdot 188$
Sample_N098	blood	105,182,866	99.78\%	79.12%	158.381
Sample_N099	blood	144,785,433	99.82\%	80.34\%	223.837
Sample_N100	blood	131,993,559	99.73\%	82.00\%	208.629
Sample_N101	blood	104,480,008	99.80\%	80.63\%	162.092
Sample_N102	blood	113,480,077	99.80\%	80.55\%	175.847
Sample_N103	blood	85,374,410	99.79\%	80.96\%	133.223
Sample_N104	blood	103,199,243	99.79\%	80.82\%	$160 \cdot 559$
Sample_N105	blood	81,165,044	99.78\%	81.69\%	127.866
Sample_N106	blood	85,671,076	99.78\%	80.20\%	131.573
Sample_N107	blood	115,137,233	99.79\%	80.67\%	178.942
Sample_N108	blood	109,741,093	99.74\%	80.27\%	168.694
Sample_N109	blood	102,826,071	99.76\%	79.89\%	156.806
Sample_N110	blood	101,823,365	99.77\%	81.00\%	155.617
Sample_N111	blood	97,072,253	99.82\%	77.73%	141.443
Sample_N112	blood	104,491,378	99.75\%	81.59\%	163.341
Sample_N113	blood	92,133,005	99.73\%	80.93\%	141.189
Sample_T001	tumor	70,009,146	99.81\%	81.61\%	113.032
Sample_T002	tumor	64,543,384	99.77\%	81.85\%	103.756
Sample_T003	tumor	76,633,048	99.80\%	80.53\%	119.944
Sample_T004	tumor	66,149,072	99.74\%	82.33\%	107.015
Sample_T005	tumor	70,458,275	99.89\%	81.35\%	111.185
Sample_T006	tumor	72,387,599	99.72\%	81.61\%	115.420
Sample_T007	tumor	70,457,227	99.76\%	82.55\%	114.596
Sample_T008	tumor	71,053,168	99.90\%	83.19\%	116.938
Sample_T009	tumor	70,720,028	99.91\%	83.50\%	117.287
Sample_T010	tumor	73,489,334	99.81\%	80.82\%	115.102
Sample_T011	tumor	70,879,330	99.73\%	81.20\%	112.247
Sample_T012	tumor	70,679,940	99.74\%	81.01\%	110.898

Sample_T013	tumor	73,098,190	99.76\%	80.84\%	115.504
Sample_T014	tumor	68,044,762	99.78\%	81.73\%	109.192
Sample_T015	tumor	69,663,558	99.87\%	82.61\%	112.107
Sample_T016	tumor	70,832,493	99.76\%	80.56\%	112.081
Sample_T017	tumor	70,867,325	99.74\%	81.65\%	112.869
Sample_T018	tumor	71,637,312	99.90\%	81.49\%	114.579
Sample_T019	tumor	70,844,455	99.74\%	82.73\%	115.856
Sample_T020	tumor	72,083,178	99.90\%	82.48\%	118.434
Sample_T021	tumor	67,536,051	99.79\%	80.85\%	$107 \cdot 118$
Sample_T022	tumor	70,391,238	99.81\%	81.32\%	112.106
Sample_T023	tumor	70,716,146	99.77\%	81.63\%	113.825
Sample_T024	tumor	72,282,785	99.87\%	82.61\%	116.223
Sample_T025	tumor	71,726,420	99.83\%	81.96\%	$115 \cdot 307$
Sample_T026	tumor	71,340,144	99.78\%	80.31\%	110.911
Sample_T027	tumor	71,944,537	99.82\%	81.94\%	115.593
Sample_T028	tumor	73,096,105	99.91\%	84.58\%	124.050
Sample_T029	tumor	67,406,510	99.82\%	81.73\%	108.875
Sample_T030	tumor	72,842,400	99.91\%	83.54\%	119.691
Sample_T031	tumor	78,434,465	99.72\%	81.30\%	124.096
Sample_T032	tumor	75,604,621	99.81\%	81.22\%	$120 \cdot 306$
Sample_T033	tumor	78,744,911	99.80\%	82.17\%	128.136
Sample_T034	tumor	74,682,622	99.89\%	82.50\%	120.551
Sample_T035	tumor	72,381,951	99.82\%	81.25\%	114.758
Sample_T036	tumor	75,293,660	99.67\%	81.09\%	118.376
Sample_T037	tumor	73,249,280	99.91\%	83.07\%	119.433
Sample_T038	tumor	73,325,480	99.90\%	81.22\%	115.763
Sample_T039	tumor	61,847,055	99.76\%	81.02\%	98.742
Sample_T040	tumor	90,286,688	99.85\%	78.37\%	132.348
Sample_T041	tumor	73,977,106	99.67\%	73.42\%	103.181
Sample_T042	tumor	107,835,222	99.87\%	79.06\%	$160 \cdot 286$
Sample_T043	tumor	96,832,012	99.89\%	78.15\%	143.711
Sample_T044	tumor	106,139,404	99.84\%	77.97\%	155.774
Sample_T045	tumor	94,762,729	99.85\%	78.30\%	139.716
Sample_T046	tumor	112,125,617	99.86\%	78.59\%	172.141
Sample_T047	tumor	92,611,000	99.84\%	77.90\%	135.334
Sample_T048	tumor	104,951,750	99.83\%	78.46%	156.368
Sample_T049	tumor	105,551,400	99.84\%	78.51%	157.611
Sample_T050	tumor	99,718,159	99.86\%	79.50%	149.414
Sample_T051	tumor	99,165,517	99.86\%	78.01\%	144.059
Sample_T052	tumor	105,183,652	99.86\%	80.25\%	161.869
Sample_T053	tumor	95,700,330	99.85\%	78.55\%	142.189
Sample_T054	tumor	96,497,431	99.85\%	78.70\%	$142 \cdot 110$
Sample_T055	tumor	118,270,367	99.85\%	78.60\%	175.005
Sample_T056	tumor	99,773,399	99.85\%	79.14\%	149.729

Sample_T057	tumor	107,840,968	99.82\%	78.85\%	160.781
Sample_T058	tumor	97,395,037	99.86\%	78.70\%	143.069
Sample_T059	tumor	106,172,535	99.84\%	79.59\%	161.899
Sample_T060	tumor	96,783,893	99.86\%	78.43%	$144 \cdot 178$
Sample_T061	tumor	100,579,784	99.90\%	77.22%	148.707
Sample_T062	tumor	93,676,035	99.81\%	76.98\%	136.278
Sample_T063	tumor	90,268,343	99.85\%	77.32\%	$135 \cdot 119$
Sample_T064	tumor	95,439,787	99.82\%	77.27\%	139.029
Sample_T065	tumor	91,536,359	99.82\%	77.43\%	133.299
Sample_T066	tumor	103,945,396	99.83\%	78.19\%	153.327
Sample_T067	tumor	96,044,915	99.87\%	79.76\%	$145 \cdot 177$
Sample_T068	tumor	88,318,791	99.87\%	77.46\%	129.010
Sample_T069	tumor	97,713,298	99.82\%	77.94%	$143 \cdot 608$
Sample_T070	tumor	86,821,769	99.86\%	78.89\%	128.080
Sample_T071	tumor	88,567,408	99.82\%	79.61\%	134.707
Sample_T072	tumor	90,621,515	99.87\%	78.50\%	134.791
Sample_T073	tumor	96,571,307	99.85\%	79.41\%	$146 \cdot 150$
Sample_T074	tumor	108,922,968	99.84\%	79.15%	164.365
Sample_T075	tumor	95,757,614	99.83\%	77.69\%	140.834
Sample_T076	tumor	92,350,943	99.85\%	76.88\%	137.537
Sample_T077	tumor	90,687,891	99.87\%	78.45\%	132.994
Sample_T078	tumor	105,352,836	99.88\%	79.67%	159.837
Sample_T079	tumor	105,097,088	99.87\%	77.07\%	152.211
Sample_T080	tumor	94,571,341	99.82\%	78.02\%	138.636
Sample_T081	tumor	95,280,622	99.86\%	77.09\%	141.896
Sample_T082	tumor	92,447,438	99.84\%	79.45\%	139.359
Sample_T083	tumor	88,362,475	99.87\%	79.17%	131.059
Sample_T084	tumor	73,002,478	99.87\%	74.62\%	103.995
Sample_T085	tumor	86,756,348	99.84\%	77.73\%	125.691
Sample_T086	tumor	101,903,738	99.85\%	79.02\%	153.519
Sample_T087	tumor	98,854,373	99.85\%	76.95\%	143.046
Sample_T088	tumor	87,125,257	99.88\%	76.18\%	123.161
Sample_T089	tumor	86,084,303	99.68\%	77.02%	122.881
Sample_T090	tumor	96,274,201	99.82\%	77.53\%	140.610
Sample_T091	tumor	77,412,443	99.84\%	79.19%	115.064
Sample_T092	tumor	94,956,157	99.71\%	77.56\%	136.974
Sample_T093	tumor	99,547,739	99.85\%	79.05\%	147.697
Sample_T094	tumor	89,500,765	99.84\%	79.41%	133.263
Sample_T095	tumor	93,893,288	99.85\%	79.79\%	142.766
Sample_T096	tumor	115,731,444	99.85\%	77.53\%	168.585
Sample_T097	tumor	101,327,272	99.87\%	78.84%	$150 \cdot 623$
Sample_T098	tumor	95,847,507	99.86\%	79.13%	141.981
Sample_T099	tumor	88,656,082	99.86\%	77.59\%	129.141
Sample_T100	tumor	105,221,953	99.86\%	78.71\%	$156 \cdot 813$

Sample_T101	tumor	$99,352,904$	$99 \cdot 85 \%$	$79 \cdot 09 \%$	$149 \cdot 662$
Sample_T102	tumor	$89,272,305$	$99 \cdot 85 \%$	$79 \cdot 18 \%$	$131 \cdot 786$
Sample_T103	tumor	$92,820,670$	$99 \cdot 84 \%$	$79 \cdot 51 \%$	$140 \cdot 534$
Sample_T104	tumor	$81,854,228$	$99 \cdot 85 \%$	$78 \cdot 35 \%$	$119 \cdot 220$
Sample_T105	tumor	$96,171,348$	$99 \cdot 86 \%$	$77 \cdot 04 \%$	$142 \cdot 811$
Sample_T106	tumor	$107,870,541$	$99 \cdot 84 \%$	$77 \cdot 82 \%$	$157 \cdot 789$
Sample_T107	tumor	$96,249,192$	$99 \cdot 85 \%$	$77 \cdot 10 \%$	$141 \cdot 566$
Sample_T108	tumor	$97,118,677$	$99 \cdot 88 \%$	$76 \cdot 79 \%$	$140 \cdot 690$
Sample_T109	tumor	$101,653,804$	$99 \cdot 83 \%$	$77 \cdot 68 \%$	$149 \cdot 821$
Sample_T110	tumor	$98,552,591$	$99 \cdot 85 \%$	$77 \cdot 56 \%$	$144 \cdot 957$
Sample_T111	tumor	$91,116,229$	$99 \cdot 82 \%$	$78 \cdot 05 \%$	$134 \cdot 457$
Sample_T112	tumor	$104,518,348$	$99 \cdot 84 \%$	$78 \cdot 04 \%$	$151 \cdot 473$
Sample_T113	tumor	$96,837,735$	$99 \cdot 80 \%$	$71 \cdot 14 \%$	$130 \cdot 135$

