Appendix 1: Formulae and methods

Impact of baseline imbalance

We use a simple worked example to demonstrate the impact that imbalance between groups can have on an analysis extrapolating outcomes for individual participants in both arms of a hypothetical trial of 10 patients (Table A1).
Table A1 Data for a hypothetical trial with baseline imbalance in age, extrapolated using a simple “model”
	Patient
	Treatment
	Age
	Life expectancy from start of trial (years)*

	1
	Placebo
	61
	19

	2
	Placebo
	63
	17

	3
	Placebo
	64
	16

	4
	Placebo
	65
	15

	5
	Placebo
	67
	13

	6
	Statin
	71
	12

	7
	Statin
	73
	10

	8
	Statin
	74
	9

	9
	Statin
	75
	8

	10
	Statin
	77
	6


* Assuming that all patients live to 80 without statins and 83 with statins.

In this example, the placebo group happens to be 10 years younger at baseline and the “model” makes two simple assumptions: that all patients will live to 80 without statins; and that statins increase life expectancy by three years. Analyses that do not adjust for baseline age find that life expectancy is seven years shorter in the statin group, since they do not account for the fact that the statin group is 10 years older at baseline. When we do ordinary least squares regression controlling for age, we obtain the correct life expectancy difference of three years.

Although this is an extreme example, it illustrates the danger of unadjusted values. More generally, if the patients in the control arm of an RCT are at higher (or lower) risk of death than in the treatment group, this chance difference will increase (or decrease) event rates and decrease (or increase) life expectancy and QALYs within the control arm. Unless we adjust for this imbalance, we could therefore overestimate (or underestimate) the benefits of treatment, even if the difference is non-significant. Indeed, it has been suggested that testing the statistical significance of differences in baseline characteristics between randomised groups is meaningless.[1]  
In principle, baseline imbalance can also introduce bias as well as random noise into purely within-trial analyses calculating absolute differences in post-treatment outcomes[2] (e.g. LDL), event rates, life expectancy or QALYs that are correlated with baseline variables. However, it is more problematic for situations where we extrapolate IPD using PLS, since the model imposes a direct causative relationship between end of trial values and outcome. The effect will be greatest for variables that have greatest influence in the model and those that do not change during the trial (e.g. sex or ethnicity) or for which baseline and end of trial values are perfectly correlated (e.g. age or duration of diabetes). This suggests that researchers should adjust for additional factors (particularly age and sex) when estimating post-treatment outcomes or absolute differences in costs, QALYs and life years for any statistical analysis or economic evaluation where outcomes are analysed on a natural scale and where mortality plays a significant role. It has previously been suggested that trial analyses should adjust for all variables where the correlation with outcome is >0.5, regardless of imbalance or sample size.[3].
It should be noted that baseline imbalances are only propagated into model results for models where we extrapolate the individual participants from both arms of a trial: not in models where the treatment effect (e.g. mean difference in LDL cholesterol) is applied to the same cohort in both arms of the model, or where outcomes for both treatment arms are simulated.

Analysis 1: Percentiles across bootstraps 

Within the UKPDS-OM2, 95% CI around the life expectancy, QALYs and costs in each group and differences between groups are calculated as the 2.5th and 97.5th percentiles across the predictions from M sets of bootstrapped risk equation coefficients.[4]  These 95% CI consider only parameter uncertainty around the risk equations and ignore heterogeneity or sampling uncertainty around the mean risk factors in each group and around the difference in risk factors between randomised groups. As a result, the 95% CI around group means and differences between groups are the same regardless of how large or small a sample of trial data was extrapolated in the model. These 95% CI nonetheless give a useful measure of the uncertainty around predictions for individuals: i.e. where the risk factor data entered in the model are specific to an actual person or represent risk factors for a “typical” individual representing a patient group of interest. However, 95% CI representing parameter uncertainty around risk equations are not sufficient to represent the uncertainty around incremental life-years, costs or QALYs for an RCT when data for individual trial participants are extrapolated as randomised because they assume that the trial has 100% power and that there is no uncertainty around treatment effects for any risk factor.
The UKPDS-OM2 calculates percentiles using the third variant of linear interpolation based on National Institute of Standards and Technology (NIST) classification. However, for the purposes of the simulation study, we calculated the 2.5th and 97.5th percentiles in Stata using the centile function. These functions give very similar, but not identical percentiles with 800 bootstraps.

Analysis 2: Analytical formulae for Rubin’s rule

Rubin’s rule was developed to estimate SEs around statistics calculated on datasets in which missing data have been imputed using multiple imputation.[5, 6] This method combines within-imputation variance (i.e. uncertainty around the mean for our cohort within one imputed dataset) with between-imputation variance (i.e. uncertainty due to missing data). Applying the same principles and formulae to multiple “imputations” extrapolated using the UKPDS-OM2, we use Rubin’s rule to combine within-bootstrap variance (sampling uncertainty) with between-bootstrap variance (parameter uncertainty).

Based on Rubin’s rule,[5, 6]  the variance (
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 mean difference in life expectancy, 
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) is equal to the variance within each bootstrap (W averaged across the M bootstraps), plus the variance between bootstraps (B) multiplied by a bias-correction factor 
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 where M equals the number of bootstraps. 
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For Analysis 2, the between-bootstrap variance (B) across the estimates of life-years gained with statin compared with no statin (
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) was calculated as the sum of the squared differences between mean life years gained for bootstrap m (
[image: image7.wmf]m

y

, averaged across N patients) and the grand mean across M bootstraps and N patients (
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We applied (2) to the difference in life expectancy between groups for each bootstrap, to allow for the fact that the predicted life expectancy for the atorvastatin group in bootstrap m will be correlated with that for the no-atorvastatin group in bootstrap m. The same formula can also be applied to calculate mean life expectancy in each study arm.

To calculate W, we first squared differences between the life expectancy for patient n in bootstrap m (
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) and the mean life expectancy in that study arm for bootstrap m (
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, averaged across N patients in that arm of the trial). The squared differences were summed across the N patients in each arm, then divided by 
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 to give the SD-squared and then divided by N to give an estimate of within-bootstrap 
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and averaged across the M bootstraps to give W. 
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This can also be calculated more simply by calculating the SD for life expectancy in bootstrap m across the N patients in arm T ([image: image17.png]


 ) and then dividing by N to give an estimate of within-bootstrap 
[image: image18.wmf]2

SE

and averaged across the M bootstraps to give W.
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Since the within-bootstrap variance (W) for each group is independent in a parallel-group trial, we added the within-bootstrap variance in the treatment group to the within-bootstrap in the control group to give the within-bootstrap variance for the difference in life expectancy.

All measures of y, including
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, represent the mean life-years averaged over L loops (where L may be 1, 2000 or 1 million). All measures of y included life-years accrued during the trial period and the extrapolated period combined. Before applying Equations 2-4, we first added the life-years accrued by each patient during the 16-week trial period (0.308 for all patients since no trial participants died) to the life years accrued by the same patient in the extrapolated period, and added the mean within-trial life years in each arm to the mean extrapolated life years for each bootstrap. In this case, since all patients were alive at the end of the 16-week trial, this has no impact on incremental life expectancy or any SEs and simply increases the total life expectancy in each arm by 16 weeks. More generally, since the within-trial outcomes for each patient are directly observed and do not vary between bootstraps, variation in outcomes accrued during the trial period would contribute only to W, not to B. 

The proportion of the variance that was attributable to sampling uncertainty around the AFORRD sample was calculated as  [image: image23.png]W /var(¥)



 , while the proportion of the variance attributable to parameter uncertainty was calculated as [image: image25.png]B /var(¥)



. The correlation between W and B was calculated in Stata using the correlate function.
Analysis 3: Summing within- and between-bootstrap variances
Under the standard rules of statistics, the variance around the sum of two random variables is: 
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(5)
If the variables are uncorrelated, the covariance is 0; the variance around the sum of the variables therefore equals the sum of the variances:
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This rule is employed within ANOVA to compartmentalise the variance (e.g. into two factors in a factorial trial[7]) and has also been applied to the MCE and parameter uncertainty within a PLS model.[8]
In this case, the between-bootstrap variance is independent of the within-bootstrap variance because the between-bootstrap variance results from variability and uncertainty in the UKPDS trial sample, while the within-bootstrap variance reflects variability and uncertainty in the AFORRD trial sample.

In Method 3, we therefore calculated the variance as 
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When M approaches infinity, the bias-correction factor in Rubin’s rule [image: image31.png]1+3)



 will approach 1 and therefore the combined variance calculated using Rubin’s rule (1) will approach the sum of the mean of the variance within bootstraps plus the variance of the means between bootstraps (7). With 800 bootstraps, the bias-correction factor in Rubin’s rule is 1.00125, so the variances for Analysis 2 and 3 would be expected to differ by no more than 0.125% of B.

Analysis 4: Rubin’s rule regression

In these analyses, we used the mim command in Stata to conduct ordinary least squares regression on each of the 800 bootstraps and use Rubin’s rule to estimate the mean and SE for the coefficient on the treatment group dummy. These analyses rely upon having access to the matrix of outcomes for each bootstrap for each patient (averaged over L loops). In this study, we used a beta version of the model (2.01b5) adapted to save this matrix as a .csv file. This functionality is now included in version 2.1 of the UKPDS-OM2, where the .csv file is saved when the “Patient bootstraps” option is selected. 
Two analyses using Rubin’s rule regression are presented in the main body of the paper (Tables 2 and 4):

4a) Rubin's rule regression with no covariates.
4b) Rubin's rule regression adjusting for pre-randomisation values of all UKPDS inputs (non-white ethnicity, gender, age, duration of diabetes, BMI, history of atrial fibrillation, smoking, HDL-cholesterol, LDL-cholesterol, blood pressure and HbA1c).
Four sensitivity analyses using a subset of the covariates examined in Analysis 4b are presented in Appendix 3, Table A5:
4c) Rubin's rule regression adjusting for age: mim was used to adjust for age, since this was the strongest predictor of life expectancy in exploratory data analysis.

4d) Rubin's rule regression adjusting for cardiovascular risk: mim was used to adjust for 10-year cardiovascular risk calculated using the UKPDS risk engine,
 ADDIN EN.CITE 

[9, 10]
 since this provides a single variable capturing all of the risk factors.

4e) Rubin's rule regression adjusting for LDL: mim was used to adjust for LDL, since this was the variable that showed the greatest imbalance between the statin and no-statin group at baseline (Appendix 3, Table A4).

4f) Rubin's rule regression adjusting for age, cardiovascular risk and LDL: mim was used to adjust for all three variables simultaneously. 
Analysis 5: SD across bootstraps from UKPDS and trial

This analysis was conducted only on the first run of 800 bootstraps with 1, 2000 and 1 million loops, since it was expected to give roughly the same results as Analyses 2, 3 and 4a, but took markedly longer to simulate.

For each UKPDS-OM2 bootstrap, we drew a bootstrap sample with replacement from AFORRD, recorded the mean life expectancy for the statin and no statin arm and repeated the process for each UKPDS-OM2 bootstrap 1000 times. The 95% CI were estimated by simply taking the 2.5th and 97.5th percentiles of the resulting 800,000 estimates. In practice, it is likely to be possible to apply this method using a smaller number of bootstraps from the current trial sample.
Assumptions made in each analysis

Table A2 Assumptions made in each analysis
	Analysis
	Assumptions made

	1 and 5


	Made no assumptions about the distribution, except to assume that we have sufficient data to reliably identify the top and bottom 2.5% of the distribution.

	2, 3 and 4a-f
	Mean incremental life expectancy is assumed to be normally distributed: 95% CI calculated are based on a normal distribution. The central limit theorem suggests that this is reasonable with 732 patients.

	2, 3, 4a-f
	Between-bootstrap variance and within-bootstrap variance are assumed to be independent: between-bootstrap variance results from variability and uncertainty in the UKPDS trial sample, while within-bootstrap variance reflects variability and uncertainty in the AFORRD trial sample

	4a-f
	Assumptions underpinning ordinary least squares regression: e.g. homoscedasticity, linear relationships between continuous risk factors and life expectancy and no omitted variables

	1, 2, 3, 4a, 5
	Randomised groups are balanced at baseline

	4b-f
	Randomised groups are balanced at baseline, except for the covariates included in the analysis

	All analyses
	Risk factors remain constant after the end of the trial with no uncertainty around risk factor trajectories

	All analyses
	Non-attendance at the 16-week follow up is missing completely at random/non-informative censoring

	All analyses using 2000 or 1 million loops
	Sufficient loops have been run that MCE is negligible

	All analyses using 1 loop
	It is assumed to be appropriate to include MCE in SEs


General

Within the UKPDS-OM, point estimates (i.e. mean costs, life years and QALYs) are calculated as the average across predictions for each patient using the mean values for each risk equation parameter, rather than as the average across bootstraps. Using the mean values for each risk equation parameter ensures that accurate, stable point estimates are obtained even with small numbers of bootstraps. However, it also means that the point estimates for costs, life years and QALYs do not take account of the fact that most models (particularly PLS models) have non-linear relationships between inputs and outputs and that model outputs based on the expected value for input parameters will not equal the expected costs and QALYs averaged across the distribution of parameters.[11] In our simulation study, we based all results on the mean across all bootstraps, which took account of nonlinearity and ensured that results for each run differed depending on the 800 bootstraps used in that run.
Estimation of 95% CI and coverage

Critical values from the normal distribution were calculated in Excel 2010 and used to estimate 95% CI in Stata. Percentiles were used to directly calculate 95% CI for Analyses 1 and 5. For the other analyses, we calculated 95% CI as [image: image33.png]mean + 1.959963985 - SE



. 
Coverage was calculated as the proportion of the 1000 runs for which [image: image35.png]Lower CI < x AND x < Upper CI



, where x equals the mean from the long-run average run for the analysis using the same set of covariates. 
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� EMBED Equation.3 ���








� The bias correction factor increases the variance when small numbers of imputed datasets are generated to ensure that SEs include MCE arising in the imputation process.
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