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A: VALIDITY OF METHOD AFTER HAGERMAN & OLOFSSON  
We checked whether the assumption of short-term linearity was valid for the algorithms, as it is a necessary 

criterion for a reliable outcome of Hagerman & Olofsson’s method. For this we used Olofsson & Hansen’s 

method (2006), in which the nonlinear distortion of a system is measured using the fact that the real and 

imaginary parts of the analytical signal corresponding to the input signal to a system after being passed 

through a nonlinear system are no longer a Hilbert pair. The nonlinear distortion depends mainly on the 

algorithm, but can also be influenced by the processed signal, for example by its frequency content. 

Therefore, the analysis was done using the acoustic environments from experiment 2, to have a range of 

different input signals. The level of the estimated nonlinear distortion relative to the level of the processed 

superposition of target and noise signals is listed in Table S1 for all algorithms and in all acoustic 

environments of experiment 2. If the algorithm is short-time linear, the level of the estimated distortion 

should be very low compared to the level of the processed superposition of target and noise signals. 

Acceptable levels for the nonlinear distortion are values below -20 dB, because then the influence of the 

nonlinear distortion on the SNR is low. It can be seen in Table S1 that this was the case for all algorithms 

except AMVDRb. For the AMVDRb, the setting with the fastest adaptation time showed high levels of the 

estimated nonlinear distortion. This could also be heard when listening to the output signals. For the 

intermediate setting the level of the estimated distortion was still above threshold and some distortion 

could still be heard in the output signals. The slowest setting had a low estimated distortion level and there 

was barely any distortion audible in the output signals. This means that the assumption of short-time 

linearity is not valid for the fast and intermediate settings. Therefore, the signals obtained using the 

method after Hagerman & Olofsson and the SNR calculated from these signals might be inaccurate for 

these settings. To explore the nature of the distortions, spectrograms were plotted in supplementary 

materials B.  

Table S1: Level of the estimated nonlinear distortion of the method after Hagerman & Olofsson relative to the level of the 

processed target plus noise signal in dB for each algorithm and environment.  

Environment cafeteria cafeteria lecture- living- street trainAlgorithm dualtask listeningonly 
hall room active station  

D&Sb  -55.9 dB  -54.2 dB  -57.2 dB  -56.4 dB  -59.3 dB  -51.6 dB  

ADMb  -52.9 dB  -51.3 dB  -56.8 dB  -58.3 dB  -57.4 dB  -59.0 dB  

SBb -43.9 dB -43.6 dB -40.0 dB -46.2 dB -40.0 dB -40.6 dB fast -7.4 dB -8.9 dB -0.3 dB -6.9 dB -7.3 dB 

-3.3 dB inter- -18.8 dB -18.6 dB -14.7 dB -18.5 dB -18.5 dB -13.2 dB  

AMVDRb mediate  

slow  -28.5 dB  -29.7 dB  -25.2 dB  -31.0 dB  -29.0 dB 

 -26.6 dB BNR  -45.6 dB  -44.8 dB  -45.1 dB  -45.1 dB  -46.6 dB 

 -46.9 dB  

SCNR  -22.1 dB  -20.5 dB  -30.2 dB  -31.6 dB  -26.8 dB  -26.4 dB  

    
B: SPECTROGRAMS OF ESTIMATED NONLINEAR DISTORTION  
To explore the nature of the nonlinear distortions in the AMVDRb algorithm output, spectrograms were 

plotted of the nonlinear distortions estimated with the method after Olofsson & Hansen (2006) for the 

recorded signals of the cafeterialisteningonly environment without head movement in Figure S1. The plots 



confirm that the estimated nonlinear distortion of the fastest setting has the highest power. The power of 

the distortions is mainly in the low frequency range below 1 kHz.   

  
Figure S1: Spectrograms of estimated nonlinear distortion for the AMVDRb algorithm with the three different settings, using 

the method after Olofsson & Hansen (2006). The estimated nonlinear distortion in the cafeterialisteningonly environment without 

head movement is plotted. The colorbar shows the power in dB.  

C: POLAR PLOTS OF SNR BENEFIT, TARGET GAIN AND NOISE GAIN  
Polar plots were made of the SNR benefit, target gain and noise gain of the left hearing aid output for the 

algorithms in all three scenarios of experiment 1, in order to characterize them. Signals were recorded by 

turning the simulated listener in the respective directions and then recording for 10 seconds: the first 5 s 



for adaptation and the second 5 s for the calculation of the SNR and gain. The polar plots of SNR benefit, 

target gain and noise gain of the algorithms in the three different scenarios are displayed in Figure S2. It 

can be seen that benefit and gain of the BNR and SCNR algorithms did not depend on the direction, these 

algorithms are omnidirectional. All the other algorithms are beamformers and directional. The D&Sb and 

ADMb algorithms had a cardioid target gain pattern, whereas the patterns of the SBb and AMVDRb 

algorithms were narrower towards the target direction. Comparing the average target gain for the 

different scenarios showed how much the algorithms adapt to the noise scenario. For the D&Sb and SBb 

algorithms, the average target gain polar pattern was exactly the same in all scenarios, because these 

algorithms were non-adaptive. The ADMb algorithm adapted only minimally, but the other algorithms 

adapted more. Furthermore, the SNR benefit patterns indicate the direction of optimal benefit for each 

directional algorithm in each scenario. In scenario 1, with one noise source at +120°, the direction of 

optimal benefit for the ADMb was about -30° and for the D&Sb about -80°. In the other scenarios and for 

the other directional algorithms, the direction of optimal benefit was uniformly towards the target source.  

D: INPUT AND OUTPUT SNR EXPERIMENT 2  
The mean input SNR and output SNR over time for all algorithms in all environments are plotted in Figure 

S3. The plot shows that the different head movement traces also result in a different output SNR, which 

means that the algorithms did not just compensate for the differences in input SNR due to head movement, 

but that their performance is really affected by the head movement. The plot also shows that the range in 

output SNR is in some cases larger than the range in input SNR. This means that there are other factors 

than the input SNR affecting the output SNR.  

E: ALGORITHM BENEFIT PER ROTATIONAL HEAD SPEED  
Scatter plots of the algorithm benefit versus the horizontal angular rotational head speed, including 

regression lines, are shown in Figure S4. The plots show that the algorithm benefit is constant over the 

head speed for all algorithms (slopes and regression values close to zero), so there is no dependency and 

maladaptation is not contributing to the movement effect.  



  
Figure S2: The directional SNR benefit, average target gain and average noise gain of the algorithms in scenario 1 (left column), 

scenario 2 (middle column) and scenario 3 (right column) from experiment 1 at -5 dB long-term input SNR for the left hearing 

aid output. Signals were recorded by turning the simulated listener in the respective directions and then recording for 10 

seconds, the first 5 s for adaptation and the second 5 s for the calculation of the SNR and gain.  



  
Figure S3: Mean input and output SNR over time for all algorithms, movement traces and environments. Box plots show the 

median (different symbol and color for each algorithm), 25th and 75th percentiles (thick line) and the range (thin line). The 

range in input SNR and output SNR shows that different head movement traces result in a different input SNR and output SNR.  

  
Figure S4: Algorithm benefit as a function of horizontal rotational angular head speed for all algorithms in all environments. 

Linear regression lines were plotted through each set of data points. The regression values and slopes of the regression lines 

are displayed in the top right corner with matching colors. This shows that the algorithm benefit is not dependent on the head 

speed.  

  


