
Supplementary Materials

Successes and struggles with computational reproducibility:

Lessons from the Fragile Families Challenge∗

David M. Liu and Matthew J. Salganik

1 Replication status for each paper

• Ahearn and Brand: We were able to reproduce the three prediction.csv files within our

error tolerance, and we were able to reproduce Table 2. We did not attempt to reproduce

the other tables and figures because we did not deem them to be essential to reproducing the

main results in the paper, and the relevant files were not included in the replication materials.

One thing to note is that while the values in the prediction.csv files match nearly exactly, the

row order differed between the provided and generated prediction.csv files. As an example,

rows 13 and 21 are swapped for model 1 (imputed data).

• Altschul: We were able to reproduce all 3 prediction.csv files exactly. Further, we were able

to reproduce Tables 1, 2, and 3 (with some tiny differences likely due to rounding). We note

that there is some manual post-processing required to take the output from

table figures.txt and create Table 1. We did not deem the figures necessary to re-

produce.

∗The Docker images described in this article are available at: https://hub.docker.com/r/2018dliu/

fragilefamilieschallenge_socius_reproducibility.

1

https://hub.docker.com/r/2018dliu/fragilefamilieschallenge_socius_reproducibility
https://hub.docker.com/r/2018dliu/fragilefamilieschallenge_socius_reproducibility


• Carnegie and Wu: We ran out of time to verify the results. However, the code is available,

and we have created a Docker image with the necessary dependencies.

• Compton: We ran out of time to verify the results. However, the code is available, and we

have created a Docker image with the necessary dependencies.

• Davidson: We ran out of time to verify the results. However, the code is available, and we

have created a Docker image with the necessary dependencies.

• Filippova et al.: All 25 prediction.csv files are computationally reproducible. Initially, we

were able to exactly match 15 of the prediction.csv files, but not all of them. For the files

that did not match the differences were minor (differing by at most 0.284) and did not alter

the substantive conclusions of the paper. Working with the authors, we decided that these

deviations were likely caused by differences between the authors’ computing environment

and our computing environment. Therefore, we decided that the final results would be those

that came from our computing environment, which is readily available (as opposed to the au-

thors’ computing environment which is only available to researchers at a specific university

and will likely change over time). Further, we were able to reproduce Figures 2, 3, 4, and 5

(Figure 1 did not need to be reproduced).

• Goode et al.: We were able to reproduce the one prediction.csv file. There are 3 tables, but

they were created manually and we didn’t attempt to reproduce them.

• McKay: We were able to reproduce the one prediction.csv file within our error tolerance.

Further, we were able to reproduce Table 1 and Figures 1 and 2. We did not attempt to

reproduce Table 2 because we did not deem it to be essential to reproducing the main results

in the paper, and the relevant files were not included in the replication materials.

• Raes: We were able to reproduce all 11 prediction.csv files within our error tolerance. Fur-

ther, we were able to reproduce the tables. For Table 1, we were able to reproduce all rows

related to submitted predictions. For Table 2, we did not attempt to reproduce the results

2



because the table includes leaderboard and holdout scores. For Table 3, we only attempted

to reproduce the results related to model 6, and we were successful.

• Rigobon et al.: We ran out of time to verify the results. However, the code is available, and

we have created a Docker image with the necessary dependencies.

• Roberts: We ran out of time verifying the results from phase 1, but given those results, we

were able to match, within an error tolerance of 10−15, the 150 MSE scores calculated in

phase 2. We did not deem the tables and figures necessary to reproduce as they were based

upon the leaderboard and holdout scores.

• Stanescu et al.: We were able to reproduce the single prediction.csv file. We were able to

reproduce Tables 1 and 2 and Figures 1 and 2.

2 Amazon Web Services specification

Table 1 shows the software and hardware that we used to execute the code for eleven

of the twelve papers.1 All of the machines were accessed through Amazon Web Services and

used a Linux operating system known as the Amazon Linux AMI. The AMI ID specifies the

exact operating system version we used. We determined the hardware configuration based on the

computing demands of each submission and a trial-and-error process. As a default, we instantiated

machines of type t2.2xlarge, which was the most powerful computing category in Amazon Web

Services’ General Purpose T2 series. For submissions that needed more computing resources, we

used the c5.9xlarge instances.

1Ahearn and Brand (2019) required an installation of Stata, which is not open source software. Therefore, we could
not include Stata inside a Docker image. Ultimately, we executed the code on a private computing cluster with the
following specifications: Intel Xeon CPU E7-4850 v3 @ 2.20 GHz (4 processors) with 512 GB RAM, using a 64-bit
operating system, operating Windows Server 2012 R2 Standard, running Stata 14.

3



First Author Instance Type AMI ID
Altschul t2.2xlarge amzn-ami-hvm-2017.09.0.20170930-x86 64-gp2 (ami-8c1be5f6)
Carnegie t2.2xlarge amzn-ami-hvm-2017.09.0.20170930-x86 64-gp2 (ami-8c1be5f6)
Compton t2.2xlarge amzn-ami-hvm-2017.09.0.20170930-x86 64-gp2 (ami-8c1be5f6)
Davidson c5.9xlarge amzn2-ami-hvm-2.0.20181008-x86 64-gp2 (ami-0922553b7b0369273)
Filippova c5.9xlarge amzn2-ami-hvm-2.0.20181008-x86 64-gp2 (ami-0922553b7b0369273)
Goode c5.9xlarge amzn2-ami-hvm-2.0.20181024-x86 64-gp2 (ami-013be31976ca2c322)
McKay t2.2xlarge amzn-ami-hvm-2017.09.0.20170930-x86 64-gp2 (ami-8c1be5f6)
Raes t2.2xlarge amzn-ami-hvm-2017.09.0.20170930-x86 64-gp2 (ami-8c1be5f6)
Rigobon c5.9xlarge amzn2-ami-hvm-2.0.20181008-x86 64-gp2 (ami-0922553b7b0369273)
Roberts t2.2xlarge amzn-ami-hvm-2017.09.0.20170930-x86 64-gp2 (ami-8c1be5f6)
Stanescu t2.2xlarge amzn-ami-hvm-2017.09.0.20170930-x86 64-gp2 (ami-8c1be5f6)

Table 1: All of our Amazon Web Services instances ran a distribution of Linux known as Ama-
zon Linux AMI. The “AMI ID” specifies the exact version. We varied each instance’s hardware
specification (“Instance Type”) based on the code’s computational load.

3 Reproducibility memo

The following is a copy of the memo that we sent to all authors along with our reviews of

their initial manuscripts.

Background behind reproducibility guidelines

First, we’d like to step back from the details to describe the high-level goal. We want your

articles to be computationally reproducible, which means that another researcher could regenerate

the results in your paper using the Challenge data, your code, and any additional data that you have

created. Computational reproducibility will increase the impact of your work individually, and it

will increase the contribution of the Challenge collectively.

As we’ve learned during this first round of reviews, the goal of computational reproducibil-

ity is widely shared by scientists, easy to state, and tricky to achieve. Based on what we’ve learned

from your code, our thinking on how to achieve this goal has evolved. In particular, we’ve been

very influenced by the idea of a research pipeline described by Peng and Eckel (2014), which is

nicely captured by this figure: http://bit.ly/2qrTWXK.

The goal of this document is to provide you with guidelines that support computational

4

http://aip.scitation.org/doi/abs/10.1109/MCSE.2009.6
http://bit.ly/2qrTWXK


reproducibility of your entire research pipeline, which goes from raw data to final output. You

don’t have to follow these guidelines exactly; if you devise a system that you think is better, you

are welcome to use it. But, if you have no system in place, we are going to strongly encourage that

you adopt these guidelines.

The Guidelines

The most important thing to keep in mind is that we are asking you to create one single

script named run all that executes all the necessary files to go from the raw data to the final results.

One way to do this is to write a shell script that calls the submission files in sequence. An example

of a simple shell script is shown below:

Running the above script will execute each line, one after another. Note that the screen shot

includes examples for many common languages. More background information on writing bash

scripts is available at this link. Of course, you may write the run all script in the language of your

choice so long as it can be executed from the command line.

While you are creating this script, we think it will be helpful to organize your input files,

intermediate files, and output files into a standard directory (i.e., folder) structure. We think that

this structure would help you create a modular research pipeline; see Peng and Eckel (2014) for

more on the modularity of a research pipeline. This modular pipeline will make it easier for us to

ensure computational reproducibility, and it will make it easy for other researchers to understand,

re-use, and improve your code.

Here’s a basic structure that we think might work well for this project and others:

data/

code/

5

https://ryanstutorials.net/bash-scripting-tutorial/bash-script.php


output/

README

LICENSE

In the data/ directory you can include:

• background.csv (this should not actually be included because of privacy constraints, but we

will put it here)

• train.csv (this should not actually be included because of privacy constraints, but we will put

it here)

• Supplemental materials such as metadata files, the constructed-data dictionary, the machine-

readable codebook.

• Data that you have collected or created, such as a csv file that you manually created that has

your MSE scores on the holdout data and/or an analytic dataset created by your code.

In your code/ directory you can include:

• Executable “run-all” script that when run goes from raw inputs all the way to final outputs

(for this script we encourage you to think about the research pipeline idea from Peng and

Eckel 2014)

• Source code files each with a useful header (see FAQ).

• Package requirements

– For python submissions, please include a requirements.txt file. More information here.

– For R submissions, please list all libraries utilized in a file named requirements r.txt.

Include each library name on a new line.

In your output/ directory you can include:

6

https://github.com/fragilefamilieschallenge/variables-metadata
https://github.com/aarshayj/FragileFamiliesChallenge/blob/master/FFC_Data_Dictionary.xlsx
https://codalab.fragilefamilieschallenge.org/f/api/codebook/
https://codalab.fragilefamilieschallenge.org/f/api/codebook/
http://bit.ly/2qrTWXK
http://bit.ly/2qrTWXK
https://pip.pypa.io/en/stable/user_guide/#requirements-files


• prediction.csv

• A subdirectory for tables

• A subdirectory for figures (we also recommend including all data files that can be used to

recreate the figures; see rule 7 of Sandve et al. 2013)

In addition to these three main directories, you should also include a README file and LICENSE

file. We have more information about these files in the FAQ below. We hope that these guidelines

are help, and please let us know if you have any questions.

Code resubmission process

Once you think you are ready to resubmit, here’s a checklist that you can follow to help

ensure that your work will be computationally reproducible:

• I have written the kind of README file that I would like to read (see FAQ below)

• Each code file that I’ve written has a header that will be helpful (see FAQ below)

• I’ve run the submission and I can get from raw files to final output using only materials in

my directories. Then, I’ve done this again and I get the same result. This second step helps

check for problems with seeding.

• I’ve considered refactoring my code (see FAQ below)

Finally, when you resubmit, we ask that you include a revision memo about the code, just as you

will about the manuscript. This revision memo should summarize changes that you have made. In

this revision memo, please also include a rough estimate of the cumulative amount of time it took

you to comply with these guidelines. We are asking for this time estimate because one objection to

computational reproducibility is that it is too burdensome for authors and we would like to assess

this empirically. Finally, please include any suggestions for how this process could have been

easier or more efficient.

7



F.A.Q.

What should go in the README file?

The README file should provide an overview of your code. For example, it could include a

diagram showing the different pieces of their code, their inputs and their outputs. If relevant,

please include expected warnings when executing the code. Mention any provided intermediate

results readers can utilize to decompose the submission into smaller pieces.

The README should also include something about your computing environment and ex-

pected run time; general terms are appropriate here. For example: I ran this on a modern laptop

(circa 2016) and it ran in a few minutes. or This code ran on high-performance cluster and took

one week. Finally, please clearly cite any open sourced content utilized in the submission, such as

resources shared in the FFC blog or more general packages distributed in the computation com-

munity.

What headers should be included at the top of each piece of code?

Based on the ideas in Nagler (1995), we think the following elements should be included at the top

of each piece of code:

• Purpose (in 140 characters or less)

• Inputs

• Outputs

• Machine used (e.g., laptop, desktop, cluster)

• Expected runtime (e.g., seconds, minutes, hours, days, etc)

• Set the seed at the beginning of each file (see rule 6 of Sandve et al. 2013)2

• All the package include statements (e.g., “library(ggplot2)” in R)

2Note added afterwards: This is incomplete. It also helps to set seed inside of functions that have randomness.
Also, there are different kinds of seeds. For example, in Python numpy uses a different seed from the standard python
seed.

8

http://www.fragilefamilieschallenge.org/blog/


If you would like to deviate from this standard, please contact us.

How can I make my code easier to read?

It is hard to offer general advice, but one thing that we can recommend is at the end of the process

take some time to refactor your code). In our experience, code evolves over the course of a project,

and at the end it can be helpful to refactor in order to clean up the structure, improve variable

names, and promote modularity.

Even if you don’t refactor your code, please include additional comments to helper func-

tions and code segments that may be obscure to new readers.

What is our standard for computational reproduciblity for the special issue?

Our standard for computational reproducibility for this special issue is that we should be able to

take whatever code and data you submit, add the Fragile Families Challenge data file, and then

reproduce all of the figures in your paper, all of the tables in your paper, and your predictions.csv

file.

What is not included in our standard for computational reproducibility for the special is-

sue?

We will not attempt to completely recreate your analysis from the written materials. Also, we

will not verify that your description in the paper matches the code. For example, if the paper says

that you use logistic regression to generate your predictions, we will not verify that the code also

uses logistic regression. Further, we will not verify the information that you have provided from

external sources. For example, if you write in the paper that your submission was 10th on the

leaderboard, we will not verify this fact. Finally, we will not verify any of the numbers that are

included in the text of the manuscript. For example, we would not verify a claim in the text such

as: dropping variables with no variation removes 10% of variables. As we hope this list illustrates,

our standard of computational reproducibility is in fact quite limited.

What license should I use?

We strongly recommend the MIT license. You can find it here. Simply replace with 2018 and with

the name of all co-authors of the paper, in the order they are listed in the paper. If you would like

9

https://en.wikipedia.org/wiki/Code_refactoring
https://opensource.org/licenses/MIT


to use some other license, please contact us.

What should I read to learn more about computational reproducibility?

Here’s a partial list. If we’ve left off a good resource, please let us know (fragilefamilieschal-

lenge@gmail.com).

Nagler (1995) “Coding Style Good Computing Practices” PS: Political Science & Politics.

Peng and Eckel (2009) “Distributed Reproducible Research Using Cached Computations”

Computing in Science & Engineering.

Sandvae et al (2013) “Ten Simple Rules for Reproducible Computational Research” PLOS

Computational Biology.

Stodden et al (2016) “Enhancing reproducibility for computational methods” Science.

4 Instructions for executing the code

The instructions below will walk you through executing the code for any Fragile Families

Challenge submission featured in the special issue of Socius.

1. Install Docker

You can install Docker at: https://www.docker.com/. Simply navigate to the ”Get Docker” tab.3 To

verify that Docker is installed properly, open your favorite command line tool (e.g., Terminal for

Mac or Command Prompt for Windows). You should be able to run docker info and see an

output beginning with:

2. Pull the FFC Docker Repository

Once you have installed Docker, you will be able to download and run the FFC code. Each of the
3Docker should run smoothly for machines running Linux, Mac OS, and Windows 10 Pro. If you are running an

earlier version of Windows, we would recommend installing Docker onto an Amazon Web Services instance.

10

mailto:fragilefamilieschallenge@gmail.com
mailto:fragilefamilieschallenge@gmail.com
https://doi.org/10.2307/420315
https://doi.org/10.1109/MCSE.2009.6
https://doi.org/10.1371/journal.pcbi.1003285
http://dx.doi.org/10.1126/science.aah6168
https://www.docker.com/


submissions has already been packaged into a Docker image containing all of the code as well as

software / packages needed to execute. The images are labeled with the following tags:

First Author Docker Image Tag

Rigobon, Daniel rigobon winning 2019

Filippova, Anna filippova humans 2019

Compton, Ryan compton data 2019

McKay, Stephen mckay when 2019

Carnegie, Nicole carnegie variable 2019

Stanescu, Diana stanescu using 2019

Raes, Louis raes predicting 2019

Altschul, Drew altschul leveraging 2019

Goode, Brian goode imputing 2019

Roberts, Claudia roberts friend 2019

Davidson, Thomas davidson black 2019

The instructions below will proceed with the image tag stanescu using 2019. However, the

reader should replace every instance of stanescu using 2019 with the desired Docker tag from the

table above.

Download the desired image with the command:

docker pull 2018dliu/replication:stanescu using 2019

This should give the output shown below:

11



3. Run the Image

The next step is to run the Docker image, which will launch a Docker container, an isolated

computing environment, on your machine. Doing so simply involves typing:

docker run -t -d 2018dliu/replication:stanescu using 2019

Those running the image tagged davidson black 2019 should use this command instead:

docker run -t -d -p 8888:8888

2018dliu/replication:davidson black 2019

This command will expose one of the container’s ports for Jupyter’s notebook UI. Further-

more, those running the image tagged rigobon winning 2019 should use the following command:

docker run -t -d -p 8888:8888 --user root

2018dliu/replication:rigobon winning 2019

4. Explore the submitted code

You can now dig inside the running container to access its contents. The first step is identi-

fying the name of the container. To do so simply type the command: docker container ls.

12



You will receive output similar to:

In the above output, the ID of the container is: 3d4de315125f. To access the con-

tainer, run docker exec -it [insert-container-ID] bash (e.g.: docker exec -it

3d4de315125f bash) . After you run this command, you will be inside of the container and have

access to all of the necessary code and dependencies. You can run ”ls” to view all of the files that

were submitted to the Challenge.

The README files contain instructions for executing the code. For several of the submis-

sions, we have supplemented the author’s README with one of our own, providing additional

execution instructions. In all cases, you must first move the Fragile Families Challenge data files

into the container. You can move the files using the command docker cp, which will copy the

data files from the local file system into the container. Then execute the run all script to trigger the

computing pipeline. This file can be found in either the root or code directory.

13


	Replication status for each paper
	Amazon Web Services specification
	Reproducibility memo
	Instructions for executing the code

