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1 Linear Trend Model

Let Y |X ∼ N(a + bx, σ) and the biomarker values X be uniformly distributed between
0 and 1 as described for the linear trend model. Let q be some threshold and Sq the
subgroup of all patients with biomarker value x < q. Then the expected value of patients
in Sk is

µ = E[Y |X < q] =

∫ q
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where ϕ(µ′,σ′) is the density of the normal distribution with mean µ′ and standard deviation
σ′. The variance of patients in Sq can be calculated by
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12
+ σ2

Setting a = β0 + β2 and b = β1 + β3 for U = 1 (treatment group) and a = β0 and
b = β1 for U = 0 (control group) in the linear trend model gives (10) and (11) in the
manuscript.
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2 Optimal designs

In the manuscript "Optimized multiple testing procedures for nested sub-populations
based on a continuous biomarker" several prior distributions for the cut-off value γ in the
step-function model as well as the linear trend model were investigated. For both models,
we assumed a prior distribution in form of a beta-distribution with shape parameters
(a, b). The results for the shape-parameter (1, 1), (2, 2), (5, 5), (1, 3) and (3, 1) are shown
in the manuscript. In the supplemental material we furthermore show the results for
shape parameters (15, 15), (5, 15) and (15, 5). The following Figure 1 shows the densities
of all investigated priors. The (1, 1)-prior is indicating uncertainty over the whole range
of γ-values. The (2, 2), (5, 5) and (15, 15)-priors are symmetric around 0.5 (Figure 1 (A))
and give more probability to the intermediate γ-values indicating a larger probability
of the treatment-effective sub-population with a size half of the full population. The
different variances of the beta distribution represent the degree of uncertainty on the true
cut-off value γ in the planning phase of a trial. The asymmetric priors (1, 3) and (5, 15)

(respectively (3, 1) and (15, 5)) give a larger probability for a smaller (respectively larger)
sub-population, were the treatment has a positive effect. Note that for both, the linear
trend and the step function model, a sample size of n = 112 per group was used for the
(3, 1) and (15, 5) prior, a sample size of n = 336 per group for the (1, 3) and (5, 15) prior
as well as n = 168 per group for the symmetric priors.

2.1 Number of thresholds

Figure 2 shows the power as a function of the number of thresholds K which are assumed
to be equally spaced at qK = k/K for k = 1, . . . , K. The results are shown for the (15, 15)
(solid black line), the (15, 5) (dotted black line) and the (5, 15) prior (dashed black line)
for different shape parameters λ for the step function model (SFM) as well as the linear
trend model (LTM). As for the prior functions discussed in the manuscript, an adequate
number of thresholds seems to be K = 3 or K = 4.

2.2 Shape parameter λ

Figure 3 shows the power as a function of λ for the SFM and LTM for K = 2, 3 and 4 for
the (15, 15) (solid black line), the (15, 5) (dotted black line) and the (5, 15) prior (dashed
black line). The thresholds were set equally spaced at qK = k/K for k = 1, . . . , K. Tables
1 and 2 give the optimal values. For comparison, the power when using λ = 0 is given.
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Results of the shown priors are comparable to the results discussed in the manuscript.

2.3 Optimizing the shape parameter and spacing of thresholds

Figure 4 shows the results when optimizing the power simultaneously in both, λ and the
thresholds qk. Here, qK was set to 1, always including the full population test. The
optimal values are shown in more detail in Tables 1 and 2. For comparison, the values
for λ = 0 but optimizing the thresholds qk are given. Results of the shown priors are
comparable to the results discussed in the manuscript. Over the λ-values the power using
the optimal spacing are flat for negative λ values. For positive λ values a reduction in
power can be seen. The largest gain in power due to the optimization can be seen for the
(5, 15) prior as compared to using equal spaced thresholds and λ = 0.

3 Simulation results for optimal designs

The thresholds and shape parameters were optimized to maximize the power to demon-
strate a differential treatment effect in at least one of the subgroups averaged over the
respective prior distribution. To investigate the full operating characteristics of the opti-
mal designs, optimizing λ and the thresholds qk simultaneously, we performed simulation
studies. For each scenario we performed 250000 simulation runs. The results are shown
in Tables 3, 4 and 5 for K = 2, 3 and 4, respectively. The tables show the power to
detect a specific subgroup as well as the probability that a specific subgroup is the largest
detected subgroup and may therefore be the most interesting one for a sponsor. Note
that the probability that the full population (SK) is the largest detected population is
equal to the Power to detect SK . Due to the chosen prior functions, the power to detect
the full population is rather low, being largest for the (3, 1) as well as the (15, 5) prior
where a larger effective sub-population was assumed. Note that the slight variations in
the power to detect at least one subgroup between Tables 3, 4 and 5 of the supplement
compared to Tables 1 and 2 in the manuscript as well as Tables 1 and 2 in the supplement
come from the different calculation methods (numerical integration in Tables 1 and 2 of
the manuscript and Tables 1 and 2 in the supplement as compared to simulation studies
in Tables 3 to 5 of the supplement).

3



4 Model Misspecifications

In the manuscript we calculated optimal designs under a step function model as well as
under a linear trend model. To evaluate the robustness of the optimal designs we simulated
power values under model miss-specifications. Especially, we simulated designs under the
Step Function Model (SFM) that were optimized under the Linear Trend Model (LTM)
and vice versa. For each scenario we performed 250000 simulation runs. Tables 6, 7 and 8
shows the results for K = 2, 3 and 4 respectively. Results are shown for using the optimal
designs (optimizing λ and the thresholds qk simultaneously) of the LTM under the SFM
and vice versa. The results can be directly compared to the results of the optimal designs
in Tables 3, 4 and 5. When using the optimal designs of the LTM under the SFM a loss
in the power to detect at least one sub-population up to 15% points for K = 2 and up to
11% for K = 3 and 4 is observed.

When using the optimal designs of the SFM when in reality the LTM holds, the loss
in power is smaller, being up to 10% points for K = 2 and up to 7% for K = 3 and 6%

for K = 4.
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Figure 1: Densities of the different investigated prior distributions. Symmetric (A) and asym-
metric (B) priors for different shape parameters.
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Figure 2: Power as a function of the number of thresholds K for the step function model
(SFM, first row) and the linear trend model (LTM, second row). The thresholds were
set equally spaced at qk = k/K for k = 1, . . . , K. The shape parameter λ was set to 0

(first column), 0.5 (second column) and −0.5 (third column). The results are shown for
the different prior distributions: (15,15) solid black line, (5,15) dashed black line, (15,5)
dotted black line.
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Figure 3: Power as a function of the shape parameter λ for the step function model (SFM,
first row) and the linear trend model (LTM, second row) for 3 different prior distributions
for γ: (15,15) solid black line, (5,15) dashed line, (15,5) dotted line. The thresholds were
set equally spaced at qk = k/K for k = 1, . . . , K for K = 2 (first column), K = 3 (second
column) and K = 4 (third column). The dots show the optimal power.
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Figure 4: Power as a function of the shape parameter λ when using optimal thresholds qk
for each λ for K = 2 (first column), K = 3 (second column) and K = 4 (third column)
for the step function model (SFM, first row) and the linear trend model (LTM, second
row) for 3 different prior distributions for γ: (15,15) solid black line, (5,15) dashed line,
(15,5) dotted line. The dots show the optimal power.
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Table 1: Optimization results for the step function model when optimizing only λ with qk

equally spaced (ES) or both, λ and qk (OS) for 3 prior distributions. For comparison, the
results for setting λ = 0 are given for equally spaced thresholds and optimized thresholds.

Prior distributions

K Setting (15,15) (5,15) (15,5)

2 ES Power λ = 0 0.769 0.457 0.783

opt λ -1.00 -1.00 -0.12

opt Power 0.807 0.493 0.786

OS opt qk for λ = 0 0.44/1 0.22/1 0.68/1

opt Power λ = 0 0.782 0.675 0.825

opt λ -0.92 -0.68 -0.68

opt qk 0.46/1 0.22/1 0.70/1

opt Power 0.818 0.722 0.844

3 ES Power λ = 0 0.763 0.579 0.810

opt λ -0.23 -1.00 0.05

opt Power 0.785 0.634 0.811

OS opt qk for λ = 0 0.40/0.52/1 0.16/0.26/1 0.62/0.76/1

opt Power λ = 0 0.809 0.722 0.841

opt λ -0.41 -0.26 -0.53

opt qk 0.42/0.54/1 0.18/0.28/1 0.66/0.78/1

opt Power 0.834 0.753 0.853

4 ES Power λ = 0 0.779 0.649 0.812

opt λ -0.11 -0.55 0.10

opt Power 0.787 0.711 0.817

OS opt qk for λ = 0 0.36/0.46/0.54/1 0.14/0.20/0.28/1 0.60/0.70/0.78/1

opt Power λ = 0 0.818 0.738 0.846

opt λ -0.36 -0.23 -0.47

opt qk 0.40/0.48/0.56/1 0.16/0.24/0.32/1 0.64/0.74/0.82/1

opt Power 0.839 0.764 0.857
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Table 2: Optimization results for the linear trend model when optimizing only λ with qk equally
spaced (ES) or both, λ and qk (OS) for 3 prior distributions. For comparison, the results for
setting λ = 0 are given for equally spaced thresholds and optimized thresholds.

Prior distributions

K Setting (15,15) (5,15) (15,5)

2 ES Power λ = 0 0.774 0.198 0.901

opt λ -1.00 -1.00 -0.91

opt Power 0.825 0.224 0.927

OS opt qk for λ = 0 0.30/1 0.12/1 0.44/1

opt Power λ = 0 0.879 0.805 0.905

opt λ -0.85 -0.46 -0.73

opt qk 0.28/1 0.12/1 0.46/1

opt Power 0.919 0.859 0.928

3 ES Power λ = 0 0.866 0.465 0.916

opt λ -0.81 -1.00 -0.27

opt Power 0.916 0.528 0.928

OS opt qk for λ = 0 0.22/0.36/1 0.08/0.16/1 0.34/0.54/1

opt Power λ = 0 0.904 0.843 0.921

opt λ -0.32 -0.25 -0.41

opt qk 0.24/0.36/1 0.10/0.16/1 0.40/0.56/1

opt Power 0.926 0.874 0.934

4 ES Power λ = 0 0.884 0.616 0.921

opt λ -0.40 -1.00 -0.14

opt Power 0.921 0.698 0.926

OS opt qk for λ = 0 0.18/0.28/0.40/1 0.08/0.12/0.18/1 0.30/0.44/0.60/1

opt Power λ = 0 0.912 0.854 0.927

opt λ -0.32 -0.17 -0.35

opt qk 0.24/0.32/0.40/1 0.08/0.12/0.18/1 0.38/0.50/0.62/1

opt Power 0.929 0.879 0.935
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Table 3: Simulation results for the optimal designs of the Step Function Model (SFM) and
the Linear Trend Model (LTM) for the different prior distributions for K = 2. The table gives
the Power to detect at least 1 subgroup, the Power to detect Subgroup 1 (S1), the Power
to detect Subgroup 2 (S2, full population) and the probability that S1 is the largest detected
Subgroup. The probability that S2 is the largest detected Subgroup is equal to the Power of
S2.

Model Prior Power at least 1 Power S1 Power S2 Prob S1 largest

SFM (1,1) 0.642 0.598 0.367 0.275

(2,2) 0.692 0.670 0.295 0.397

(5,5) 0.754 0.746 0.189 0.565

(15,15) 0.818 0.818 0.003 0.815

(1,3) 0.562 0.545 0.148 0.414

(5,15) 0.718 0.718 0.000 0.718

(3,1) 0.783 0.740 0.545 0.238

(15,5) 0.843 0.840 0.345 0.498

LTM (1,1) 0.735 0.728 0.220 0.514

(2,2) 0.805 0.803 0.128 0.677

(5,5) 0.874 0.874 0.031 0.843

(15,15) 0.915 0.915 0.000 0.915

(1,3) 0.666 0.665 0.031 0.634

(5,15) 0.852 0.852 0.000 0.852

(3,1) 0.881 0.875 0.374 0.507

(15,5) 0.924 0.924 0.157 0.767
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Table 4: Simulation results for the optimal designs of the Step Function Model (SFM) and
the Linear Trend Model (LTM) for the different prior distributions for K = 3. The table gives
the Power to detect at least 1 subgroup, the Power to detect Subgroup 1 (S1), Subgroup 2
(S2) as well as Subgroup 3 (S3, full population) and the probability that S1 as well as S2 is
the largest detected Subgroup. The probability that S3 is the largest detected Subgroup is
equal to the Power of S3.

Model Prior Power Power Power Power Prob Prob

at least 1 S1 S2 S3 S1 largest S2 largest

SFM (1,1) 0.666 0.516 0.530 0.354 0.109 0.203

(2,2) 0.718 0.599 0.566 0.283 0.134 0.301

(5,5) 0.780 0.700 0.600 0.211 0.173 0.396

(15,15) 0.834 0.795 0.670 0.106 0.162 0.566

(1,3) 0.599 0.469 0.449 0.141 0.140 0.319

(5,15) 0.751 0.678 0.568 0.036 0.182 0.534

(3,1) 0.798 0.686 0.671 0.527 0.100 0.172

(15,5) 0.852 0.817 0.731 0.380 0.114 0.358

LTM (1,1) 0.758 0.643 0.631 0.227 0.123 0.408

(2,2) 0.827 0.758 0.699 0.143 0.126 0.558

(5,5) 0.890 0.846 0.773 0.063 0.116 0.711

(15,15) 0.924 0.894 0.835 0.017 0.088 0.818

(1,3) 0.700 0.600 0.562 0.035 0.138 0.527

(5,15) 0.869 0.826 0.760 0.000 0.109 0.760

(3,1) 0.892 0.842 0.793 0.385 0.093 0.413

(15,5) 0.930 0.908 0.842 0.286 0.086 0.558
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Table 5: Simulation results for the optimal designs of the Step Function Model (SFM) and
the Linear Trend Model (LTM) for the different prior distributions for K = 4. The table gives
the Power to detect at least 1 subgroup, the Power to detect Subgroup 1 (S1), Subgroup 2
(S2), Subgroup 3 (S3) as well as Subgroup 4 (S4, full population) and the probability that
S1, S2 as well as S3 is the largest detected Subgroup. The probability that S4 is the largest
detected Subgroup is equal to the Power of S4.
Model Prior Power Power Power Power Power Prob Prob Prob

at least 1 S1 S2 S3 S4 S1 largest S2 largest S3 largest

SFM (1,1) 0.676 0.460 0.519 0.485 0.343 0.071 0.100 0.161

(2,2) 0.729 0.564 0.576 0.498 0.278 0.090 0.126 0.234

(5,5) 0.790 0.669 0.653 0.539 0.199 0.089 0.153 0.348

(15,15) 0.840 0.772 0.731 0.619 0.113 0.080 0.139 0.509

(1,3) 0.614 0.421 0.456 0.386 0.130 0.091 0.131 0.262

(5,15) 0.763 0.637 0.602 0.476 0.037 0.121 0.165 0.440

(3,1) 0.804 0.639 0.674 0.634 0.526 0.059 0.087 0.133

(15,5) 0.857 0.807 0.758 0.662 0.372 0.075 0.113 0.298

LTM (1,1) 0.769 0.579 0.641 0.586 0.222 0.067 0.113 0.367

(2,2) 0.834 0.721 0.722 0.622 0.139 0.075 0.137 0.484

(5,5) 0.894 0.819 0.800 0.702 0.066 0.066 0.125 0.637

(15,15) 0.926 0.887 0.855 0.783 0.015 0.051 0.092 0.768

(1,3) 0.709 0.584 0.597 0.506 0.031 0.069 0.134 0.475

(5,15) 0.876 0.773 0.782 0.710 0.000 0.053 0.112 0.710

(3,1) 0.896 0.821 0.807 0.736 0.383 0.057 0.097 0.359

(15,5) 0.934 0.899 0.865 0.792 0.304 0.049 0.091 0.490
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Table 6: Model Misspecifications: Simulation results using the optimal designs of the Linear
Trend Model under the Step Function Model (SFM) and using the optimal designs of the Step
Function Model under the Linear Trend Model (LTM) for the different prior distributions for
K = 2. The table gives the Power to detect at least 1 subgroup, the Power to detect Subgroup
1 (S1), the Power to detect Subgroup 2 (S2, full population) and the probability that S1 is the
largest detected Subgroup. The probability that S2 is the largest detected Subgroup is equal
to the Power of S2.

Model Prior Power at least 1 Power S1 Power S2 Prob S1 largest

SFM (1,1) 0.549 0.461 0.242 0.307

(2,2) 0.573 0.534 0.144 0.429

(5,5) 0.606 0.601 0.034 0.572

(15,15) 0.677 0.677 0.000 0.677

(1,3) 0.460 0.434 0.070 0.390

(5,15) 0.593 0.593 0.000 0.593

(3,1) 0.674 0.591 0.351 0.323

(15,5) 0.718 0.714 0.086 0.631

LTM (1,1) 0.660 0.660 0.288 0.373

(2,2) 0.715 0.715 0.204 0.511

(5,5) 0.806 0.806 0.102 0.705

(15,15) 0.857 0.857 0.004 0.853

(1,3) 0.584 0.583 0.046 0.538

(5,15) 0.751 0.751 0.000 0.751

(3,1) 0.821 0.818 0.518 0.302

(15,5) 0.873 0.872 0.425 0.448
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Table 7: Model Miss-Specifications: Simulation results using the optimal designs of the Linear
Trend Model under the Step Function Model (SFM) and using the optimal designs of the Step
Function Model under the Linear Trend Model (LTM) for the different prior distributions for
K = 3. The table gives the Power to detect at least 1 subgroup, the Power to detect Subgroup
1 (S1), Subgroup 2 (S2) as well as Subgroup 3 (S3, full population) and the probability that S1

as well as S2 is the largest detected Subgroup. The probability that S3 is the largest detected
Subgroup is equal to the Power of S3.

Model Prior Power Power Power Power Prob Prob

at least 1 S1 S2 S3 S1 largest S2 largest

SFM (1,1) 0.585 0.298 0.421 0.261 0.082 0.242

(2,2) 0.619 0.401 0.484 0.177 0.091 0.351

(5,5) 0.672 0.498 0.571 0.106 0.086 0.481

(15,15) 0.723 0.581 0.651 0.064 0.067 0.591

(1,3) 0.508 0.286 0.384 0.093 0.095 0.320

(5,15) 0.641 0.490 0.552 0.013 0.087 0.541

(3,1) 0.712 0.490 0.569 0.378 0.067 0.267

(15,5) 0.752 0.630 0.671 0.238 0.063 0.450

LTM (1,1) 0.700 0.688 0.540 0.279 0.159 0.262

(2,2) 0.769 0.759 0.582 0.197 0.186 0.385

(5,5) 0.835 0.828 0.603 0.102 0.232 0.501

(15,15) 0.874 0.868 0.701 0.029 0.173 0.672

(1,3) 0.638 0.629 0.444 0.044 0.195 0.400

(5,15) 0.800 0.794 0.570 0.000 0.230 0.570

(3,1) 0.845 0.833 0.694 0.503 0.147 0.195

(15,5) 0.885 0.877 0.766 0.433 0.116 0.336
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Table 8: Model Miss-Specifications: Simulation results using the optimal designs of the Linear
Trend Model under the Step Function Model (SFM) and using the optimal designs of the Step
Function Model under the Linear Trend Model (LTM) for the different prior distributions for
K = 4. The table gives the Power to detect at least 1 subgroup, the Power to detect Subgroup
1 (S1), Subgroup 2 (S2), Subgroup 3 (S3) as well as Subgroup 4 (S4, full population) and the
probability that S1, S2 as well as S3 is the largest detected Subgroup. The probability that S4

is the largest detected Subgroup is equal to the Power of S4.
Model Prior Power Power Power Power Power Prob Prob Prob

at least 1 S1 S2 S3 S4 S1 largest S2 largest S3 largest

SFM (1,1) 0.600 0.241 0.320 0.411 0.253 0.046 0.073 0.229

(2,2) 0.641 0.341 0.415 0.464 0.170 0.052 0.092 0.327

(5,5) 0.702 0.440 0.520 0.554 0.120 0.046 0.088 0.448

(15,15) 0.748 0.564 0.617 0.642 0.057 0.038 0.065 0.587

(1,3) 0.534 0.269 0.315 0.367 0.074 0.053 0.095 0.312

(5,15) 0.655 0.380 0.464 0.531 0.035 0.039 0.079 0.502

(3,1) 0.731 0.444 0.517 0.564 0.380 0.040 0.064 0.248

(15,5) 0.768 0.587 0.633 0.661 0.263 0.034 0.056 0.415

LTM (1,1) 0.717 0.691 0.603 0.474 0.272 0.109 0.134 0.202

(2,2) 0.773 0.755 0.637 0.481 0.192 0.131 0.161 0.290

(5,5) 0.844 0.828 0.714 0.536 0.101 0.124 0.183 0.436

(15,15) 0.883 0.871 0.781 0.650 0.030 0.094 0.138 0.621

(1,3) 0.657 0.633 0.522 0.356 0.042 0.132 0.168 0.314

(5,15) 0.820 0.807 0.646 0.456 0.000 0.170 0.194 0.456

(3,1) 0.853 0.830 0.748 0.638 0.499 0.093 0.116 0.144

(15,5) 0.891 0.880 0.797 0.701 0.420 0.085 0.102 0.284
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