A two-stage multi-level randomized response technique

with proportional odds models and missing covariates

Appendix A: Maximum Likelihood Estimator

To derive the asymptotic properties of the ML estimator e r, the following regularity

conditions are required.

(A1) E[¥(©)¥](©)] is positive definite in a neighborhood of the true value of ©, where
w,(©) = Xidiag |H\" (©)| WS 1(©) {d; - [p + WH;(©)]}.

(A2) The first derivative of U, (@) with respect to © exists almost surely in a neighborhood of
the true value of ®. Furthermore, in such a neighborhood, the first derivative is bounded

above by a function of (D, X, Z).

We require condition (A1) for the unique solution of the estimating equations. Condition (A2) is
required for the proof of consistency in the estimating equation theory. To show the consistency

of the estimator @, we consider

G.(©) = - {—‘%%56)]
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It can then be shown that G,(©) % G(©), where G(©) = Cov [U,(©)] = E [¥,(©)¥T(0)].
By the Inverse Function Theorem of Foutz (1977) and condition (A1), it follows that a unique
consistent solution exists for the estimating equations U,,(®) = 0 in a neighborhood of the true

value of ®. Therefore, e r is shown to be a consistent estimator of ©.

To derive the asymptotic distribution of \/ﬁ(@ r — ©), by a Taylor’s series expansion of
U(©p) at ©, we can have

0="U,(Op) =U,(0) + a(ggT@ )

= Un(©) — Go(©)v/n(®f — ©) + 0,(1).

(©r — ©) +0,(1)

It can be shown that \/7(0p —0©) = G~1(O)U,(O)+0,(1) because G, (O) 5 G(O). /n(Op —
©®) is then shown to be asymptotically a normal distribution with mean 0 and covariance matrix
. 1 n . . .
Ap = G(O). Let Go(Or) = — 3 Xding [Hf”(@F)] WIS ()W diag {H}“(@F)} X7
i=1

AF = ggl((:)F) can then be shown to be a consistent estimator of Ay because (:)F % @.



Appendix B: Missing Data in Covariates

We wish to derive the asymptotic properties of the proposed estimators under the assumptions
that X is MAR and D, X, and V are discrete. Hence, the following regularity conditions are

required.

(B1) The supp(V') denotes the support of V.. For D; = 0,1,2,..., L4+m—2and V; € supp(V),
the selection probability 7(D;, V;) > 0,i=1,2,...,n.

71-(Dlv‘/l)

(B2) E [M] is finite and positive definite in a neighborhood of true value of @, where
0,() = Xidiag |[H{(©)| WS 1(©) {d: - [py + WH;(©)]}.

(B3) The first derivative of U, (®; 7) with respect to © exists almost surely in a neighborhood
of the true value of ®. Further, in such a neighborhood, the first derivative is bounded

above by a function of (D, X, V'), whose expectation exists.

Inverse Probability Weighting Method

For any nonsingular matrix B, define B~ = [B~!]". For vector b, define b2 = bb”. The

asymptotic properties of @W are stated in Theorem 1.

Theorem 1 Under the reqularity conditions (B1)-(B3), Oy is a consistent estimator of ©
and \/ﬁ(éw — ©) has asymptotically a normal distribution with mean 0 and covariance ma-

triv Ay = GHO,m)M (O, w)G~1(O©,w), where G(O, ) = E[—w\’%—ﬁ%ﬂ)], MO, w) =

p{[2vi0)+ (1-2) wi@)] "}, wa wiie) = (@)D Vil

Proof of Theorem 1
Under the two-stage MRR technique, the IPW estimator of the vector of parameters of the

POM solves the following weighted estimating equations:

1 < 0
Un(©®:;7) = —= ) =7,(0) = 0.
(©;7) \/ﬁgﬂ (©)



We can then have

Upn(©;7) — Upp(O; ) = —

Let U5(®) = E[V,(©)|D;, Vi], i = 1,...,n. It is then easily shown that

71', 5k - 7T7, D Dza ‘/k ‘/;)
Az = n3/2 ZZ { m2P(D = D;,V = V) } i(©)
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In addition, let [, = & ”1)(2’;(3)%’3@ [:/)V’“ V) y,(©). We will show E(Ay,) = O (\%) and

Var(Ay,) = O (%) to show A;, = O, (\/—ﬁ) First, note that

0, ik,

E{E [l|X;, Dy, = D;, V;, = V}]} = . [7@-(1 — 1) U(©)[(Dy = D;, Vi, = Vi))} .

and

Hence, we have

Fln) - L 3p [0SO o (1)

i=1

By definition of l;x, we can obtain Cov(li,ls) = E [(1_7”)2‘”;?)[\1/*( ]T] if (i,k) = (s,b) and

i

Cov(lik,lsp) = 0 otherwise. As a result, we have

1
Var(A;,) = Z\/ar i) ( >



to show Ay, = Op( Therefore, it follows that

L)

Ui (©: ) — Uy (©; 70) Z { <®)1 +Op<

and

Upn(©:7) = % X:; P\Iﬂi@) —— W;):P:(@)} O (%) |

7

Let G,(©,7) = [—w] It can then be shown that G, (©, %) & G(©, ), where

Jn 00
GO, ) = E[ BU\@ZE)%”)] By condition (B3), the convergence of G, (©,7) to G(O,x) is

uniform in a neighborhood of the true value of ®. By the Inverse Function Theorem of Foutz
(1977) and condition (B2), there exists an unique consistent solution to the estimating equations
Uun(©; ) = 0 in a neighborhood of the true value of ©. It then follows that Oy, is a consistent

estimator of the ©.

Next, we derive the asymptotic distribution of \/ﬁ(éw —©). By a Taylor’s series expansion
of an(C:)W, 7) at (®,7), we can have
OUun (O, 7)
00T
= U, (O, 7) — G (0, 7)Vn(Oy — O) + 0,(1).

0 = Upn(Ow, T) = Upn(©, 7) + (O — ©) + 0,(1)

Because G, (0, 7) 2 G(©, ) and condition (B2), we have

V(O — ©) = GO, m)Upyn(0; ) + 0,(1)
_ i -1 - 6;¥;(©) . (6; — m) Vi (©) o
= \/EG (©,) 2 { o o ] +0,(1)

®2
Let M(©,m) = Cov [Uyn(O;7)] = E { [fr—ll\lfl(@) +(1— fr—ll)\lf’{(@)} } By using the Central
Limit Theorem, one can show \/ﬁ((:)w — ©) is asymptotically normally distributed with mean
0 and covariance matrix Ay = GO, 7w)M (0, 7)G~7(O, 7). The proof is completed.

Finally, the covariance matrix of the IPW estimator @)W may be obtained by using a simple

sandwich estimator. Let

n

~ 1 Oi 2 1. A 1A : A
G(Ow) = - Z ?Xidlag [Hi(l)(@w)] Wy Oy )Wdiag [Hlﬁl)(ew)} xr
i=1 "



and \/I;:(é\)w) — > b1 05 VE(Ow)I(Dy=D;,Vi,=V;)

ST WD =D VooVl The covariance matrix of @y, can then be consis-

tently estimated by

G (®w) {Zl (@) + (1~ 2T 6w }QT@W)/n.

™

Uy %i

Multiple Imputation Method

The following theorem shows that the two MI estimators and the IPW estimator are all

asymptotically equivalent.

Theorem 2 Under the reqularity conditions (B1)-(B3), both \/ﬁ((:)M1 —©®,y,) and \/ﬁ((:)w -

e M) converge in probability to 0 as the number of replications M goes to infinity.

Proof of Theorem 2
Based on the empirical conditional distribution

F(z|D;, Vi) = =—; :
> 0l(Dy = D;, Vi, = V)
k=1

we can obtain

Ep [‘Pqi(@)\Di,Vé] z/\Ifi(G)dﬁ(xyD,.,Vi) -

Let O denote the observed data. We can then have

Er [0,(0)|0] = % > {6 (@)D, X,y 2] + (1 - 6)Ez [0,:(©)ID:, 2]}
1 & I & " 6,I(D, = D;V, = V;)¥,(©)
\/E; \/ﬁ; r=1 > 0,I(Dy = D;, Vi =V;)
k=1

= % 25,-@,-(9) + % > 6,7,(0) (%i - 1>

1 <6 ~
NG ;:1 = i(©) =Uyn(0O,7)



Similarly, it can be obtained that Ez [aan ]O] % and E [%} =E [%(@@’%)}

We first prove the MI; and MI; estimators are asymptotically equivalent. Define G(©,7) =

E [ 8Ui7i(a%“ ] and let @ be the solution of the equations an(@) = 0. By a Taylor’s series

expansion of an((:)q) at ©, we can then have

U, (©) C
00 9

~ A~

=Up(®) — G(O,7)/n(0, — ©) + 0,(1)

0=Upn(©,) = Up(©) + —©) +0,(1)

to obtain \/ﬁ((:)q -0)=G1(0, W)ﬁqn(@) +0,(1). Because (:)M1 =+ Zé\il (:)q, by using the

above result, it follows that

+ 0,(1).

\/ﬁ(éMl - ®> = [ Z

(]_ —52)@2(6)} = 0, where

i(©)
\T _ Zéw:l (Iv’zq(e) 5 . . pa
V;(®) = ==-++—, by a Taylor’s series expansion of Up,,(®y,) at ©, we can have

Because @y, is the solution of Uy, (©) = \/LEZ:L L [0

B M
~ 1 ~ o~
0= Umn(GMg) = M Zan(®M2)]

It then follows that \/n(©y, — ©y,) = 0,(1). This implies that /7(©,, — ©),) converges in

G(©,m)vn(Oy, — O) + 0,(1).

probability to 0.

We now show the second MI estimator is asymptotically equivalent to the IPW estimator.

Because
Upin(©) = % Zz:; [6:0:(©) + (1 —6)¥,(0)],

we can rewrite Uy,,(©) as

n

Upin(©) = Un(©, 7) + % ;(1 —5){u0) B [0, V] }.

It follows that v/ M [@,(@) - Bz (ﬁv/li(®)|Di, V;)] converges in distribution to a normal ran-

dom vector as M — co. Therefore, we have ¥;(©) — Es [\T/li(@)\Di, V}} =0, (ﬁ) and

LSt {wie) b [Buen. v} <o, ().

Upin(©) — Uy (©, 7) =

7



Now let @%) be the solution of U,S%)(@) = 0. It can be obtained that

M@5)) = UM(©) - G(O,m)vn(Bf) — ) +o,1).

By using the above equations and 0 = Uy, (O, &) = Upn (0, 7)—G(O, ﬂ)\/ﬁ(@)W—C:))—i—op(l),

we can have

V(B — Ow) = G0, 7) [ULD(O) — U,n(©,7)] +0,(1)

=0,(1) + O, (Jlﬂ)

Therefore, it follows that \/ﬁ(@%) - @W) converges in probability to 0 as M and n go to
infinity. The proof is completed.

Finally, the covariance matrix of ©,;, (Rubin 1987) is estimated by

~

M PO
Z (8 = Ou,) (O — Oyy,)"
q:

M
Var Z‘/} (1+ > 1

According to Theorem 2 and using a common linearization technique, we may estimate the

covariance matrix of © M., denoted by \//a\r(@ M), expressed as follows:

B 1 =1 _
g* Mz anquz @Mz) (1+M) z M—1 g* T(@M2)7

q=1 =1

~ M —aU,
where Q*(GMQ) = % Zq 1 qn |® GMQ
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