
A two-stage multi-level randomized response technique

with proportional odds models and missing covariates

Appendix A: Maximum Likelihood Estimator

To derive the asymptotic properties of the ML estimator Θ̂F , the following regularity

conditions are required.

(A1) E
[
Ψ1(Θ)ΨT

1 (Θ)
]
is positive definite in a neighborhood of the true value of Θ, where

Ψ1(Θ) = X1diag
[
H

(1)
1 (Θ)

]
W TΣ−1

1 (Θ) {d1 − [p1 +WH1(Θ)]}.

(A2) The first derivative of Un(Θ) with respect to Θ exists almost surely in a neighborhood of

the true value of Θ. Furthermore, in such a neighborhood, the first derivative is bounded

above by a function of (D,X,Z).

We require condition (A1) for the unique solution of the estimating equations. Condition (A2) is

required for the proof of consistency in the estimating equation theory. To show the consistency

of the estimator Θ̂F , we consider

Gn(Θ) =
1√
n

[
−∂Un(Θ)

∂ΘT

]
=

1

n

n∑
i=1

[
∂πD

i (Θ)

∂Θ

]
Σ−1

i (Θ)

[
∂πD

i (Θ)

∂Θ

]T
− 1

n

n∑
i=1

∂

∂ΘT

{[
∂πD

i (Θ)

∂Θ

]
Σ−1

i (Θ)

}{
di − πD

i (Θ)
}

=
1

n

n∑
i=1

Xidiag
[
H

(1)
i (Θ)

]
W TΣ−1

i (Θ)Wdiag
[
H

(1)
i (Θ)

]
X T

i

− 1

n

n∑
i=1

∂

∂ΘT

{[
∂πD

i (Θ)

∂Θ

]
Σ−1

i (Θ)

}{
di − πD

i (Θ)
}
.
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It can then be shown that Gn(Θ)
p→ G(Θ), where G(Θ) = Cov [Un(Θ)] = E

[
Ψ1(Θ)ΨT

1 (Θ)
]
.

By the Inverse Function Theorem of Foutz (1977) and condition (A1), it follows that a unique

consistent solution exists for the estimating equations Un(Θ) = 0 in a neighborhood of the true

value of Θ. Therefore, Θ̂F is shown to be a consistent estimator of Θ.

To derive the asymptotic distribution of
√
n(Θ̂F − Θ), by a Taylor’s series expansion of

U(Θ̂F ) at Θ, we can have

0 = Un(Θ̂F ) = Un(Θ) +
∂Un(Θ)

∂ΘT
(Θ̂F −Θ) + op(1)

= Un(Θ)−Gn(Θ)
√
n(Θ̂F −Θ) + op(1).

It can be shown that
√
n(Θ̂F −Θ) = G−1(Θ)Un(Θ)+op(1) because Gn(Θ)

p→ G(Θ).
√
n(Θ̂F −

Θ) is then shown to be asymptotically a normal distribution with mean 0 and covariance matrix

∆F = G−1(Θ). Let G0(Θ̂F ) =
1

n

n∑
i=1

Xidiag
[
H

(1)
i (Θ̂F )

]
W TΣ−1

i (Θ̂F )Wdiag
[
H

(1)
i (Θ̂F )

]
X T

i .

∆̂F = G−1
0 (Θ̂F ) can then be shown to be a consistent estimator of ∆F because Θ̂F

p→ Θ.
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Appendix B: Missing Data in Covariates

We wish to derive the asymptotic properties of the proposed estimators under the assumptions

that X is MAR and D,X, and V are discrete. Hence, the following regularity conditions are

required.

(B1) The supp(V ) denotes the support of V . For Di = 0, 1, 2, . . . , L+m−2 and Vi ∈ supp(V ),

the selection probability π(Di,Vi) > 0, i = 1, 2, . . . , n.

(B2) E
[
Ψ1(Θ)ΨT

1 (Θ)

π(D1,V1)

]
is finite and positive definite in a neighborhood of true value of Θ, where

Ψ1(Θ) = X1diag
[
H

(1)
1 (Θ)

]
W TΣ−1

1 (Θ) {d1 − [p1 +WH1(Θ)]}.

(B3) The first derivative of Uwn(Θ;π) with respect to Θ exists almost surely in a neighborhood

of the true value of Θ. Further, in such a neighborhood, the first derivative is bounded

above by a function of (D,X,V ), whose expectation exists.

Inverse Probability Weighting Method

For any nonsingular matrix B, define B−T = [B−1]
T
. For vector b, define b⊗2 = bbT . The

asymptotic properties of Θ̂W are stated in Theorem 1.

Theorem 1 Under the regularity conditions (B1)-(B3), Θ̂W is a consistent estimator of Θ

and
√
n(Θ̂W −Θ) has asymptotically a normal distribution with mean 0 and covariance ma-

trix ∆W = G−1(Θ,π)M(Θ,π)G−T (Θ,π), where G(Θ,π) = E
[
−∂Uwn(Θ,π)√

n∂Θ

]
, M(Θ,π) =

E

{[
δ1
π1
Ψ1(Θ) +

(
1− δ1

π1

)
Ψ∗

1(Θ)
]⊗2

}
, and Ψ∗

1(Θ) = E [Ψ1(Θ)|D1,V1].

Proof of Theorem 1

Under the two-stage MRR technique, the IPW estimator of the vector of parameters of the

POM solves the following weighted estimating equations:

Uwn(Θ; π̂) =
1√
n

n∑
i=1

δi
π̂i

Ψi(Θ) = 0.
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We can then have

Uwn(Θ; π̂)− Uwn(Θ;π) =
1√
n

n∑
i=1

(
1

π̂i

− 1

πi

)
δiΨi(Θ)

=
−1√
n

n∑
i=1

{(
π̂i − πi

π2
i

)
+Op

[
(π̂i − πi)

2
]}

δiΨi(Θ)

=
−1

n3/2

n∑
k=1

n∑
i=1

[
(δi − πi)(δk − πi)I(Dk = Di,Vk = Vi)

π2
i P (D = Di,V = Vi)

]
Ψi(Θ)

− 1

n3/2

n∑
k=1

n∑
i=1

[
πi(δk − πi)I(Dk = Di,Vk = Vi)

π2
i P (D = Di,V = Vi)

]
Ψi(Θ) + op(1)

= −A1n − A2n + op(1).

Let Ψ∗
i (Θ) = E [Ψi(Θ)|Di,Vi], i = 1, . . . , n. It is then easily shown that

A2n =
1

n3/2

n∑
k=1

n∑
i=1

[
πi(δk − πi)I(Dk = Di,Vk = Vi)

π2
i P (D = Di,V = Vi)

]
Ψi(Θ)

=
1√
n

n∑
k=1

δk − πk

πk

Ψ∗
i (Θ) +Op

(
1√
n

)
.

In addition, let lik = (δi−πi)(δk−πi)I(Dk=Di,Vk=Vi)

π2
i P (D=Di,V =Vi)

Ψi(Θ). We will show E(A1n) = O
(

1√
n

)
and

Var(A1n) = O
(
1
n

)
to show A1n = Op

(
1√
n

)
. First, note that

E {E [lik|Xi, Dk = Di,Vk = Vi]} =


0, i ̸= k,

E

[
πi(1− πi)Ψi(Θ)I(Dk = Di,Vk = Vi)

π2
i P (D = Di,V = Vi

)

]
, i = k,

and

E

[
πi(1− πi)Ψi(Θ)I(Dk = Di,Vk = Vi)

π2
i P (D = Di,V = Vi)

]
= E

[
(1− πi)Ψ

∗
i (Θ)

πi

]
, i = 1, . . . , n.

Hence, we have

E(A1n) =
1

n3/2

n∑
i=1

E

[
(1− πi)Ψ

∗
1(Θ)

πi

]
= O

(
1√
n

)
.

By definition of lik, we can obtain Cov(lik, lsb) = E
[
(1−πi)

2Ψ∗
i (Θ)[Ψ∗

i (Θ)]T

π2
i

]
if (i, k) = (s, b) and

Cov(lik, lsb) = 0 otherwise. As a result, we have

Var(A1n) =
1

n3

n∑
i,k

Var(lik) = O

(
1

n

)
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to show A1n = Op(
1√
n
). Therefore, it follows that

Uwn(Θ; π̂)− Uwn(Θ;π) =
−1√
n

n∑
i=1

[
(δi − πi)Ψ

∗
i (Θ)

πi

]
+Op

(
1√
n

)
and

Uwn(Θ; π̂) =
1√
n

n∑
i=1

[
δiΨi(Θ)

πi

− (δi − πi)Ψ
∗
i (Θ)

πi

]
+Op

(
1√
n

)
.

Let Gn(Θ, π̂) = 1√
n

[
−∂Uwn(Θ,π̂)

∂Θ

]
. It can then be shown that Gn(Θ, π̂)

p→ G(Θ,π), where

G(Θ,π) = E
[
−∂Uwn(Θ,π)√

n∂Θ

]
. By condition (B3), the convergence of Gn(Θ, π̂) to G(Θ,π) is

uniform in a neighborhood of the true value of Θ. By the Inverse Function Theorem of Foutz

(1977) and condition (B2), there exists an unique consistent solution to the estimating equations

Uwn(Θ; π̂) = 0 in a neighborhood of the true value of Θ. It then follows that Θ̂W is a consistent

estimator of the Θ.

Next, we derive the asymptotic distribution of
√
n(Θ̂W−Θ). By a Taylor’s series expansion

of Uwn(Θ̂W , π̂) at (Θ, π̂), we can have

0 = Uwn(Θ̂W , π̂) = Uwn(Θ, π̂) +
∂Uwn(Θ, π̂)

∂ΘT
(Θ̂W −Θ) + op(1)

= Un(Θ, π̂)−Gn(Θ, π̂)
√
n(Θ̂W −Θ) + op(1).

Because Gn(Θ, π̂)
p→ G(Θ,π) and condition (B2), we have

√
n(Θ̂W −Θ) = G−1(Θ,π)Uwn(Θ; π̂) + op(1)

=
1√
n
G−1(Θ,π)

n∑
i=1

[
δiΨi(Θ)

πi

− (δi − πi)Ψ
∗
i (Θ)

πi

]
+ op (1) .

Let M(Θ,π) = Cov [Uwn(Θ; π̂)] = E

{[
δ1
π1
Ψ1(Θ) + (1− δ1

π1
)Ψ∗

1(Θ)
]⊗2

}
. By using the Central

Limit Theorem, one can show
√
n(Θ̂W −Θ) is asymptotically normally distributed with mean

0 and covariance matrix ∆W = G−1(Θ,π)M(Θ,π)G−T (Θ,π). The proof is completed.

Finally, the covariance matrix of the IPW estimator Θ̂W may be obtained by using a simple

sandwich estimator. Let

G(Θ̂W ) =
1

n

n∑
i=1

δi
π̂i

Xidiag
[
H

(1)
i (Θ̂W )

]
W TΣ−1

i (Θ̂W )Wdiag
[
H

(1)
i (Θ̂W )

]
X T

i .
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and Ψ̂∗
i (Θ̂W ) =

∑n
k=1 δkΨk(Θ̂W )I(Dk=Di,Vk=Vi)∑n

r=1 δrI(Dr=Di,Vr=Vi)
. The covariance matrix of Θ̂W can then be consis-

tently estimated by

G−1(Θ̂W )

{
n∑

i=1

1

n

[
δi
π̂i

Ψi(Θ̂W ) + (1− δi
π̂i

)Ψ̂∗
i (Θ̂W )

]⊗2
}
G−T (Θ̂W )/n.

Multiple Imputation Method

The following theorem shows that the two MI estimators and the IPW estimator are all

asymptotically equivalent.

Theorem 2 Under the regularity conditions (B1)-(B3), both
√
n(Θ̂M1 − Θ̂M2) and

√
n(Θ̂W −

Θ̂M1) converge in probability to 0 as the number of replications M goes to infinity.

Proof of Theorem 2

Based on the empirical conditional distribution

F̂ (x|Di,Vi) =

n∑
r=1

δrI(Dr = Di,Vr = Vi)I(Xr ≤ x)

n∑
k=1

δkI(Dk = Di,Vk = Vi)
,

we can obtain

EF̂

[
Ψ̃qi(Θ)|Di,Vi

]
=

∫
Ψi(Θ)dF̂ (x|Di,Vi) =

n∑
r=1

δrI(Dr = Di,Vr = Vi)Ψr(Θ)
n∑

k=1

δkI(Dk = Di,Vk = Vi)
.

Let O denote the observed data. We can then have

EF̂

[
Ũqn(Θ)|O

]
=

1√
n

n∑
i=1

{
δiEF̂ [Ψi(Θ)|Di, Xi, Zi] + (1− δi)EF̂

[
Ψ̃qi(Θ)|Di, Zi

]}
=

1√
n

n∑
i=1

δiΨi(Θ) +
1√
n

n∑
i=1

(1− δi)
n∑

r=1

δrI(Dr = DiVr = Vi)Ψr(Θ)
n∑

k=1

δkI(Dk = Di,Vk = Vi)

=
1√
n

n∑
i=1

δiΨi(Θ) +
1√
n

n∑
r=1

δrΨr(Θ)

(
1

π̂r

− 1

)
=

1√
n

n∑
i=1

δi
π̂i

Ψi(Θ) = Uwn(Θ, π̂).
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Similarly, it can be obtained that EF̂

[
∂Ũqn(Θ)

∂Θ
|O

]
= ∂Uwn(Θ,π̂)

∂Θ
and E

[
∂Ũqn(Θ)

∂Θ

]
= E

[
∂Uwn(Θ,π̂)

∂Θ

]
.

We first prove the MI1 and MI2 estimators are asymptotically equivalent. Define G(Θ,π) =

E
[
−∂Uwn(Θ,π)√

n∂Θ

]
and let Θ̂q be the solution of the equations Ũqn(Θ) = 0. By a Taylor’s series

expansion of Uqn(Θ̂q) at Θ, we can then have

0 = Ũqn(Θ̂q) = Ũqn(Θ) +
∂Ũqn(Θ)

∂Θ
(Θ̂q −Θ) + op(1)

= Ũqn(Θ)−G(Θ,π)
√
n(Θ̂q −Θ) + op(1)

to obtain
√
n(Θ̂q −Θ) = G−1(Θ,π)Ũqn(Θ) + op(1). Because Θ̂M1 =

1
M

∑M
q=1 Θ̂q, by using the

above result, it follows that

√
n(Θ̂M1 −Θ) = G−1(Θ,π)

[
1

M

M∑
q=1

Ũqn(Θ)

]
+ op(1).

Because Θ̂M2 is the solution of Umn(Θ) = 1√
n

∑n
i=1

[
δiΨi(Θ) + (1− δi)Ψ̄i(Θ)

]
= 0, where

Ψ̄i(Θ) =
∑M

q=1 Ψ̃iq(Θ)

M
, by a Taylor’s series expansion of Umn(Θ̂M2) at Θ, we can have

0 = Umn(Θ̂M2) =

[
1

M

M∑
q=1

Ũqn(Θ̂M2)

]

=

[
1

M

M∑
q=1

Ũqn(Θ)

]
−G(Θ,π)

√
n(Θ̂M2 −Θ) + op(1).

It then follows that
√
n(Θ̂M2 − Θ̂M1) = op(1). This implies that

√
n(Θ̂M2 − Θ̂M1) converges in

probability to 0.

We now show the second MI estimator is asymptotically equivalent to the IPW estimator.

Because

Umn(Θ) =
1√
n

n∑
i=1

[
δiΨi(Θ) + (1− δi)Ψ̄i(Θ)

]
,

we can rewrite Umn(Θ) as

Umn(Θ) = Uwn(Θ, π̂) +
1√
n

n∑
i=1

(1− δi)
{
Ψ̄i(Θ)− EF̂

[
Ψ̃1i(Θ)|Di,Vi

]}
.

It follows that
√
M

[
Ψ̄i(Θ)− EF̂

(
Ψ̃1i(Θ)|Di,Vi

)]
converges in distribution to a normal ran-

dom vector as M → ∞. Therefore, we have Ψ̄i(Θ)− EF̂

[
Ψ̃1i(Θ)|Di,Vi

]
= Op

(
1√
M

)
and

Umn(Θ)− Uwn(Θ, π̂) =
1

√
n
√
M

n∑
i=1

(1− δi)
√
M

{
Ψ̄i(Θ)− EF̂

[
Ψ̃1i(Θ)|Di,Vi

]}
= Op

(
1√
M

)
.
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Now let Θ̂
(M)
M2

be the solution of U
(M)
mn (Θ) = 0. It can be obtained that

0 = U (M)
mn (Θ̂

(M)
M2

) = U (M)
mn (Θ)−G(Θ,π)

√
n(Θ̂

(M)
M2

− Θ̂) + op(1).

By using the above equations and 0 = Uwn(Θ̂W , π̂) = Uwn(Θ, π̂)−G(Θ,π)
√
n(Θ̂W−Θ̂)+op(1),

we can have

√
n(Θ̂

(M)
M2

− Θ̂W ) = G−1(Θ,π)
[
U (M)
mn (Θ)− Uwn(Θ, π̂)

]
+ op(1)

= op(1) +Op

(
1√
M

)
.

Therefore, it follows that
√
n(Θ̂

(M)
M2

− Θ̂W ) converges in probability to 0 as M and n go to

infinity. The proof is completed.

Finally, the covariance matrix of Θ̂M1 (Rubin 1987) is estimated by

V̂ar(Θ̂M1) =
1

M

M∑
q=1

V̂q +

(
1 +

1

M

) M∑
q=1

(Θ̂q − Θ̂M1)(Θ̂q − Θ̂M1)
T

M − 1
.

According to Theorem 2 and using a common linearization technique, we may estimate the

covariance matrix of Θ̂M2 , denoted by V̂ar(Θ̂M2), expressed as follows:

G−1
∗ (Θ̂M2)

 1

Mn

M∑
q=1

n∑
i=1

Uqi(Θ̂M2)U
T
qi(Θ̂M2) +

(
1 +

1

M

) M∑
q=1

Ũqn(Θ̂M2)Ũ
T
qn(Θ̂M2)

M − 1

G−T
∗ (Θ̂M2),

where G∗(Θ̂M2) =
1
M

∑M
q=1

−∂Ũqn(Θ)

∂Θ
|Θ=Θ̂M2

.
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