Appendix A: Calculation of Pooled Competence

A voter i has neighbourhood N(i). Let the cardinality of that
neighbourhood be n(i). Let the number of Elite types in N (i) be e(7)
and the number of Mass types be m(i). The pooled competence of the
neighborhood for voter ¢ depends on the number of Mass and Elite voters
in the neighbourhood. We are interested in the likelihood of majorities that
identify the correct interest of 7. Let there be a set K of all possible ordered
pairs (vg, vy) With vg representing the number Elite types in N () voting
in the interest of the Elites and vy, the Mass types voting in the interest
of the Masses under the constraints that 0 < vg < e(i), 0 < vy < m(7).
Each tuple represents a possible outcome of Elite types and Mass types
voting in a specific way and the set of all tuples represents all possible
ways for the Elites and the Mass votes in the neighbourhood to go.

Prepared using sagej.cls

25

Case 1: Voter i is a Mass Type

In this case we are interested in a subset of /', namely all elements in
which the Mass interest gains a majority. Let this subset be

Oy = {all <UE,UM> e K 6(2) — Vg + Uy > @}

Call the event of a majority for the Masses in that neighbourhood MW.
For the calculations to follow, it is useful to recall the standard binomial
formula for the probability of = successes out of n draws with success
probability p:

P(n,z,p) = (Z)ﬁ(l —p)" "

The probability of all possible vote combinations from the Elites and Mass
types in such that the Masses win is:

Pr(MW) = Z P(e(i), vg, pp) x P(m(i), var, pur)-

all (vg,vpr)€OM

Since tied outcomes are decided by coin toss, we need to calculate the
probability of making the correct choice for the Masses by coin toss. Call
this event T. We are now interested in the subset O of K that leads to
ties:

n(i)

My = {all (vg,vop) € K@ e(i) —vp+oy = T}

The probability of a correct vote by coin toss after a tie is:

Pr(T):% > Pleli),ve.pp) x P(m(i),var, pur).

all (vg,vpr)€O0T

The pooled competence is Pr(MW) + Pr(T).

Case 2: Voteri as an Elite Type

The same reasoning applied symmetrically. The subset O consists of all
tuples of Elite and Mass votes voting according to their true interest in

Prepared using sagej.cls

26 Journal Title XX(X)

which the Elites obtain a majority:

Op = {all (vp,var) € K+ vp +m(i) — vy > @}

Call the event of a majority for the Elites in that neighbourhood EW. The
likelihood of this occuring is calculated as above:

Pr(EW) = Z Pe(i),vp,pe) x P(m(i),vn, par)-

all (vg,vr)€O0E

Again, results from tie-breaking coin tosses need to be taken into
account. Pr(T) is determined just as above. The pooled competence is
Pr(EW) + Pr(T).

Appendix B: Python Code of Main Routines

In this appendix I reproduce the main part of the Python 3 code to calculate
the results. This code is based on one simulation with memory. I have
omitted auxilliary code to count votes, record and plot results.

import networkx as nx

import random as rd

from collections import Counter
from collections import deque

def modes(values):
""" function to return list of all modal values”””
count= Counter(values)
best = max(count.values ())
return [k for k,v in count.items () if v == best]

def indiv_opin(c):
""" return opinion according to competence c¢ ’
return int(round(rd.random() + ¢ — 0.5))

def group-opin ():
""" add opinion attribute for all nodes”””
for n in network.nodes ():
network .node[n][’opinion’] = indiv_opin(comp_vector[n])

def vote_winner(votes):
”””for any given opinions or votes, determine winner, break ties by
random choice”””
return rd.choice(modes(votes))

def votes ():
""”determine nbh including ego, collect all opinions, vote for winner,
break tie randomly, set vote attribute for all nodes”””
for n in network.nodes ():
nb = list(network[n]) + [n]

Prepared using sagej.cls

27

nb_v = [network.node[i][opinion’] for i in nb]

determine winner and break ties by random choice
w = rd.choice(modes(nb_v))

network .node[n][’vote’] = w

def mem_update ():
777 go through all edges and register the opinions of all neighbors in the
memory attribute dictionary of network. Keep memory as a deque of length
memlen so that old opinions are forgotten”””
for ¢ in network.edges ():
#check if there is a dict entry in memory of first node for 2nd node
if e[1] in network.node[e[O0]]['memory’]:
#if yes, then append opinion of 2nd node to memory of Ist node
network .node[e[0]]["memory’J[e[1]].append(network.node[e[1]][opinion’])
#otherwise create deque with that opinion, set deque max length
else:
network.node[e[0]]["memory’ J[e[1]] = deque(
{network.node[e[1]]["opinion’]},
maxlen=network .node[e[0]]["memlen’])
if e[0] in network.node[e[1]][memory’]:
network .node[e[1]]["memory’][e[0]].append(network.node[e[O]][opinion’])
else:
network.node[e[1]]["'memory’J[e[0]] = deque(
{network .node[e[0]][opinion’]},
maxlen=network .node[e[1]][*memlen’])

initialize
rounds = 1000
network = nx.Graph()

elite = 30

mass = 70

nodes = elite + mass
edges = 300

elite_.comp = 0.7
mass_comp = 0.6
create vector of probabolity to vote for Elite option
comp._vector = [elite_.comp] % elite + [l — mass_.comp] * mass
#define how many previous opinions from continuously connected nb
the different types of agents remember
elite_memory = 5
mass_memory = 1
make network; 1 stands for elite, 0 for mass
for n in range(elite):
network .add_node(n, type=1, competence=elite_.comp ,
memory = dict(), memlen = elite.memory)
for n in range(elite ,mass+elite):
network .add_node (n, type=0, competence=l—mass_comp,
memory = dict(), memlen = mass_memory)
add edges from an undirected random graph
network .add-edges_from (nx.gnm-random_graph (nodes,edges).edges())

main routine
for i in range(rounds):
#do the opinion formation and pooled voting
note that, without loss of generality, it is assumed that Elites always
#have correct answer 1 and Masses correct answer 0
group-opin ()
votes ()
mem_update ()
find 10% of nodes
run_nodes = rd.sample(network.nodes(), int(round(nodes / 10)))

Prepared using sagej.cls

28 Journal Title XX(X)

#run through these node
for n in run_nodes:
max._disagree_list = []
#only start deleting if a neighbor is wrong at least 50% of the time
max.d = 1/2.0
run through all entries in memory
for k, m in network.node[n][*memory’].items ():
#calculate neighbour rate of disagreement by comparing with type of
#node deletting edge. Note that agents know correct answer with
#hindsight so they can identify who was not voting correctly from
#their perspective
disagreement = (len(m) — m.count(network.node[n][type’])) / float(len(m))
#if this rate higher than all found previously, set nb as
#nb with new highest disagreement
if disagreement > max.d:
max.d = disagreement
max._disagree_list = [k]
if it is equal to what has been found previously , add nb to list
elif disagreement == max.d and disagreement > O:
max_disagree_list.append (k)
if len(max_disagree_list) > 0:
delete_target = rd.choice(max_disagree_list)
network .remove_edge(n, delete_target)
when edge is deleted, delete memory of nodes about each other
del network.node[n][memory’][delete_target]
del network.node[delete_target]['memory’]J[n]
partner_list = []
#ensure to look for an initiator such that an unconnected partner
#exists (as no edge can be added to completely connected node)
while not partner_list:
create new random edge
find random initiator
initiator = rd.choice(list (network.nodes ()))
#find candidate partners not connected to initiator
nb_init = list(network[initiator]) + [initiator]
partner_list = [z for z in network.nodes() if z not in nb_init]
partner = rd.choice(partner_list)
network .add_edge (initiator , partner)

Prepared using sagej.cls

