Online Supplement 2

Description of R Functions with Examples

Instructions: A single R function from the R Code file (in Online Supplement 1) can be copied and pasted at the > prompt. Type the name of the function with the required arguments in parentheses. If using R Studio, the entire R Code file can be copied into the command pane and converted to an R script file. After clicking the Source tab, all of the functions will be available at the > prompt.

rep_mean2(alpha, m11, m12, sd11, sd12, n11, n12, m21, m22, sd21, sd22, n21, n22)

Computes confidence intervals for a 2-group mean difference in the original and follow-up studies, the difference in mean differences, and the average of the mean differences. Equal variances within and between studies is not assumed.

Arguments

alpha:	alpha level for 1-alpha confidence
m11:	sample mean for group 1 in original study
m12:	sample mean for group 2 in original study
m21:	sample mean for group 1 in follow-up study
m22:	sample mean for group 2 in follow-up study
sd11:	sample SD for group 1 in original study
sd12:	sample SD for group 2 in original study
sd21:	sample SD for group 1 in follow-up study
sd22:	sample SD for group 2 in follow-up study
n11:	sample size for group 1 in original study
n12:	sample size for group 2 in original study
n21:	sample size for group 1 in follow-up study
n22:	sample size for group 2 in follow-up study

Example

The original study used a 2-group design to compare the proactive behavior of junior (J) and senior (S) employees and was replicated in a follow-up study. The sample means and standard deviations are given below.

Study	Group	Sample mean	Sample SD	Sample size
Original	J	16.2	4.15	20
	S	10.5	3.94	20
Follow-up	J	14.8	5.02	50
	S	11.0	4.37	50

rep_mean2(.05, 16.2, 10.5, 4.15, 3.94, 20, 20, 14.8, 11.0, 5.02, 4.37, 50, 50)

	Estimate	SE	df	t	р	LL	UL
Original:	5.70	1.2795722	37.89799	4.454614	7.204765e-05	3.109413	8.290587
Follow-up:	3.80	0.9412470	96.17416	4.037197	1.086938e-04	1.931683	5.668317
Difference:	1.90	1.5884744	80.69691	1.196116	2.351539e-01	-1.260746	5.060746
Average:	4.75	0.7942372	80.69691	5.980581	5.799874e-08	3.169627	6.330373

rep_mean_ps(alpha, m11, m12, sd11, sd12, cor1, n1, m21, m22, sd21, sd22, cor2, n2)

Computes confidence intervals for a paired-samples mean difference in original and follow-up studies, the difference in mean differences, and the average of the mean differences (equal variances within and between studies is not assumed).

Arguments

alpha:	alpha level for 1-alpha confidence
m11:	sample mean for group 1 in original study
m12:	sample mean for group 2 in original study
m21:	sample mean for group 1 in follow-up study
m22:	sample mean for group 2 in follow-up study
sd11:	sample SD for group 1 in original study
sd12:	sample SD for group 2 in original study
sd21:	sample SD for group 1 in follow-up study
sd22:	sample SD for group 2 in follow-up study
n1:	sample size in original study
n2:	sample size in follow-up study
cor1:	sample correlation of paired observations in original study
cor2:	sample correlation of paired observations in follow-up study

Example

The original study used a (pre-post) paired-samples design to assess change in reported work-life balance before and 6 months after a workshop. The study was replicated in a similar organization. The sample means, standard deviations, and pre-post correlations are given below.

Study	Condition	Sample mean	Sample SD	Sample correlation	Sample size
Original	Pre	86.22	14.89	.765	25
	Post	70.93	12.32		
Follow-up	Pre	84.81	15.68	.702	75
	Post	76.24	16.95		

rep_mean_ps(.05, 86.22, 70.93, 14.89, 12.32, .765, 20, 84.81, 77.24, 15.68, 16.95, .702, 75)

	Estimate	SE	t	df	р	LL	UL
Original:	15.29	2.154344	7.097288	19.00000	9.457592e-07	10.780906	19.79909
Follow-up:	7.57	1.460664	5.182575	74.00000	1.831197e-06	4.659564	10.48044
Difference:	7.72	2.602832	2.966000	38.40002	5.166213e-03	2.452643	12.98736
Average:	11.43	1.301416	8.782740	38.40002	1.010232e-10	8.796322	14.06368

rep_stdmean2(alpha, m11, m12, sd11, sd12, n11, n12, m21, m22, sd21, sd22, n21, n22)

Computes confidence intervals for a 2-group standardized mean difference in original and follow-up studies, the difference in standardized mean differences, and the average of standardized mean differences (equal variances within and between studies is not assumed).

Arguments

alpha:	alpha level for 1-alpha confidence
m11:	sample mean for group 1 in original study
m12:	sample mean for group 2 in original study
m21:	sample mean for group 1 in follow-up study
m22:	sample mean for group 2 in follow-up study
sd11:	sample SD for group 1 in original study
sd12:	sample SD for group 2 in original study
sd21:	sample SD for group 1 in follow-up study
sd22:	sample SD for group 2 in follow-up study
n11:	sample size for group 1 in original study
n12:	sample size for group 2 in original study
n21:	sample size for group 1 in follow-up study
n22:	sample size for group 2 in follow-up study

Example

The original study used a 2-group design to compare the team innovation behavior of introverted (I) and extroverted (E) employees and was replicated in a follow-up study. The sample means and standard deviations are given below.

Study	Group	Sample mean	Sample SD	Sample size
Original	I	21.2	5.15	40
	Ε	15.5	4.94	40
Follow-up	I	19.8	6.02	80
	Ε	16.0	5.37	80

rep_stdmean2(.05, 21.2, 15.5, 5.15, 4.94, 40, 40, 19.8, 16.0, 6.02, 5.37, 80, 80)

	Estimate	SE	LL	UL
Original:	1.1295869	0.2438760	0.6515988	1.6075750
Follow-up:	0.6661681	0.1635206	0.3456735	0.9866627
Difference:	0.4634188	0.2936230	-0.1120718	1.0389094
Average:	0.8908457	0.1468115	0.6031004	1.1785910

rep_stdmean_ps(alpha, m11, m12, sd11, sd12, cor1, n1, m21, m22, sd21, sd22, cor2, n2)

Computes confidence intervals for a paired-samples standardized mean difference in original and follow-up studies, the difference in standardized mean differences, and the average of standardized mean differences (equal variances within and between studies is not assumed).

Arguments

alpha: alpha level for 1-alpha confidence	
m11: sample mean for group 1 in original study	
m12: sample mean for group 2 in original study	
m21: sample mean for group 1 in follow-up study	
m22: sample mean for group 2 in follow-up study	
sdll: sample SD for group 1 in original study	
sd12: sample SD for group 2 in original study	
sd21: sample SD for group 1 in follow-up study	
sd22: sample SD for group 2 in follow-up study	
n1: sample size in original study	
n2: sample size in follow-up study	
cor1: sample correlation of paired observations in original study	
cor2: sample correlation of paired observations in follow-up study	

Example

The original study used a longitudinal paired-samples design to assess a 1-year change in mean burnout of service workers. The study was replicated in a similar organization. The sample means, standard deviations, and pre-post correlations are given below.

Study Co	ndition	Sample mean	Sample SD	Sample correlation	Sample size
Original	Pre	86.22	14.89	.765	25
	Post	70.93	12.32		
Follow-up	Pre	84.81	15.68	.702	75
	Post	76.24	16.95		

rep_stdmean_ps(.05, 86.22, 70.93, 14.89, 12.32, .765, 20, 84.81, 77.24, 15.68, 16.95, .702, 75)

	Estimate	SE	LL	UL
Orginal:	1.1188719	0.22915553	0.6697353	1.5680085
Follow-up:	0.4636392	0.09590506	0.2756687	0.6516096
Difference:	0.6552328	0.24841505	0.1683482	1.1421173
Average:	0.7747629	0.12420752	0.5313206	1.0182052

rep_cor(alpha, cor1, cor2, n1, n2, s)

Computes a confidence interval for a Pearson correlation or partial correlation in original and follow-up studies, the difference in correlations, and the average of correlations.

Arguments

alpha: alpha value for 1-alpha confidence cor1: sample Pearson correlation between y and x in original study cor2: sample Pearson correlation between y and x in follow-up study n1: sample size in original study n2: sample size in follow-up study s: number of control variables in each study

Example

The original study estimated a Pearson correlation between job security and positive affect in a sample of tech-industry employees (r = .438, $n_1 = 100$). The study was replicated in a similar company (r = .360, $n_2 = 300$).

rep_cor(.05, .438, .360, 100, 300, 0)

	Estimate	SE	Z	р	LL	UL
Original:	0.438	0.10153462	4.8232475	5.179657e-06	0.2643218	0.5841620
Follow-up:	0.360	0.05802589	6.6611803	1.309317e-10	0.2572462	0.4547041
Difference:	0.078	0.09635344	0.7941078	4.271327e-01	-0.1198206	0.2566663
Average:	0.399	0.04817672	7.2395968	4.500844e-13	0.3090387	0.4818845

Note

The test statistics (in column labeled z) are t-statistics for the individual studies and are z-statistics for the difference and average.

rep_general(alpha, est1, se1, est2, se2)

Computes approximate confidence intervals for a general effect size parameter for original and follow-up studies, the difference across studies, and the average across studies.

Arguments

Arguments: alpha: alpha level for 1-alpha confidence est1: estimate from original study se1: standard error of estimate from original study est2: estimate from follow-up study se2: standard error of estimate from follow-up study

Example

A standardized estimate of the indirect effect of 6-month change in initiative on 6-month change in emotional engagement (mediated by 6-month change in mood) was 0.652 with a standard error of 0.214. The estimate of this indirect effect was .748 with a standard error of 0.106 in a follow-up study.

rep_general(.05, .652, .214, .748, .106)

	Estimate	SE	Z	р	LL	UL
Original:	0.652	0.2140000	3.0467290	2.313462e-03	0.2325677	1.0714323
Follow-up:	0.748	0.1060000	7.0566038	1.706191e-12	0.5402438	0.9557562
Difference:	-0.096	0.2388137	-0.4019869	6.876936e-01	-0.5640663	0.3720663
Average:	0.700	0.1194069	5.8623094	4.564735e-09	0.4659668	0.9340332

Note

This function can be used for any effect-size parameter for which large-sample approximate confidence intervals are typically computed (e.g., SEM path coefficient, SEM indirect effect, factor correlation, factor loading, log-odds ratio, nominal and ordinal measures of association, measures of agreement, slope coefficient in multilevel model).

ci_mean_lc(alpha, m, sd, n, c)

Computes confidence interval and test statistic for a linear contrast of population means in k independent samples (equal variances is not assumed).

Arguments

alpha: alpha level for 1-alpha confidence
m: kx1 vector of sample means
sd: kx1 vector of sample standard deviations
n: kx1 vector of sample sizes
c: kx1 vector of contrast coefficients

Example

A 2x2 (gender by training method) between-subjects factorial design was used in an original study and was replicated in a follow-up study. The sample means and standard deviations are given below.

Study	Condition	Sample mean	Sample SD	Sample size	
Original	M-T1	22.41	5.57	20	
	F-T1	24.32	5.46	20	
	M-T2	17.47	5.06	20	
	F-T2	18.94	4.80	20	
Follow-up	M-T1	21.88	6.10	40	
	F-T1	23.10	5.17	40	
	M-T2	20.13	5.89	40	
	F-T2	19.97	5.25	40	
sd = c(5.5 n = c(20, c = c(.5,	57, 5.46, 5.0 20, 20, 20,	7.47, 18.94, 2: 06, 4.80, 6.10 40, 40, 40, 40, 40 5, 0, 0, 0, 0) , n, c)	, 5.17, 5.89 0)	, 5.25)	ining in original study
Estin [1,] 5		t 4.410899 74.9	-	value LL 7e-05 2.829564 7.	UL 490436

c = c(0, 0, 0, 0, .5, .5, -.5, -.5) # main effect of training in follow-up study ci_mean_lc(.05, m, sd, n, c)

Estimate SE t df p-value LL UL [1,] 2.44 0.8880931 2.74746 152.8874 0.006728163 0.6854816 4.194518

c = c(.5, .5, -.5, -.5, -.5, -.5, .5, .5) # difference in training main effect between studies $ci_mean_lc(.05, m, sd, n, c)$

Estimate SE t df p-value LL UL [1,] 2.72 1.468745 1.851922 160.1939 0.06587761 -0.1805992 5.620599

ci_odds(alpha, p1, p2, n1, n2)

Computes adjusted Wald confidence interval for a population log-odds ratio and a population odds ratio.

Arguments

alpha: alpha level for 1-alpha confidence
p1: sample proportion in group 1
p2: sample proportion in group 2
n1: group 1 sample size
n2: group 2 sample size

Example

The proportion of employees who indicate they are looking for another job was estimated in a 2-group (service vs manufacturing) design. The study was replicated in a similar organization. The sample proportions are given below.

Study	Group	Sample proportion	Sample size
Original	S	.212	200
	М	.143	150
Follow-up	S	.235	300
	М	.101	300

ci_odds(.05, .212, .143, 200, 150)

 Estimate
 SE
 LL
 UL

 Log-odds Ratio:
 0.4670769
 0.2879968
 -0.09738648
 1.031540

 Odds Ratio:
 1.5953240
 0.4594482
 0.90720532
 2.805383

ci_odds(.05, .235, .101, 300, 300)

Estimate SE LL UL Log-odds Ratio: 0.9962483 0.2336682 0.538267 1.454230 Odds Ratio: 2.7081028 0.6327975 1.713036 4.281184

rep_general(.05, .467, .288, .996, .2337)

	Estimate	SE	Z	р	LL	UL
Original:	0.4670	0.2880000	1.621528	1.049045e-01	-0.09746963	1.0314696
Follow-up:	0.9960	0.2337000	4.261874	2.027196e-05	0.53795642	1.4540436
Difference:	-0.5290	0.3708904	-1.426297	1.537825e-01	-1.25593183	0.1979318
Average:	0.7315	0.1854452	3.944562	7.994613e-05	0.36803409	1.0949659

Note

The results from the ci_odds function can be used in the rep_general function as illustrated above. When analyzing log-odds ratios using the rep_general function, the estimate and confidence interval for the Average can be exponentiated to give an estimate of the average population odds ratio and its confidence interval.

ci_prop_lc(alpha, p, n, c)

Computes adjusted Wald confidence interval for a linear contrast of population proportions in k independent samples.

Arguments

alpha: alpha level for 1-alpha confidence
p: kx1 vector of sample proportions
n: kx1 vector of sample sizes
c: kx1 vector of contrast coefficients

Example

The proportion of male and female employees who report a positive work environment were estimated in a 2-group design. The study was replicated in a similar organization. The sample proportions are given below.

Study	Group	Sample proportion	Sample size
Original	М	.622	100
	F	.451	105
Follow-up	М	.683	250
	F	.501	250

p = c(.622, .451, .683, .501)n = c(100, 105, 250, 250) c = c(1, -1, 0, 0) ci_prop_lc(.05, p, n, c)

gender difference in original study

Estimate SE LL UL [1,] 0.171 0.06801151 0.03439185 0.3009921

c = c(0, 0, 1, -1) ci_prop_lc(.05, p, n, c) # gender difference in follow-up study

Estimate SE LL UL [1,] 0.182 0.04305033 0.09617845 0.2649327

c = c(1, -1, -1, 1) ci_prop_lc(.05, p, n, c) # difference in gender difference between studies

Estimate SE LL UL [1,] -0.011 0.0807881 -0.1702868 0.1463967

ci_general_lc(alpha, est, se, c)

Computes Wald confidence interval for a linear contrast of population parameters (general) in ${\bf k}$ independent samples.

Arguments

alpha:	alpha level for 1-alpha confidence
est:	kx1 vector of sample parameter estimates
se:	kx1 vector of standard errors
c:	kx1 vector of contrast coefficients

Example

Means on a leadership questionnaire were estimated in a 2x2 mixed design. The between-subject factor levels were Supervisor (S) and Manager (M), and the within-subject factor levels were two vignettes of two hypothetical supervisors. The study was replicated in a similar organization. The estimated mean differences of the within-subjects factor for each between-subject factor are given below.

	Between-subjects	Estimate of within-subject	cts
Study	condition	difference	Standard error
Original	S	19.43	3.55
	М	10.26	3.89
Follow-up	S	16.68	1.32
	М	9.02	1.86
<pre>se = c(3.! c = c(.5, ci_general Estir</pre>		5) # average two-way	UL
• •	0, .5, 0) 1_1c(.05, est, se, c	· · ·	main effect of Vignette at Supervisor
Estir	mate SE	z p-value LL	UL
		0 14.34335 21.766	565
[1]] 10			
• •	.5, 0, .5) 1_lc(.05, est, se, c		main effect of Vignette at Manager
		z p-value LL 41 7.76944e-06 5.414504 13	UL 3.8655

Note

This function should be used only with sample sizes that are large enough for the sampling distribution of each parameter to have an approximate normal distribution.

size_ci_mean_lc(alpha, var, w, c)

Computes the sample size per group required to estimate a linear contrast of population means with desired precision in a k-group follow-up study.

Arguments

alpha: alpha level for 1-alpha confidence
var: planning value of average within-group variance
w: desired confidence interval width in follow-up study
c: kx1 vector of contrast coefficients

Example

The original study estimated the mean innovation in two groups and the average within-group variance was 5.67. A 95% interval for a difference in population means is planned in a follow-up study, and the desired width of the confidence interval is 1.0. The required sample size per group in the follow-up study is 176.

```
c = c(1, -1)
size_ci_mean_lc(.05, 5.67, 1.0, c)
        [,1]
[1,] 176
```

Note

A linear contrast can specify a difference (as in the above example) as well as a main effect, interaction effect, or simple main effect in a factorial design.

size_ci_stdmean2(alpha, d, w, r)

Computes the sample size per group required to estimate a population standardized mean difference with desired precision in a 2-group follow-up study.

Arguments

alpha:	alpha level for 1-alpha confidence
d:	planning value of standardized mean difference
w:	desired confidence interval width in follow-up study
r:	desired n2/n1 ratio

Example

The original study estimated the mean innovation in two groups and the standardized mean difference was 0.48. A 95% interval for a difference in standardized population means is planned in a followup study (with equal sample sizes per group), and the desired width of the confidence interval is 0.4. The required sample size per group in the follow-up study is 198.

size_ci_stdmean2(.05, .48, .4, 1)

[1] 198

size_ci_stdmean_ps(alpha, d, cor, w)

Computes the sample size required to estimate a population standardized mean difference with desired precision in a paired-samples follow-up study.

Arguments

alpha: alpha level for 1-alpha confidence
d: planning value of standardized mean difference
cor: planning value of correlation
w: desired confidence interval width in follow-up study

Example

A 95% interval for a standardized difference in population means is planned in a pretest-posttest study of change in negative affect after a change in job assignment. The desired width of the confidence interval is .3. The standardized mean difference in the original study was .752. The correlation between the paired observations in the original study was .811. The required sample size in the follow-up study is 105.

size_ci_stdmean_ps(.05, .752, .811, .3)

[1] 105

size_ci_prop_lc(alpha, p, w, c)

Computes the sample size per group required to estimate a linear contrast of population proportions with desired precision in a k-group follow-up study.

Arguments

alpha: alpha level for 1-alpha confidence
p: kx1 vector of proportion planning values
w: desired confidence interval width in follow-up study
c: kx1 vector of contrast coefficients

Example

A 95% interval for a difference in population proportion of employees receiving more than a 3% raise is planned in a follow-up 2-group (service department vs marketing department) study. The desired width of the confidence interval is .2. The proportions in the original study were .251 and .425. The required sample size per group in the follow-up study is 167.

```
p = c(.251, .425)
c = c(1, -1)
size_ci_prop_lc(.05, p, .2, c)
[,1]
```

[1,] 167

Note

Each proportion from the original study could be set to .5 to give a conservatively large sample size requirement.

size_ci_cor(alpha, cor, w, s)

Computes the sample size required to estimate a Pearson correlation or a partial correlation with desired precision.

Arguments

alpha: alpha value for 1-alpha confidence cor: planning value of correlation w: desired confidence interval width in follow-up study s: number of control variables

Example

A 95% interval for a Pearson correlation between punitive supervision and burnout is planned in a follow-up study. The desired width of the confidence interval is .2. The Pearson correlation in the original study was .425. The required sample size in the follow-up study is 260.

size_ci_cor(.05, .425, .2, 0)

[1] 260

Note

Instead of using the sample correlation value from the original study, a lower 1-sided 80% confidence limit computed from the original study could be used as the correlation planning value to obtain a conservatively large sample size.

size_ci_slope(alpha, n1, se1, w)

Computes sample size required to estimate a slope coefficient (for any type of statistical model) with desired precision in a follow-up study.

Arguments

alpha: alpha value for 1-alpha confidence
n1: sample size in original study
sel: standard error for slope in original study
w: desired confidence interval width in follow-up study

Example

The original study used a sample size of 100 to estimate the slope coefficient for proactive behavior in a multiple regression model with anxiety as the response variable and punitive supervision as a control variable. The standard error for the proactive behavior slope was 1.025. The desired width of the confidence interval for the proactive behavior slope in the follow-up study is 2.5. The required sample size in the follow-up study is 259.

size_ci_slope(.05, 100, 1.025, 2.5)

[1] 259

Note

This formula can be used for any type of statistical model (linear regression, logistic, ordinal logistic, multilevel, SEM, etc.)

size_test_mean_lc(alpha, var, pow, es, c)

Computes the sample size per group required to perform a directional two-sided test of a linear contrast of population means with desired power in a k-group follow-up study (to test directional replication or non-replication).

Arguments

alpha: alpha level for test var: planning value of average within-group variance pow: desired power of test in follow-up study es: planning value of linear contrast of means (effect size) c: kx1 vector of contrast coefficients

Example

A directional test of a main effect of one factor in a 2x2 factorial design (gender by training method) is planned in a follow-up study. The desired power of the test is .95 and an alpha level of .05 will be used. The average within-group variance in the original study was 5.67. A population main effect of .7 is believed to be the smallest value that would have any practical or scientific value. The required sample size per group in the follow-up study is 151.

```
c = c(.5, .5, -.5, -.5)
size_test_mean_lc(.05, 5.67, .95, .7, c)
        [,1]
[1,] 151
```

Note

Using a minimally interesting effect size could require a very large sample size. The effect size could also be set to the anticipated effect size in the follow-up study rather than a minimally interesting effect size.

size_test_prop_lc(alpha, p, pow, es, c)

Computes sample size per group required to perform a directional two-sided test of a linear contrast of proportions with desired power in a k-group follow-up study (for test of directional replication or non-replication).

Arguments

alpha: alpha level for 1-alpha confidence
p: kx1 vector of proportion planning values
pow: desired power of test in follow-up study
es: effect size
c: kx1 vector of contrast coefficients

Example

A test of equal population proportions is planned in a follow-up 2-group (service department vs marketing department) study. The response variable is dichotomous (receive or not receive more than a 3% raise). The desired power of the test is .90 and an alpha level of .05 will be used. The proportions in the original study were .251 and .425. A .1 difference in population proportions is believed to be the smallest difference that would have any practical or scientific value. The required sample size per group in the follow-up study is 455.

```
p = c(.251, .425)
c = c(1, -1)
size_test_prop_lc(.05, p, .9, .1, c)
        [,1]
[1,] 455
```

Note

Using a minimally interesting effect size could require a very large sample size. The effect size could also be set to the anticipated effect size in the follow-up study rather than a minimally interesting effect size

size_test_cor(alpha, cor, b, pow, s)

Computes sample size required to perform a directional two-sided test of a Pearson correlation or partial correlation with desired power in a follow-up study (for test of directional replication or non-replication).

Arguments

alpha: alpha value for test cor: planning value of correlation b: hypothesized value of correlation pow: desired power of test in follow-up study s: number of control variables

Example

A test of a population Pearson correlation equal to 0 is planned in a follow-up study. The desired power of the test is .90 and an alpha level of .05 will be used. A correlation of .2 is believed to be the smallest value that would have any practical or scientific value. The required sample size in the follow-up study is 259.

size_test_cor(.05, .2, 0, .90, 0)

[1] 259

size_ci_diff(alpha, n1, se1, w)

Computes sample size in the follow-up study required to estimate the difference in original and follow-up parameters with desired precision.

Arguments

alpha: alpha value for 1-alpha confidence

- n1: sample size in original study
- sel: standard error in original study

w: desired confidence interval width for difference in original and follow-up parameters (must be greater than the CI width in the original study)

Example

A confidence interval for the difference in an SEM slope coefficient (IV = individual job performance and DV = team innovation) between the original and follow-up studies is planned. The 95% confidence interval width in the original study was 12.82. The sample size in the original study was 150 and the standard error of the slope was 3.27. The desired 95% confidence interval width for the difference in population slopes is 15.0.

size_ci_diff(.05, 150, 3.27, 15.0)

[1] 407

Note

The desired CI width for the difference must be greater than the CI width in the original study for a given alpha level. With alpha = .05, the CI width in the original study will be about 4 times the value of sel and w should be set to a number greater than this value.