List of figure captions:

Fig.13

```
Fig.1
         Experimental schematic
Fig.2
         Experimental device
Fig.3
         Poppet structure
Fig.4
         Poppet valve structure
Fig.5
         The air bubble in the pressure measures cavity of the poppet valve with orifice
Fig.6
         Displacement and pressure
Fig.6
         Displacement and pressurre (part)
Fig.7
         Poppet instability vibration in one cycle (OT)
Fig.7
         Poppet instability vibration in one cycle (0.16T)
Fig.7
         Poppet instability vibration in one cycle (0.33T)
         Poppet instability vibration in one cycle (0.5T)
Fig.7
Fig.7
         Poppet instability vibration in one cycle (0.66T)
Fig.7
         Poppet instability vibration in one cycle (0.83T)
Fig.7
         Poppet instability vibration in one cycle (1T)
Fig.8
         Micro bubbles motion in the pressure-measuring orifice (t=3.13ms)
         Micro bubbles motion in the pressure-measuring orifice (t=3.3ms)
Fig.8
Fig.8
         Micro bubbles motion in the pressure-measuring orifice (t=3.46ms)
Fig.8
         Micro bubbles motion in the pressure-measuring orifice (t=3.63ms)
Fig.8
         Micro bubbles motion in the pressure-measuring orifice (t=3.8ms)
Fig.8
         Micro bubbles motion in the pressure-measuring orifice (t=3.96ms)
         Micro bubbles motion in the pressure-measuring orifice (t=4.13ms)
Fig.8
Fig.8
         Micro bubbles motion in the pressure-measuring orifice (t=4.3ms)
         Micro bubbles motion in the pressure-measuring orifice (t=4.46ms)
Fig.8
Fig.9
         N-S21-B10-1.4 Displacement and pressure
Fig.10
         N-S21-B10-1.6 Displacement and pressure
Fig.11
         N-S21-B10-1.6 Valve cavitation region t=0
Fig.11
         N-S21-B10-1.6 Valve cavitation region t=1ms
         N-S21-B10-1.6 Valve cavitation region t=1.8ms
Fig.11
Fig.11
         N-S21-B10-1.6 Valve cavitation region t=2.5ms
         N-S21-B10-1.6 Valve cavitation region t=2.8ms
Fig.11
Fig.11
         N-S21-B10-1.6 Valve cavitation region t=3.8ms
Fig.12
         N-S21-B10-1.6 poppet valve lift cavitation t=0ms
Fig.12
         N-S21-B10-1.6 poppet valve lift cavitation t=4.2ms
Fig.12
         N-S21-B10-1.6 poppet valve lift cavitation t=7.8ms
Fig.12
         N-S21-B10-1.6 poppet valve lift cavitation t=11.3ms
Fig.12
         N-S21-B10-1.6 poppet valve lift cavitation t=15.3ms
         N-S21-B10-1.6 poppet valve lift cavitation t=19.2ms
Fig.12
Fig.13
         N-S21-B-1.0 bubble change process at valve port t=0.5ms
Fig.13
         N-S21-B-1.0 bubble change process at valve port t=0ms
Fig.13
         N-S21-B-1.0 bubble change process at valve port t=1.0ms
```

N-S21-B-1.0 bubble change process at valve port t=1.5ms

- Fig.13 N-S21-B-1.0 bubble change process at valve port t=2.0ms
- Fig.13 N-S21-B-1.0 bubble change process at valve port t=2.8ms
- Fig.13 N-S21-B-1.0 bubble change process at valve port t=3.5ms
- Fig.13 N-S21-B-1.0 bubble change process at valve port t=3.8ms
- Fig.14 N-S21-B10-2.2 Displacement
- Fig.15 N-S21-B10-2.2 Displacement
- Fig.16 N-S21-B10-2.4 Displacement and pressure
- Fig.17 N-S21-B10-2.6 Displacement and pressure
- Fig.18 N-S21-B10-3.0 Displacement and pressure
- Fig.19 N-S21-B10-3.0 Displacement and pressure of repeated experiment
- Fig.20 N-S21-B10-3.0(2) Valve cavitation region t=0ms
- Fig.20 N-S21-B10-3.0(2) Valve cavitation region t=0.5ms
- Fig.20 N-S21-B10-3.0(2) Valve cavitation region t=2.2ms
- Fig.20 N-S21-B10-3.0(2) Valve cavitation region t=3.8ms
- Fig.21 Pressure pulsation spectrum of Gear pump flow
- Fig.22 Inlet pressure curve when the poppet valve is closed
- Fig.22 Inlet pressure curve when the poppet valve is closed (part)
- Fig.23 Pressure spectrum in experimental hydraulic pipeline
- Fig.24 Axial vibration frequency of poppet
- Fig.25 Inlet pressure spectrum of Poppet valve (N-S21-B10-3.0)
- Fig.26 Inlet pressure spectrum of relief valve (N-S21-B10-3.0)
- Fig.27 Inlet pressure spectrum of poppet valve (N-S21-B10-2.8)
- Fig.28 Inlet pressure spectrum of relief valve (N-S21-B10-2.8)