

Supplemental Table 1. Summary of observed changes in RHC-derived parameters of right ventricular function and their physiological relevance in patients with mild and severe PAH (Table 3) and incident PAH patients on therapy (Table 2).

	Δ in	Δ with	Physiological Relevance
	РАН	therapy	
	Severity	(Table	
	(Table	2)	
	3)		
RV systolic function			
Max dP/dt	1	- /↓	Maximum rate of pressure change in the ventricle
			A load-dependent measure of RV contractility that is
			influenced by preload, afterload, heart rate and myocardial
			hypertrophy.
Contractile Index	\downarrow	-/↑	Normalizes max dP/dt to systolic RV pressure to account
			for afterload.
End-systolic	1	\downarrow	A load independent measure of RV contractility
Elastance			
RV afterload/work			
Arterial Elastance	1	\downarrow	A measure of the RV afterload
Stroke Work	1	-	A measure of RV function that incorporates ventricular
			function and hemodynamics.
RV-PA coupling			

Ees/Ea (Pmax –	-/↓	-/↑	A load independent measure of Ventricular Vascular
ESP)/ESP			coupling Reduced ratio in patients with PAH (normal ~1-
			2) but does not associated with mortality.
RV diastolic			
function			
Min dP/dt	\downarrow	-/↑	Minimum rate of pressure change in the ventricle.
			Increased min dP/dt suggests improved relaxation.
Myocardial	-	-	A measure of RV global function that is independent of
Performance Index			heart rate and ventricular geometry. Potentially useful
(RV Tei-index)			when there is distorted ventricular geometry
RV diastolic	1	Ļ	A measure of chamber stiffness and is increased in
stiffness coefficient,			patients with PAH and associates with effect of therapy
β			and mortality in PAH. ^{1–4}
End-Diastolic	1	Ļ	Slope of the end-diastolic pressure volume relationship at
Elastance			the end-diastolic volume. ^{1,3}

Supplemental Figure 1. RV stroke volume has a significant effect on the precision of RV contractility (Ees) and afterload (Ea). There were no significant differences in Ees (A) or Ea (C) when calculated using CMR-derived or RHC-derived stroke volume. Stroke volume has a significant effect on the limits of agreement between estimates of Ees (B) and Ea (D).

Supplemental Figure 2. The quality of the recorded RV pressure waveform is a major source of variability in the analysis of RV function. *A*) Steady waveforms are optimal for analysis because they have little beat to beat variability. *B*) In the presence of respiratory variability, there can be large swings in pressure between expiratory (EXP, solid lines) and inspiratory (dotted lines) pressure. *C*) Excessive high frequency noise (red circles) is a confounding factor in analysis and can create artificial peaks. D) Arrhythmias tend to reduce the number of representative beats that can be used in the analysis.

Supplemental Material References

- 1. Trip P, Rain S, Handoko ML, et al. Clinical relevance of right ventricular diastolic stiffness in pulmonary hypertension. *Eur Respir J* 2015; 45: 1603–12.
- 2. Vanderpool RR, Pinsky MR, Naeije R, et al. RV-pulmonary arterial coupling predicts outcome in patients referred for pulmonary hypertension. *Heart* 2015; 101: 37–43.
- 3. Vanderpool RR, Desai AA, Knapp SM, et al. How prostacyclin therapy improves right ventricular function in pulmonary arterial hypertension. *Eur Respir J* 2017; 50: 1700764.
- 4. Rain S, Handoko ML, Trip P, et al. Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. *Circulation* 2013; 128: 2016–25.