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Figure 14. Unstable MLEs estimate of 2  using the Moore-Penrose inverse method (Chelosky’s method 
fails) to compute the inverse of ill-condition C  matrix. The pseudoinverse is computed using R package 

MASS function ginv. The tree size is 5 and traits are simulated given the true parameters and tree. Then 

MLEs are computed using the trait and tree. For each parameter set, 100 replicates are simulated and the 

values of MLEs are reported using boxplots. Four true parameters for 2 =1,2,5,10  are assessed, the 

boxplots in the four panels suggested that the MLEs for 2  produces large bias and the parameter 

estimates are not reliable. 

Lemmas and their proofs 
Lemma 1. The shortest tip length of an ultrametric phylogenetic tree is the smallest eigenvalue of C . i.e. 

{det( ) = 0}=min b C I  where b  is the smallest tip length and I  is an n  by n  identity matrix. 

Proof: Given an ultrametric bifurcated tree T  of n  tips, there exists a unique strictly ultrametric matrix 

(Nabben and Varga, 1994) C  for representing the relatedness among the group of species. Let b  be the 

smallest tip length, by the property of the structure of the ultrametric tree, bC I  has at two identical 



columns as well as two identical rows. This implies that det( ) = 0bC I . Therefore, b  is an eigenvalue of 

C . 

The next step is to show that b  is the smallest eigenvalue in the eigenvalue set of C . We claim 

that for all 
0 < b , then 

0  is not an eigenvalue. Consider the matrix 
0 0= C C I , then 

0C  is still a strictly 

ultrametric matrix which is always invertible (see Nabben and Varga (1994), and Corollary 6.2.27 in Horn 

and Johnson (1986)). Then we have 
0det( ) = 0C  which implies 

0det( ) = 0C I . This consequence 

indicates that 
0  is not an eigenvalue of C . Therefore, b  is the smallest eigenvalue of C

.  +  

Lemma 2. Let C  be the n  by n  strictly ultrametric matrix from the tree and   be the condition number 

of C . Let 
1C  be the matrix obtained by dropping the shortest tip from the tree and 

1  be the condition 

number of 
1C . Then 

1  . 

Proof: Let 
1 20 < n      be the eigenvalues of C . Since 

1C  is still a strictly ultrametic matrix of size 

( 1)n  by ( 1)n , we can assume that 
1C  has eigenvalues 

1 2 10 < n      . By a special case of the 

Cauchy’s interlacing theorem (see ch. 10.1 in Parlett (1987)), we have 

1 1 2 2 1 10 < n n n              . The condition number, defined as the ratio of the largest 

eigenvalue to the smallest eigenvalue are computed as 
1= /n    and 

1 1 1= /n  
 for C  and 

1C , 

respectively. From direct algebraic calculation, we have 

1 1 1 1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1 1

( )
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      
    . This concludes that 

1  . +  

Lemma 3. The set =1{ }d

i i  where 
i  is the length between the thi  and the th( 1)i   speciation event has d  

elements if and only if the number of distinct elements in C  of an ultrametric tree is 1d  . 

Proof: Let 
1 2, , , d    be the lengths between the thi  and the th( 1)i   speciation events. Define 

1 = , =1,2, ,i i ic c i d   (i.e. 
2 1 1 1 3 2 2 2 1= = , = =c c c c       , 

4 3 3 3 2 1 1 1 1= = , , = =d d d d dc c c c               ), then each 
ic  represents the node height of the 

thi  speciation events and 
ic  is stacked up by concatenating the branch segment between two successive 

speciation events. 

On the other hand, without loss of generality, suppose 
1 1{ > > > }d dc c c

 are 1d   distinct 

elements in C . Since each element in C  measures the affinity between a pair of species, each 

, =1,2, , 1ic i d   is equal to the node height of the tree from the root. Define 
1= , =1, ,i i ic c i d   , then 

each 
i  represents a value of taking the difference between two successive node heights, 

i  is equivalent 

to the branch segment between the thi  and the th( 1)i   speciation so =1{ }d

i i  has exactly d  elements. +  

Lemma 4. Under shrinkage method with = 1 , =S I  an identity matrix. Assume an ultrametric tree, the 

RMSD for   under Brownian Motion model with rate parameter   has an upper bound 

2 2

=1 =1
/

n n

iji j
c n    when trait 1 2= ( , , , )t

ny y yY  is instead analyzed under identical independent 



distributed model where n  is taxa size and , , =1,2, ,ijc i j n  is an element in the phylogenetic covariance 

matrix C . 

proof: Let   and 2  be the true parameter of the Brownian motion model so that   =iE y   and 

  2 2= Cov , =i j i j i j ijE y y y y E y E y c             . The RMSD of   can be algebraically computed as 

 
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. In particular, 

when the root to tips tree height of ultrametic tree is 1 (i.e. 0 1ijc   for all , = 1, 2, ,i j n , so 

2
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n n

iji j
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.  +  

Lemma 5. Under shrinkage method with = 1 , =S I  an identity matrix. Assume an ultrametric tree, the 

RMSD 2  for 2  under Brownian Motion model has a lower bound  
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when trait 1 2= ( , , , )t

ny y yY  is instead analyzed under identical independent distributed model where n  

is taxa size and , , =1,2, ,ijc i j n  is an element in the phylogenetic covariance matrix C . 

proof: The MLE for Brownian motion model given tree transformed under the shrinkage method with 

= 1  is 2 2ˆ = ( ) /ii
y y n  . The RMSD 2

  for 2  is expressed as following 
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For ⓐ, direct computation yield to 
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For ⓑ, by 2 2[ ] = var[ ] ( [ ])E X X E X , 
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Combining above three terms 2 2( )  ⓐ ⓑ , a lower bound for RMSD 2

2
 is shown in Eq. (10). In 

particular, when the root to tips tree height of ultrametic tree is 1 (i.e. 0 1ijc  , 
=1

/ =1
n
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Scripts and relevant files 
The following links connect to the relevant files and the R scripts for reproducing the tables and the figures 

from simulations in this work. All files can be accessed through the online folder 

https://tonyjhwueng.info/KappaPCM. 

1. Figure 1 and Figure 4. https://tonyjhwueng.info/KappaPCM/Fig1.r. 

2. Figure 2. https://tonyjhwueng.info/KappaPCM/Fig2.r. 

3. Figure 3. https://tonyjhwueng.info/KappaPCM/Fig3.r. 

4. Figure 5. https://tonyjhwueng.info/KappaPCM/UpperBoundKappa.R. 

5. Figure 6. https://tonyjhwueng.info/KappaPCM/compshrunktree.r. 

6. Figure 7. https://tonyjhwueng.info/KappaPCM/droptipkappa.R. 

7. Figure 8. https://tonyjhwueng.info/KappaPCM/3taxaXYZ.pptx. 

8. Figure 9. https://tonyjhwueng.info/KappaPCM/GraphicalAbstractV2.R. 

9. Figure 10. https://tonyjhwueng.info/KappaPCM/Fig10.R. 

10. Figure 11 and Figure 12. https://tonyjhwueng.info/KappaPCM/AssessmentMethodsSummaryCombineReplicate.R. 

11. Figure 13. https://tonyjhwueng.info/KappaPCM/AssemRepSummaryShrinkPlot.R. 

12. Figure 14. https://tonyjhwueng.info/KappaPCM/inaccest.R. 

13. Table 1. https://tonyjhwueng.info/KappaPCM/MuMinCoef.R. 

14. solvefail.pdf: https://tonyjhwueng.info/KappaPCM/solvefail.pdf. 

15. MPfail.pdf: https://tonyjhwueng.info/KappaPCM/MPfail.pdf. 

16. pmmfelprunzerobranch.pdf: https://tonyjhwueng.info/KappaPCM/pmmfelprunzerobranch.pdf. 
 


