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Supplementary Information 
 
Spearman Rank-order Correlation of Estimated Parameters in Biderman et al.  

We further evaluated the correlated patterns of parameters estimated by Biderman and 
colleagues using Spearman rank-order correlation to mitigate issues concerning potential 
outliers. The meta-analysis procedure was the same as that used for Pearson correlation. These 
meta-analyses steps were outlined in Rosenthal and DiMatteo (2001). Similar to the results using 
Pearson correlation reported in the main text, WM and LTM precision estimates were highly 
correlated with one another (Supplementary Figure S1). When they were meta-analytically 
combined to increase statistical power, there was a strong correlation between these estimates (r 
= .56 [95% confidence intervals: .32, .72], Z = 3.73, p = .00019). In comparison, the qualitative 
aspect of WM and LTM, estimated by the probability of successful recall (Pm), did not show a 
significant association across WM and LTM in each individual experiment or in the meta-
analysis across experiments (all ps > .40). Critically, the significant correlation in precision 
estimates across WM and LTM was significantly different from the non-significant correlation in 
Pm across WM and LTM (Z = 3.48, p = .0005) by comparing these correlated but non-
overlapping meta-analytically combined correlations across experiments (Raghunathan, 
Rosenthal, & Rubin, 1996).  
 

 
Supplementary Figure S1. Correlated patterns of probability of successful recall (Pm, namely one minus 
probability of guessing, A) and mnemonic precision-1 (estimated from standard deviation of recall error 
distribution from the mixture model, B) across WM and LTM, using the Maximum Likelihood 
Estimation (MLE) parameters in Experiment 1 and 2 provided by Biderman et al. (osf.io/93cvs/). Rank-
ordered data in each experiment are evaluated by Spearman rank-order correlation, with each data point 
representing the ranks of estimated parameters for each participant. Correlated patterns are plotted in 
different colors for different experiments, and are analyzed separately with the correlation coefficients, 
95% confidence intervals, and p values shown on top of the figures. The solid lines represent linear fits of 
the data, and the dashed lines represent 95% confidence intervals of the linear fits.  
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Reliability of Parameter Estimates in Biderman et al.  
Measurement of reliability is pivotal for correlation analysis. We thus evaluated the 

reliability of parameter estimates in Biderman et al.’s data. First, because a restricted range (e.g., 
ceiling level performance) in a measure can limit the reliability of the measure (Sackett, Laczo, 
& Arvey, 2002), we first assessed whether this issue can account for the presence of a significant 
correlation between WM and LTM measures in SD but not in Pm. As shown in Supplementary 
Figure S2 (also in Fig. 2 of Biderman et al), WM Pm and SD both have restricted data ranges as 
compared with those in the LTM condition. It is thus less likely that restricted data range alone 
could account for the presence of a significant correlation in SD between WM and LTM, but the 
lack of a significant correlation in Pm between WM and LTM. 

 

 

Supplementary Figure S2. The boxplots from Experiment 1 and 2 of Biderman et al. Note, to keep 
consistent with the original data reported in Biderman et al., we reported 1- Pm (i.e., the probability of 
guessing, PG in Biderman et al.). As shown in the figure, the issue of restricted data range in WM exists 
for both Pm and SD, such that the LTM data, in general, are more variable. Although there are several 
outliers in this boxplot based on default algorithm in Matlab, these data have already been outlier-
corrected by Biderman et al. (1-Pm < 0.05 and SD > 80, as well as data that exceed 3 standard deviations 
of a variable), and hence we do not think that one should further remove the outliers. The same data can 
be seen in Fig. 2 of Biderman et al.  
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Next, we tried to directly estimate the reliability of model parameters in the current 
dataset using a bootstrap method (Davison & Hinkley, 1997). In brief, for each subject and 
experiment, we generated pairs of Pm estimates and pairs of SD estimates, based on resampling 
the trial-by-trial data with replacement. We repeated this procedure for the whole data set 100 
times and took the mean correlation between pairs as our estimate of reliability for each 
measurement. This method has been used in the modeling literature to estimate the reliability of 
a certain measure (see Bays, 2018 as an example). The table below summarizes reliability 
estimates in the current dataset.  
 
Supplementary Table S1. Reliability of Parameter Estimates in Biderman et al.  
 
Reliability estimates 
from 100 resampling 
iterations 

Exp 1 Exp 2 Naively Averaging 
across Experiments 

 Pm SD Pm SD Pm SD 
WM 0.8196 0.7368 0.7038 0.6929 0.7617 0.7148 
LTM 0.6288 0.4207 0.7059 0.5792 0.6673 0.5000 

 
Overall, the reliability estimates for the probability of successful recall are quite 

reasonable (0.6 ~ 0.7). This is not particularly different from the psychometric properties of 
major personality scales (assuming that personality traits are stable, e.g., Hahn, Gottschling, & 
Spinath, 2012). The lowest reliability estimates are actually that for the SD in LTM. That said, it 
is still not very low either. Using these reliability measures to form an upper bound for the 
possible correlation estimates between WM and LTM would be 0.7129 for Pm and 0.5978 for 
SD, respectively. The meta-analytically combined correlation estimates did not seem to 
substantially exceed these upper bounds. This calculation is based on Spearman’s correction for 
correlation attenuation formula (see Supplementary Figure S1).  
 

Observed rx,y = rx’,y’ * Sqrt(rx,x *ry,y).  
 
where rx’,y’ is the underlying true correlation between two variables X and Y (upper 

bound =1); rx,x represents the reliability estimate of variable X; and ry,y represents the reliability 
estimate of variable Y.  
 
Mini Meta-Analysis of Findings in the Literature  

After combining findings from additional data available in the literature (Korkki, Richter, 
Jeyarathnarajah, & Simons, in press) using steps outlined in Rosenthal and DiMatteo (2001), 
there was still a significant correlation between WM and LTM precision estimates in both fixed- 
and random-effect models (ps < .005; see Supplementary Figure S2 for meta-analyzed results). 
In contrast, the correlation of Pm between WM and LTM was not statistically significant in 
either fixed- or random-effect models (ps > .30). On average, the effect size of the correlation 
between WM and LTM precision seems to be 4 to 5 times larger than the effect size of the 
correlation between WM and LTM Pm. Overall, these results from a mini meta-analysis (Goh, 
Hall, & Rosenthal, 2016) suggest that observations from Biderman et al. should not be limited to 
a single dataset.  
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Several caveats of this mini-meta-analysis should be noted. First, the effect in Experiment 

2 of Biderman et al., and the young group of Korkki et al. were attenuated, which could be due to 
many factors, such as different groups of subjects and different time points or experimental 
contexts. These factors are assumed to be taken into account when aggregating the results across 
studies (especially in a random-effect model). Furthermore, the results in Korkki et al. are 
different from Biderman et al. in many ways, including task design, subject groups (young vs. 
old due to their research aims in the paper), and parameter estimates (Korkki et al. used kappa as 
a concentration parameter instead of circular standard deviation). These could also add additional 
variance in the estimation of the targeted correlation.   

 

Supplementary Figure S3. Meta-analytically combined effect sizes for the correlation between WM and 
LTM precision estimates (on the left) and for the correlation between WM and LTM probability 
successful recall (Pm, one the right). FE = Fixed-effect, RE = Random-effect. 

Treatment of Within-subject Hierarchical Structure in a Between-subject Manner 
Biderman et al.  
 As indicated by the codes provided by Biderman and colleagues (copied below), they 
have improperly treated the within-subject structure of the data in a between-subject manner. 
Specifically, each subject’s parameters were sampled differently across different conditions, 
ignoring any within-subject variances across experimental conditions (see the following code 
from // subject-specific and condition-specific precision and pm). This treatment is more 
appropriate for between-subject cases, for example in Souza (2016) for the comparison of age-
effect across different age groups. However, this treatment is not optimal for within-subject 
design, because this treatment altered the hierarchical structure of the original dataset, making 
statistical inference inaccurate.  
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Codes extracted from osf.io/93cvs/ made available by Biderman et al. (2018) 
 
model { 
        // hyperparameters: subject-common, but vary between conditions. 
        for (c in 1:n_cond) { 
        mean_precision[c] ~ exponential(0.1); 
        sigma_precision[c] ~ exponential(0.1); 
        pm_a[c] ~ exponential(0.1); 
        pm_b[c] ~ exponential(0.1); 
        // subject-specific and condition-specific precision and pm 
          for (s in 1:n_subjects) { 
          pm[s,c] ~ beta(pm_a[c], pm_b[c]); 
          precision[s,c] ~ gamma(precision_shape[c],precision_rate[c]); 
          } // n_subjects 
        } // n_cond 
         
        for (n in 1:N_trials) {  
          /* see Stan manual, Finite Mixtures, 13.4. "Log Sum of Exponentials:  
          Linear Sums on the Log Scale" */  
        target += log_sum_exp(log(pm[subject[n],cond[n]]) +  
        von_mises_lpdf(response_color[n] | study_color[n], precision[subject[n],cond[n]]), 
        log(1-pm[subject[n], cond[n]]) + uniform_lpdf (response_color[n] | 0, 2*pi())); } 
} // model 

  
Although one would argue that analyzing the within-subject dataset in a between-subject 

manner tends to be more conservative and should, in fact, reduce the chance of making Type-I 
errors, this potential benefit does not always justify its costs (Donner, Taljaard, & Klar, 2007; 
Lynn & McCulloch, 1992). For example, performing between-subject analyses on data arising 
from a repeated-measures design can lead to biases in parameter estimates in a statistical model. 
Furthermore, the validity of statistical inference based on altered data structure may also depend 
on the type of statistical models under testing (Lynn & McCulloch, 1992).  

In the Bayesian framework, by breaking the within-subject constraint, the hierarchical 
structure of a dataset is altered, influencing both the parameter estimation and statistical 
inference, which critically relies on how the priors are set in the estimation procedure. It should 
be noted that the prior of each parameter would not be the same as the prior of the difference 
between parameters. It remains an empirical question to evaluate the extent to which these issues 
would impact results in different datasets. As this is still an emerging analytical method with 
standardized procedures yet to be developed, we would like to urge researchers using this 
method to at least retain, as authentically as possible, the original hierarchical data structure 
(Sorensen, Hohenstein, & Vasishth, 2016), without altering the data structure to make it more 
liberal or conservative than it should be for statistical inference, because neither is good for the 
progress of science.  
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