Pattern measures of sedentary behavior in adults: A literature review.

Additional file 2. Results table

- Table 1 Legend of Table 2 Sedentary behavior pattern measures.
- Table 2 Sedentary behavior pattern measures.

Table 1 Legend of Table 2 Sedentary behavior pattern measures.

General	
Cl	Confidence Interval
SH	Sedentary Hour
DO	Direct Observation
IQR	interquartile range from the 1st and 3rd quartile
S	Sitting
S+R	Sitting or Reclining
S+L	Sitting or Lying
S+S+L	Sitting or Standing or Lying
$S \rightarrow S$	sit-to-stand transition
Data cleaning	
*	Number of times across the entire wear time (≥ 5 days).
Excessive values were removed, if ...	
Excessive values / artefacts	Either: 1) excessively high counts were removed, or 2) days with excessively high counts (>20 000 cpm) were excluded, or 3) days containing spuriously high values were removed
Non-wear was removed, if ...	
$\geq 10 \mathrm{~min}$ zeros	at least 10 min of continuous zeros
$\geq 20 \mathrm{~min}$ zeros	at least 20 min of continuous zeros
$\geq 20 \mathrm{~min}$ zeros, with gap (2 min)	at least 20 min of continuous zeros, with allowance for 1 to 2 min of counts >0 cpm
$\geq 60 \mathrm{~min}$ zeros	at least 60 min of continuous zeros
$\geq 60 \mathrm{~min}$ zeros, with gap (2 min)	at least 60 min of continuous zeros, with allowance for 1 to 2 min of counts $>0 \mathrm{cpm}$
$\geq 60 \mathrm{~min}$ zeros, with gap ($2 \mathrm{~min}<150 \mathrm{cpm}$)	at least 60 min of continuous zeros, with allowance for 1 to 2 min of counts $0-150 \mathrm{cpm}$
$\geq 60 \mathrm{~min}$ zeros, with gap ($2 \mathrm{~min}<100 \mathrm{cpm}$)	at least 60 min of continuous zeros, with allowance for 1 to 2 min of counts $0-100 \mathrm{cpm}$
$\geq 60 \mathrm{~min}$ zeros, with gap ($2 \mathrm{~min}<50 \mathrm{cpm}$)	at least 60 min of continuous zeros, with allowance for 1 to 2 min of counts $0-50 \mathrm{cpm}$
$\geq 60 \mathrm{~min}<1.0 \mathrm{METs}$, with gap ($2 \mathrm{~min} \geq 1.0$ METs)	at least 60 consecutive minutes of no activity (i.e., estimated activity intensity < 1.0 METs), with allowance for 2 minutes of activities where intensity rose up to 1.0 METs
$\geq 90 \mathrm{~min}$ zeros	at least 90 min of continuous zeros
$\geq 90 \mathrm{~min}$ zeros, with gap (2 min if $\geq 30 \mathrm{~min}$ before and after)	at least ≥ 90 consecutive minutes of zero counts to allow for movement of the unworn device, two minutes with movement (counts >0) were permitted as long as ≥ 30 minutes of non-movement were observed before and after it.
$\geq 90 \mathrm{~min}$ zeros vertical, with gap (2 min if ≥ 30 min before and after)	at least ≥ 90 consecutive minutes of zero counts on the vertical axis; to allow for movement of the unworn device, two minutes with movement (counts >0) were permitted as long as ≥ 30 minutes of non-movement were observed before and after it.
>100 min zeros	at least 101 min of continuous zeros (more than 100 minutes)
$\geq 120 \mathrm{~min}$ zeros	at least 120 min of continuous zeros
$>120 \mathrm{~min}$ zeros	at least 121 min of continuous zeros
$\geq 150 \mathrm{~min}$ zeros	at least 150 min of continuous zeros
$\geq 180 \mathrm{~min}$ zeros	at least 180 min of continuous zeros
Diary	non-wear was logged in a diary or logbook e.g. self-reported sleeping or removal of the sensor (e.g. during water activities).

Pattern measures of sedentary behavior in adults: A literature review.

Table 2 Sedentary behavior pattern measures.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
	$N(M e a n \pm S D)$ Men/Women Age(Mean \pm SD) Health status	Sensor brand/type Settings (e.g. epoch length; type of filter)	Non-wear Day/night Ouliers Minimum wear time	$\begin{aligned} & <100 \mathrm{cpm} \\ & \text { MLT } \\ & \mathrm{L}+\mathrm{S} \\ & \mathrm{~L}+\mathrm{S}+\mathrm{S} \end{aligned}$	Wear-time Total SB Bouts Breaks Law exponent Gini index		
(Barber, Birch, 2015)	$\begin{aligned} & N=28 \\ & \text { Age: } 82.1 \pm 9.2 \end{aligned}$	ActiGraph GTX-3 Epoch: 15s Elastic belt to be worn over the right hip.	$\geq 5 d$ $\geq 10 \mathrm{~h}$ Waking hours Non-wear (≥ 120 min zeros)	< 100 cpm	Wear-time	All subjects (hours)	12.78 ± 1.90
					Total SB	(hours) (mean \pm SD)	
						All subjects	10.12 ± 2.18
	Care home residents					< 85 yrs	10.22 ± 2.48
						$\geq 85 \mathrm{yrs}$	10.02 ± 1.92
						Men	9.68 ± 2.13
						Women	10.32 ± 2.23
						FAC 0-2	11.27 ± 1.33
						FAC 3-5	9.73 ± 2.30
						$\mathrm{BI} \leq 11$	10.97 ± 1.53
						BI >11	8.78 ± 2.43
						Outside in last month YES	11.35 ± 1.60
						Outside in last month NO	9.83 ± 2.23
						Fallen in last 6 months YES	8.95 ± 2.30
						Fallen in last 6 months NO	11.12 ± 1.55
						MMSE ≤ 24	11.13 ± 1.48
						MMSE > 24	8.52 ± 2.12
						\% of waking time	
						All subjects	79
						< 85 yrs	75.3 ± 12.2
						$\geq 85 \mathrm{yrs}$	83.3 ± 13.3
						Men	76.7 ± 16
						Women	80.6 ± 11.9
						FAC 0-2	88.2 ± 6.6
						FAC 3-5	76.4 ± 13.6
						$\mathrm{BI} \leq 11$	84.1 ± 7.8
						BI >11	71.9 ± 16.5
						Outside in last month YES	90.2 ± 5.4

Pattern measures of sedentary behavior in adults: A literature review.

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
						MMSE > 24	96.2 ± 38.6
(Barreira, Zderic, Schuna, Hamilton, \& Tudor-Locke, 2015)	$\begin{aligned} & \mathrm{N}=15 \\ & \text { Age }=27.5 \pm 2.5 \mathrm{yrs} \end{aligned}$	ActiGraph GT3X+ Epoch: 1 min	07:00-22:00h	$\begin{aligned} & <100 \mathrm{cpm} \\ & \geq 100 \mathrm{cpm} \end{aligned}$	\rightarrow Breaks	Number (n/day)	74 ± 4.1
		ActivPAL Epoch: 1 min	07:00-22:00h	Sit \rightarrow Stand	Breaks	Number ($\mathrm{n} /$ day)	39 ± 3.1
(Baruth, Sharpe, Hutto, Warren, 2013)	$\begin{aligned} & \mathrm{N}=197 \\ & \text { Age: } 39.3 \pm 7.6 \end{aligned}$	Actigraph GT1M Epoch: 1 min	$\begin{aligned} & \geq 4 \mathrm{~d} \\ & \geq 10 \mathrm{~h} / \mathrm{d} \\ & \text { Waking hours } \\ & \text { Non-wear (} \geq 60 \text { min zeros) } \end{aligned}$	< 100 cpm	Total SB	Hours (h) Hours (h) in the morning Hours (h) in the afternoon Hours (h) in the evening	$\begin{aligned} & 9.07 \pm 1.79 \\ & 2.51 \pm 0.74 \\ & 3.75 \pm 0.59 \\ & 2.55 \pm 0.95 \end{aligned}$
	Women		Daypart analysis: Morning (06:00-12:00) Afternoon (12:00-18:00) Evening (18:00-24:00)			\% of wear time (\%) \% of morning \% of afternoon \% of evening	$\begin{aligned} & 64.1 \pm 8.7 \\ & 61.8 \pm 10.7 \\ & 63.9 \pm 9.5 \\ & 65.8 \pm 10.0 \end{aligned}$
					Bouts	Number per SB hour (n/SH) $B L: \geq 1 \mathrm{~min}$ $\mathrm{BL}: \geq 10 \mathrm{~min}$ BL: $\geq 30 \mathrm{~min}$ BL: $\geq 60 \mathrm{~min}$	$\begin{aligned} & 10.5 \pm 2.8 \\ & 1.6 \pm 0.2 \\ & 0.3 \pm 0.1 \\ & 0.1 \pm 0.04 \end{aligned}$
						BL (min) $\mathrm{BL}: \geq 1 \mathrm{~min}$ $\mathrm{BL}: \geq 10 \mathrm{~min}$ $\mathrm{BL}: \geq 30 \mathrm{~min}$ BL: $\geq 60 \mathrm{~min}$	$\begin{aligned} & 6.4 \pm 1.7 \\ & 21.4 \pm 3.5 \\ & 46.3 \pm 7.1 \\ & 79.9 \pm 17.9 \end{aligned}$
						Number (n) in the morning Number (n) in the afternoon Number (n) in the evening	$\begin{aligned} & 11.5 \pm 3.8 \\ & 10.9 \pm 3.1 \\ & 10.2 \pm 3.4 \end{aligned}$
					Breaks	Number (n) Intensity (cpm) Duration (min)	$\begin{aligned} & 90.9 \pm 16.0 \\ & 484.3 \pm 75.2 \\ & 3.3 \pm 0.8 \end{aligned}$
$\begin{array}{ll} \text { (Bellettiere e.a., } & N=307 \\ \text { 2015) } & \text { Age }=83.6 \pm 6.4 \end{array}$		ActiGraph GT3X+	$\geq 10 \mathrm{~h} /$ day	<100cpm	Wear-time	(hours)	13.5 ± 1.3
		4 days		Total SB	(hours)		

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
		30 Hz , low freq. extension. Epoch: 1 minute Only vertical axis	Non-wear ($\geq 90 \mathrm{~min}$ zeros vertical; with gap (2 min if $\geq 30 \mathrm{~min}$ before and after))			All subjects	9.73 ± 1.27
					Bouts	Number (n)	
						All subjects; $\mathrm{BL} \geq 1$ min	70.6 ± 13.7
						\% of total SB (\%)	
						All subjects	
						BL: $>1 \mathrm{~min}$	100.0
						BL: $\geq 5 \mathrm{~min}$	86.0
						$\mathrm{BL}: \geq 10 \mathrm{~min}$	74.1
						$\mathrm{BL}: \geq 20 \mathrm{~min}$	57.5
						BL: $\geq 30 \mathrm{~min}$	45.5
						BL: $\geq 40 \mathrm{~min}$	35.9
						$\mathrm{BL}: \geq 50 \mathrm{~min}$	28.3
						BL: $\geq 60 \mathrm{~min}$	21.2
						$\mathrm{BL}: \geq 90 \mathrm{~min}$	7.5
						$\mathrm{BL}: \geq 120 \mathrm{~min}$	3.1
						Men	
						BL: >1 min	100.0
						BL: $\geq 5 \mathrm{~min}$	88.6
						$\mathrm{BL}: \geq 10 \mathrm{~min}$	78.1
						BL: $\geq 20 \mathrm{~min}$	62.5
						BL: $\geq 30 \mathrm{~min}$	50.1
						BL: $\geq 40 \mathrm{~min}$	39.9
						BL: $\geq 50 \mathrm{~min}$	31.7
						BL: $\geq 60 \mathrm{~min}$	23.8
						BL: $\geq 90 \mathrm{~min}$	8.1
						$\mathrm{BL}: \geq 120 \mathrm{~min}$	3.3
						Women	
						BL: >1 min	100.0
						BL: $\geq 5 \mathrm{~min}$	84.9
						$\mathrm{BL}: \geq 10 \mathrm{~min}$	72.5
						$\mathrm{BL}: \geq 20 \mathrm{~min}$	55.4
						BL: $\geq 30 \mathrm{~min}$	43.6
						BL: $\geq 40 \mathrm{~min}$	34.2
						BL: $\geq 50 \mathrm{~min}$	26.9
						$\mathrm{BL}: \geq 60 \mathrm{~min}$	20.0
						BL: $\geq 90 \mathrm{~min}$	7.3

Pattern measures of sedentary behavior in adults: A literature review.

Pattern measures of sedentary behavior in adults: A literature review.

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
						Fragmentation of sedentary bouts ($\mathrm{F}_{\text {sed }}$) $=$ bouts per SB hour (n / SH)	
						Gini index (G) MS patients Control group	$\begin{aligned} & 0.50 \pm 0.05 \\ & 0.47 \pm 0.05 \end{aligned}$
(Boerema, Essink, Tönis, van Velsen, \& Hermens, 2015)	$\begin{aligned} & N=27 \\ & \text { Age }=37.9 \pm 13.5 \end{aligned}$	Promove 3D 40Hz Epoch: 1 min. IMA	Waking hours 5d	$\leq 1.660 \mathrm{~m} \cdot \mathrm{~s}^{-2}$	Wear-time	Hours (h)	13.3 ± 2.55
					Total SB	\% of wear-time	85.66
	Office workers				SB Bouts	BL (mean) BL (median)	$\begin{aligned} & 17.34 \\ & 5.09 \end{aligned}$
						\% of total SB (\%)	
						Gini index	0.67
$\begin{aligned} & \text { (Carson e.a., } \\ & \text { 2014) } \end{aligned}$	$\begin{aligned} & \mathrm{N}=4935 \\ & \text { Age: } 45.9 \pm 15.1 \end{aligned}$	Actical Worn on right hip on an elasticized belt. Epoch: 1min	$\geq 4 \mathrm{~d}$ (incl. Sat. or Sun.) $\geq 10 \mathrm{~h} / \mathrm{d}$ Waking hours Non-wear (≥ 60 min zeros, with gap ($2 \mathrm{~min}<100 \mathrm{cpm}$))	<100 cpm	Wear-time	Hours (h)	14.73 ± 1.49
					Total SB	Hours (h)	10.76 ± 2.03
					Bouts	Duration (min); BL: $\geq 20 \mathrm{~min}$	331.6 ± 126.5
					Breaks	Number (n)	83.2 ± 18.3
(Cavanaugh, Kochi, \& Stergiou, 2010)	$\begin{aligned} & N=157 \\ & \text { Age: } 80.1 \pm 5.8 \end{aligned}$	StepWatch Attachted to the ankle using Velcro closures. During data processing, stride counts are doubled to reflect steps accumulated by both legs. Epoch: 1 min	14d 24h/d (Except when bathing, showering or swimming and to refrain from aerobic exercise other than walking or jogging)	0 steps	Total SB	\% of wear time (\%) Highly active elderly Moderately active elderly Inactive elderly	$\begin{aligned} & 72.2 \pm 2.1 \\ & 79.2 \pm 1.6 \\ & 86.9 \pm 1.0 \end{aligned}$
	community- dwelling older adults: 1) high ($\geq 10,000$ steps/d) 2) moderate (5,000- 10,000 steps/day) 3) inactive $(<5,000)$				Sequence activity-rest periods	of Detrended Fluctuation Analysis (DFA) scaling component (α) Highly active elderly Moderately active elderly Inactive elderly	$\begin{aligned} & 0.88 \pm 0.11 \\ & 0.82 \pm 0.08 \\ & 0.72 \pm 0.07 \end{aligned}$
						Entropy Rate (ER) Highly active elderly Moderately active elderly Inactive elderly	$\begin{aligned} & 3.94 \pm 0.39 \\ & 3.61 \pm 0.55 \\ & 2.89 \pm 0.57 \end{aligned}$
	$N=75$	ActiGraph GT3X	24h/day \rightarrow Waking hours	s100cpm	Wear-time	Hours (h) (median)	14.15

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
(Chapman, Fraser, Brown, \& Burton, 2015)	Age= 42yrs Adults with mental	Right hip Vertical axis Epoch: 1 min	7 days $\rightarrow \geq 4 d$ with 90% of waking hours Non-wear ($\mathbf{~} 60 \mathrm{~min}$ zeros + diary)		Total SB	\% of wear-time (median) (IQR)	65 (58-72)
					Bouts	$\begin{aligned} & \text { \% of Total SB (IQR) } \\ & \text { BL } \geq 20 \text { min } \end{aligned}$	$34(25-42)$
					Breaks	Number (n) (median) (IQR) Break Length (min) (median) (IQR)	$\begin{aligned} & 87(77-102) \\ & 3.3(2.7-3.9) \end{aligned}$
$\begin{aligned} & \text { (S. F. . Chastin } \\ & \text { e.a., 2010) } \end{aligned}$	$\begin{aligned} & \mathrm{N}=34 \\ & \text { Age: } 55.4 \pm 9.5 \end{aligned}$ Groups: 1) Parkinson (PD) 2) Control	ActivPAL$\mathrm{Sf}=10 \mathrm{~Hz} ;$	$\begin{aligned} & 7 \mathrm{~d} \\ & 24 \mathrm{~h} / \mathrm{d} \end{aligned}$	S+L	Total SB	```% of wear time (24h) (%) PD Control```	$\begin{aligned} & 76.7 \pm 10.6 \\ & 71.5 \pm 9.4 \end{aligned}$
					Bouts	$\begin{aligned} & \text { \% of Total SB (\%) } \\ & \text { PD: BL: < } 3.5 \mathrm{~h} \\ & \text { Control: } \mathrm{BL}<2 \mathrm{~h} \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$
						Distribution of bout lengths (α) PD Control	$\begin{aligned} & 1.32 \pm 0.05 \\ & 1.49 \pm 0.07 \end{aligned}$
						Gini index (G) PD Control	$\begin{aligned} & 0.84 \pm 0.06 \\ & 0.75 \pm 0.05 \end{aligned}$
(S.F.M. Chastin \& Granat, 2010)	$\begin{aligned} & N=126 \\ & \text { Age: } 49.7 \end{aligned}$	ActivPAL	24h/d	S+L	Total SB	\% of wear time (24h) (min, max)	75\% (41\%, 92\%)
	Groups: 1) Healthy active (Ha); 2) Healthy sedentary (Hs); 3) Chronic low back pain (BLP); 4) Chronic fatigue syndrome (CFS).				Bouts	```Duration (min) (median) Ha Hs LBP CFS```	$\begin{aligned} & 17.3 \\ & 20.7 \\ & 23.8 \\ & 24.9 \end{aligned}$
						\% of Total SB (\%) Ha: BL: >17.3 min Hs: $\mathrm{BL}:>20.7 \mathrm{~min}$ LBP: BL: >23.8 min CFS: BL: >24.9 min	$\begin{aligned} & 71.5 \\ & 76.1 \\ & 92.7 \\ & 95.4 \end{aligned}$
						Distribution of bout lengths (α) Ha Hs LBP CFS	$\begin{aligned} & 2.27 \\ & 1.95 \\ & 1.80 \\ & 1.76 \end{aligned}$

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
						Gini index (G)	
						Ha	0.35
						Hs	0.40
						LBP	0.74
						CFS	0.77
(S. F. M. . Chastin, Mandrichenko, Helbostadt, \& Skelton, 2014)	$N=2635$ Age: 47 (median)	Actigraph 7164 Epoch: 1 min	$\begin{aligned} & \geq 5 \mathrm{~d} \text { (incl. Sat. or Sun.) } \\ & \geq 10 \mathrm{~h} / \mathrm{d} \\ & \text { Waking hours } \\ & \text { Non-wear }(\geq 60 \text { min zeros, } \\ & \text { with gap }(2 \mathrm{~min}<50 \mathrm{cpm})) \\ & \text { Excessive values } \end{aligned}$	< 100 cpm	Total SB	\% of wear time	
						Men 22-29	52.4 ± 13.8
				The values		Men 30-39	54.0 ± 13.4
				were		Men 40-49	53.3 ± 12.3
				normalized to		Men 50-59	58.2 ± 11.9
				total wear		Men 60-69	60.6 ± 11.1
				time.		Men 70-79	68.3 ± 10.5
						Men 80+	72.5 ± 11.0
						Women 22-29	56.6 ± 9.3
						Women 30-39	55.6 ± 10.5
						Women 40-49	55.0 ± 10.5
						Women 50-59	57.9 ± 9.9
						Women 60-69	60.4 ± 11.7
						Women 70-79	65.0 ± 11.9
						Women 80+	71.1 ± 10.4
					Bouts	Number (n)	
						Men 22-29	92.5 ± 19.8
						Men 30-39	94.3 ± 18.5
						Men 40-49	96.6 ± 17.4
						Men 50-59	94.3 ± 19.3
						Men 60-69	88.3 ± 19.2
						Men 70-79	80.9 ± 17.4
						Men 80+	77.5 ± 19.5
						Women 22-29	98.4 ± 15.6
						Women 30-39	99.9 ± 16.3
						Women 40-49	99.5 ± 16.2
						Women 50-59	97.9 ± 16.7
						Women 60-69	91.9 ± 17.3
						Women 70-79	89.5 ± 18.2
						Women 80+	84.4 ± 19.3
						Bout Length (min)	

Pattern measures of sedentary behavior in adults: A literature review.

Pattern measures of sedentary behavior in adults: A literature review.

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
	Groups:					CP-GMFCS level IV CP-GMFCS level V	$\begin{aligned} & 11.16 \pm 2.1 \\ & 11.67 \pm 2.1 \end{aligned}$
	- CP-GMFCS level I - CP-GMFCS level II - CP-GMFCS level III - CP-GMFCS level IV - CP-GMFCS level V				Total SB	Hours (h) All subjects CP-GMFCS level I CP-GMFCS level II CP-GMFCS level III CP-GMFCS level IV CP-GMFCS level V	$\begin{aligned} & 10.50 \pm 2.0 \\ & 9.82 \pm 1.09 \\ & 10.97 \pm 0.45 \\ & 9.49 \pm 0.33 \\ & 10.90 \pm 0.19 \\ & 11.51 \pm 0.09 \end{aligned}$
					Breaks	Number (n) All subjects CP-GMFCS level I CP-GMFCS level II CP-GMFCS level III CP-GMFCS level IV CP-GMFCS level V	$\begin{aligned} & \text { n.a. } \\ & 24.4 \\ & 16.0 \\ & 7.6 \\ & 3.3 \\ & 2.4 \\ & \hline \end{aligned}$
						Break-rate (n / SH) All subjects CP-GMFCS level I CP-GMFCS level II CP-GMFCS level III CP-GMFCS level IV CP-GMFCS level V	n.a. $\begin{aligned} & 2.63 \pm 1.99 \\ & 1.46 \pm 0.62 \\ & 0.82 \pm 0.43 \\ & 0.31 \pm 0.18 \\ & 0.20 \pm 0.095 \end{aligned}$
$\begin{aligned} & \text { (Cooper e.a., } \\ & \text { 2012) } \end{aligned}$	$\begin{aligned} & N=528 \\ & \text { Age: } 59.8 \pm 10.0 \\ & \text { Type } 2 \text { diabetes } \end{aligned}$	Actigraph GT1M Epoch: 1 min	$\begin{aligned} & \geq 3 \mathrm{~d} ; \text { Waking hours } \\ & >10 \mathrm{~h} / \mathrm{d} \\ & \text { Non wear (} \geq 20 \text { min zeros) } \end{aligned}$	< 100 cpm	Total SB	(hours) All subjects Men Women	$\begin{aligned} & 8.1 \pm 1.3 \\ & 8.0 \pm 1.2 \\ & 8.1 \pm 1.3 \end{aligned}$
					Breaks	Number (n) All subjects Men Women	$\begin{aligned} & 82.9 \pm 13.3 \\ & 87.3 \pm 15.7 \\ & 85.2 \pm 14.5 \end{aligned}$
						Number (n / SH) All subjects	10.7 ± 2.3
	$N=217$	ActiGraph GT1M	$\geq 10 \mathrm{~h} / \mathrm{d}$; waking hours	<100 cpm	Wear-time	Hours (h)	

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
$\begin{aligned} & \text { (Davis e.a., } \\ & \text { 2014) } \end{aligned}$	$\text { Age }=78.1 \pm 5.8$	Epoch: $10 \mathrm{sec} \rightarrow 1 \mathrm{~min}$	$\geq 5 d$ Non-wear (>100 min zeros)			All subjects Men Women	$\begin{aligned} & 14.1 \pm 1.4 \\ & 14.7 \pm 1.5 \\ & 14.2 \pm 1.2 \end{aligned}$
	Older adults				Total SB	\% of wear-time (\%) All subjects Men Women	$\begin{aligned} & 71.3 \pm 0.10 \\ & 72.0 \pm 0.10 \\ & 70.7 \pm 0.10 \end{aligned}$
					Breaks	Number (n) All subjects Men Women Break-rate (n/wear-time(h)) All subjects Men Women	$\begin{aligned} & 72.8 \pm 16.2 \\ & \text { n.a. } \\ & \text { n.a. } \\ & 5.0 \pm 1.0 \\ & 4.8 \pm 1.0 \\ & 5.2 \pm 1.1 \end{aligned}$
(Diaz e.a., 2016)	$\begin{aligned} & N=8096 \\ & \text { Age } \geq 45 y \end{aligned}$	Actical Secured to a nylon belt; on right hip Epoch $=1 \mathrm{~min}$	```\geq10h/d 2d Non-wear (}\geq150\mathrm{ min zeros)```	<50 cpm	Wear-time	Hours (h)	14.4 ± 2.0
					Total SB	Hours (h)	11.2 ± 2.1
					Bouts	BL (min) (mean) $B L(\min)$ (median)	$\begin{aligned} & 11.4 \pm 8.1 \\ & 9.7 \pm 2.3 \end{aligned}$
						Number (n) All subjects BL: >1 min BL: $\geq 5 \mathrm{~min}$ BL: $\geq 10 \mathrm{~min}$ BL: $\geq 20 \mathrm{~min}$ BL: $\geq 30 \mathrm{~min}$ BL: $\geq 40 \mathrm{~min}$ BL: $\geq 50 \mathrm{~min}$ BL: $\geq 60 \mathrm{~min}$ BL: $\geq 90 \mathrm{~min}$ Age: $45-54 \mathrm{yr}$ BL: >1 min BL: $\geq 5 \mathrm{~min}$ BL: $\geq 10 \mathrm{~min}$ $B L: \geq 20 \mathrm{~min}$	$\begin{aligned} & 68.3 \pm 20.0 \\ & 28.0 \pm 5.9 \\ & 16.9 \pm 3.4 \\ & 8.8 \pm 2.3 \\ & 5.5 \pm 1.9 \\ & 3.8 \pm 1.6 \\ & 2.6 \pm 1.3 \\ & 1.9 \pm 1.1 \\ & 0.8 \pm 0.7 \\ & \\ & 77.5 \pm 17.3 \\ & 28.7 \pm 5.8 \\ & 16.2 \pm 3.9 \\ & 7.7 \pm 2.6 \end{aligned}$

Pattern measures of sedentary behavior in adults: A literature review.

\% of Total SB
All subjects

Pattern measures of sedentary behavior in adults: A literature review.

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
						BL: $\geq 60 \mathrm{~min}$	24.6 ± 13.9
						BL: $\geq 90 \mathrm{~min}$	12.9 ± 11.4
						Age: $\geq 75 \mathrm{yr}$	
						BL: $>1 \mathrm{~min}$	100
						BL: $\geq 5 \mathrm{~min}$	90.8 ± 4.8
						$\mathrm{BL}: \geq 10 \mathrm{~min}$	81.2 ± 8.7
						BL: $\geq 20 \mathrm{~min}$	66.6 ± 13.3
						BL: $\geq 30 \mathrm{~min}$	55.5 ± 15.8
						BL: $\geq 40 \mathrm{~min}$	46.7 ± 17.1
						BL: $\geq 50 \mathrm{~min}$	39.2 ± 17.6
						BL: $\geq 60 \mathrm{~min}$	32.8 ± 17.6
						BL: $\geq 90 \mathrm{~min}$	19.2 ± 16.1
						Female	
						BL: $\geq 30 \mathrm{~min}$	46.7 ± 15.6
						BL: $\geq 60 \mathrm{~min}$	25.1 ± 15.2
						BL: $\geq 90 \mathrm{~min}$	13.9 ± 12.8
						Male	
						BL: $\geq 30 \mathrm{~min}$	49.7 ± 15.3
						BL: $\geq 60 \mathrm{~min}$	27.0 ± 15.4
						BL: $\geq 90 \mathrm{~min}$	14.5 ± 13.0
						BMI: underweight	
						BL: $\geq 30 \mathrm{~min}$	43.9 ± 15.7
						BL: $\geq 60 \mathrm{~min}$	22.7 ± 13.6
						BL: $\geq 90 \mathrm{~min}$	12.5 ± 11.8
						BMI: normal weight	
						BL: $\geq 30 \mathrm{~min}$	45.1 ± 15.8
						BL: $\geq 60 \mathrm{~min}$	23.7 ± 15.1
						BL: $\geq 90 \mathrm{~min}$	12.6 ± 12.6
						BMI: overweight	
						BL: $\geq 30 \mathrm{~min}$	47.7 ± 14.9
						BL: $\geq 60 \mathrm{~min}$	25.5 ± 14.6
						BL: $\geq 90 \mathrm{~min}$	13.8 ± 12.3
						BMI: obese	
						BL: $\geq 30 \mathrm{~min}$	50.7 ± 15.6
						BL: $\geq 60 \mathrm{~min}$	28.2 ± 16.0
						BL: $\geq 90 \mathrm{~min}$	15.8 ± 13.6
					Breaks	Number (n)	

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
						All subjects	68.8 ± 20.0
						Age: 45-54	78.0 ± 17.3
						Age: 55-64	74.6 ± 18.7
						Age: 65-74	70.1 ± 18.7
						Age: ≥ 75	60.4 ± 20.6
						Female	70.6 ± 20.5
						Male	66.7 ± 19.3
						BMI: underweight	76.5 ± 22.0
						BMI: normal weight	73.5 ± 20.6
						BMI: overweight	69.4 ± 18.9
						BMI: obese	64.5 ± 19.9
						Breakrate (n / SH)	
						All subjects	6.4 ± 2.4
						Age: 45-54	8.0 ± 2.5
						Age: 55-64	7.2 ± 2.3
						Age: 65-74	6.6 ± 2.2
						Age: ≥ 75	5.3 ± 2.1
						Female	6.6 ± 2.4
						Male	6.2 ± 2.3
						BMI: underweight	6.9 ± 2.6
						BMI: normal weight	6.9 ± 2.5
						BMI: overweight	6.5 ± 2.3
						BMI: obese	6.0 ± 2.3
						Duration (min)	
						All subjects	2.8 ± 0.8
						Age: 45-54	3.4 ± 0.9
						Age: 55-64	3.0 ± 0.8
						Age: 65-74	2.8 ± 0.8
						Age: ≥ 75	2.3 ± 0.6
						Female	2.6 ± 0.7
						Male	2.9 ± 0.9
						BMI: underweight	2.6 ± 0.8
						BMI: normal weight	2.8 ± 0.8
						BMI: overweight	2.8 ± 0.8
						BMI: obese	2.7 ± 0.8

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
(Ezeugwu, Klaren, A Hubbard, Manns, \& Motl, 2015)	$\text { Age }=47.3 \pm 10.0$ yrs Adults with MS: - mobility disability absent (PDDS ≤ 2) - mobility disability present (PDDS ≥ 3)	Epoch = 1 minute On belt around the waist, on the nondominant hip	$\geq 10 \mathrm{~h} / \mathrm{d}$ wear-time Non-wear ($\geq 60 \mathrm{~min}$ zeros)			MS, mobility disability absent MS, mobility disability present	$\begin{aligned} & 14.01 \pm 0.11 \\ & 13.79 \pm 0.14 \end{aligned}$
					Total SB	Hours (h) MS, mobility disability absent MS, mobility disability present	$\begin{aligned} & 8.41 \pm 0.08 \\ & 8.89 \pm 0.09 \end{aligned}$
					Bouts ($\geq 2 \mathrm{~min}$)	BL (\min) MS, mobility disability absent MS, mobility disability present	$\begin{aligned} & 23.8 \pm 1.1 \\ & 24.2 \pm 1.3 \end{aligned}$
						Number(n); BL >30 min MS, mobility disability absent MS, mobility disability present	$\begin{aligned} & 4.3 \pm 0.1 \\ & 5.1 \pm 0.1 \end{aligned}$
					Breaks ($\geq 2 \mathrm{~min}$)	Number (n) MS, mobility disability absent MS, mobility disability present	$\begin{aligned} & 13.7 \pm 0.2 \\ & 14.7 \pm 0.2 \end{aligned}$
						Duration (min) MS, mobility disability absent MS, mobility disability present	$\begin{aligned} & 12.8 \pm 0.1 \\ & 11.6 \pm 0.1 \end{aligned}$
(Falconer, Page, Cooper, 2015)	$\begin{aligned} & N=519 \\ & \text { Age }=59.9 \pm 9.9 \end{aligned}$ Adults with type 2 Diabetes	ActiGraph GT1M Epoch = 1 min Waist-worn belt	≥ 3 d during waking hours $\geq 10 \mathrm{~h} / \mathrm{d}$ wear-time Non-wear ($\geq 60 \mathrm{~min}$ zeros)	<100 cpm	Wear-time	Hours(h)	14.02 ± 1.22
					Total SB	Hours(h)	9.06 ± 1.39
					Bouts	\% of Total SB BL: $\geq 30 \mathrm{~min}$ BL: <30 min	$\begin{aligned} & 54 \\ & 46 \end{aligned}$
$\begin{aligned} & \text { (Fanning e.a., } \\ & \text { 2016) } \end{aligned}$	$\begin{aligned} & N=221 \\ & \text { Age }=70.7 \pm 4.7 \end{aligned}$ Low active older adults - Intervention - Controls	ActiGraph GT1M or GT3X Epoch $=1 \mathrm{~min}$ On non-dominant hip	≥ 3 d during waking hours $\geq 10 \mathrm{~h} / \mathrm{d}$ wear-time	<100 cpm	Total SB	Hours(h) Intervention; month 0 Intervention; month 6 Intervention; month 12 Control; month 0 Control; month 6 Control; month 12	$\begin{aligned} & 9.94 \pm 1.61 \\ & 9.89 \pm 1.21 \\ & 9.97 \pm 1.41 \\ & 9.77 \pm 1.38 \\ & 9.69 \pm 1.27 \\ & 9.76 \pm 1.23 \end{aligned}$
					Breaks	Number(n) Intervention; month 0 Intervention; month 6 Intervention; month 12	$\begin{aligned} & 78.31 \pm 16.11 \\ & 79.48 \pm 15.12 \\ & 77.99 \pm 16.43 \end{aligned}$

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
(García- $\mathrm{N}=1365$ Hermoso, Age $=20-80 \mathrm{yrs}$ Notario- Pacheco, e.a., 2015)						Control; month 0 Control; month 6 Control; month 12	$\begin{aligned} & 80.10 \pm 15.95 \\ & 78.61 \pm 15.51 \\ & 75.42 \pm 17.07 \\ & \hline \end{aligned}$
		ActiGraph GT3X Vector magnitude Elastic belt; right side of waist	$\geq 4 \mathrm{~d}$ (≥ 1 weekend-day) $\geq 10 \mathrm{~h} / \mathrm{d}$ wear-time Non-wear ($\geq 60 \mathrm{~min}$ zeros, with gap ($2 \mathrm{~min}<100$	<100 cpm	Wear-time	Hours(h) All subjects Men Women	$\begin{aligned} & 15,52 \pm 3.65 \\ & 15,69 \pm 3.85 \\ & 15,41 \pm 3.51 \end{aligned}$
					Total SB	Hours(h) All subjects Men Women	$\begin{aligned} & 9,67 \pm 2.93 \\ & 10,03 \pm 3.11 \\ & 9,45 \pm 2.79 \end{aligned}$
					Bouts	\% of Total SB (\%) All subjects Men Women	$\begin{aligned} & 77,0 \\ & 75,5 \\ & 77,9 \end{aligned}$
					Breaks	Number (n) All subjects Men Women	$\begin{aligned} & 74.4 \pm 14.3 \\ & 77.3 \pm 13.3 \\ & 72.9 \pm 15.7 \end{aligned}$
						Breakrate (n / SH) All subjects Men Women	$\begin{aligned} & 3.4 \pm 1.5 \\ & 4.4 \pm 1.1 \\ & 2.9 \pm 1.2 \end{aligned}$
(García- Hermoso, Martínez- Vizcaíno, e.a., 2015)	$\begin{aligned} & \mathrm{N}=263 \\ & \text { Age }=55.8 \pm 12.2 \end{aligned}$	ActiGraph GT3X Vector magnitude Elastic band; right side of waist	$\geq 4 \mathrm{~d}$ (≥ 1 weekend-day) $\geq 10 \mathrm{~h} / \mathrm{d}$ wear-time Non-wear ($\geq 10 \mathrm{~min}$ zeros)	<100 cpm	Total SB	Hours(h) All subjects Men Women	$\begin{aligned} & 8.46 \pm 2.01 \\ & 9.15 \pm 1.98 \\ & 8.03 \pm 1.92 \end{aligned}$
		Epoch $=1 \mathrm{~min}$			Bouts	Number (n) BL $\geq 10 \mathrm{~min}$; All subjects BL $\geq 10 \mathrm{~min}$; Men BL $\geq 10 \mathrm{~min}$; Women	$\begin{aligned} & 14.4 \pm 4.8 \\ & 14.2 \pm 3.9 \\ & 14.5 \pm 5.3 \end{aligned}$
						\% of Total SB (\%) BL $\geq 10 \mathrm{~min}$; All subjects BL $\geq 10 \mathrm{~min}$; Men	$\begin{aligned} & 76.8 \pm 29.9 \\ & 70.6 \pm 26.5 \end{aligned}$

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
						BL $\geq 10 \mathrm{~min}$; Women	81.3 ± 32.4
(Gardiner, Eakin, Healy, \& Owen, 2011)	$N=59$ Age: 74.3 ± 9.3 Older adults Intervention on breaking up SB time	Actigraph GT1M	$\begin{aligned} & 6+6 \mathrm{~d} \\ & \geq 10 \mathrm{~h} / \mathrm{d} \end{aligned}$	< 100 cpm	Total SB	$\begin{aligned} & \text { \% of wear time (\%) } \\ & \text { PRE } \\ & \text { POST (mean (95\% CI)) } \end{aligned}$	$\begin{aligned} & 71.1 \pm 8.9 \\ & 67.9(66.9,69.0) \end{aligned}$
					Breaks	Number (n) PRE POST (mean (95\% CI))	$\begin{aligned} & 87.8 \pm 14.0 \\ & 91.8(89.3,94.4) \end{aligned}$
(Gennuso, Gangnon, Thraen- Colbert, 2014)	$\begin{aligned} & N=5076 \\ & \text { Age }=43.8 \pm 19.5 \end{aligned}$ Groups: - Subjects <8h/d SB - Subjects $\geq 8 \mathrm{~h} / \mathrm{d}$ SB	ActiGraph AM-7164 Elastic belt, over right hip Epoch $=1$ min	$\geq 1 d$ Waking hours $\geq 10 \mathrm{~h} / \mathrm{d}$ wear-time Non-wear ($\geq 60 \mathrm{~min}$ zeros, with gap ($2 \mathrm{~min}<100$ cpm))	$\geq 100 \mathrm{cpm}$	Total SB	Hours(h) All subjects (mean \pm SD) <8 h/d SB (median, 25\% - 75\%) $\geq 8 \mathrm{~h} / \mathrm{d}$ SB (median, 25\%-75\%)	$\begin{aligned} & 8.2 \pm 2.3 \\ & 6.6(5.6-7.3) \\ & 9.4(8.7-10.6) \end{aligned}$
					Breaks	Number (n) All subjects (mean \pm SD) <8 h/d SB (median, 25\% - 75\%) $\geq 8 \mathrm{~h} / \mathrm{d}$ SB (median, 25\%-75\%)	$\begin{aligned} & 90 \pm 19 \\ & 89(78-100) \\ & 91(77-104) \end{aligned}$
$\begin{aligned} & \text { (Gupta e.a., } \\ & \text { 2016) } \end{aligned}$	$\begin{aligned} & N=692 \\ & \text { Age }=45.1 \pm 9.9 \end{aligned}$ Blue-collar workers Time split: - Whole day - Work - Non-work	ActiGraph GT3X+ Placed on the right thigh (like the ActivPAL)	4d; 24h/d $\geq 10 \mathrm{~h} / \mathrm{d}$ wear-time during waking hours.	If inclination of the thigh is above 45° (Custom classification program)	Wear-time	Hours(h) Whole day Work Non-work	$\begin{aligned} & 15.93 \pm 1.45 \\ & 7.60 \pm 1.29 \\ & 8.79 \pm 1.60 \end{aligned}$
					Total SB	Hours(h) Whole day Work Non-work	$\begin{aligned} & 7.83 \pm 2.13 \\ & 2.45 \pm 1.75 \\ & 5.49 \pm 1.46 \end{aligned}$
					Bouts	Hours(h) Whole day BL >30min BL 6-30min BL ≤ 5 min Work BL >30min BL 6-30min BL $\leq 5 \mathrm{~min}$ Non-work BL >30min	$\begin{aligned} & 3.17 \pm 1.67 \\ & 3.60 \pm 1.28 \\ & 1.06 \pm 0.58 \\ & \\ & 2.45 \pm 1.75 \\ & 0.50 \pm 0.94 \\ & 1.40 \pm 1.09 \\ & \\ & 5.49 \pm 1.46 \end{aligned}$

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
						BL 6-30min BL $\leq 5 \mathrm{~min}$	$\begin{aligned} & 2.65 \pm 1.40 \\ & 2.30 \pm 0.80 \end{aligned}$
(Hallman, Mathiassen, Gupta, Korshoj, \& Holtermann, 2015)	$\begin{aligned} & N=191 \\ & \text { Age }=45 \pm 9.5 \end{aligned}$ Blue collar workers	2x Actigraph GT3X Placed on the thigh and trunk (like the ActivPAL)	4d; 24h/d Waking hours $\geq 4 \mathrm{~h} /$ day of working time and $>75 \%$ of average reported working time $\geq 4 \mathrm{~h} /$ day of leisure time and $>75 \%$ of average reported leisure time	Acti4 software classification of sitting	Wear-time	Work (h) Leisure (h)	$\begin{aligned} & 8.4 \pm 2.5 \\ & 8.9 \pm 2.7 \end{aligned}$
					Total SB	Work (h) Leisure (h)	$\begin{aligned} & 3.12 \pm 1.5 \\ & 5.93 \pm 1.9 \end{aligned}$
					Bouts	\% of wear-time during either Work or Leisure (\%) Work Males; BL >30min Females; BL >30min Non-work Males; BL >30min Females; BL >30min	$\begin{aligned} & 8.2 \pm 10.2 \\ & 5.6 \pm 7.7 \\ & \\ & 34.8 \pm 15.1 \\ & 28.2 \pm 14.9 \end{aligned}$
$\begin{aligned} & \text { (G. N. Healy } \\ & \text { e.a., 2008) } \end{aligned}$	$\begin{aligned} & N=168 \\ & \text { Age }=53.4 \pm 11.8 \end{aligned}$	Actigraph 7164 Epoch: 1 min	$\begin{aligned} & \geq 5 d \text { (incl. } 1 \text { weekend day) } \\ & \geq 10 \mathrm{~h} / \mathrm{d} \\ & \text { Waking hours } \\ & \text { Non-wear (} \geq 20 \text { min zeros } \\ & + \text { dairy) } \end{aligned}$	< 100 cpm	Total SB	(hours) = sum over ≥ 5 days	56.7 ± 12.1 *
						\% of wear-time (\%)	57
	Adults				Breaks	$\begin{aligned} & \text { Number }(\mathrm{n})=\text { sum over } \geq 5 \text { days } \\ & \text { Intensity }(\mathrm{cpm})=\text { sum over } \geq 5 \text { days } \\ & \text { Duration }(\mathrm{min})=\text { sum over } \geq 5 \text { days } \end{aligned}$	$\begin{gathered} 601 \pm 155^{*} \\ 514 \pm 94^{*} \\ 4.50 \pm 1.05^{*} \end{gathered}$
(G. N. . b Healy, Matthews, Dunstan, Winkler, \& Owen, 2011)	$\begin{aligned} & N=4757 \\ & \text { Age }=46.5 \pm 14.2 \end{aligned}$	Actigraph 7164 Epoch: 1 min	$\geq 10 \mathrm{~h} / \mathrm{d}$ Non-wear ($\geq 60 \mathrm{~min}$ zeros, with gap ($2 \mathrm{~min}<50 \mathrm{cpm}$)) Excessive values	< 100 cpm	Wear-time	Hours (h)	14.6 ± 1.45
					Total SB	(hours)	8.44 ± 1.45
	Adults				Breaks	Number (n) Duration (min)	$\begin{aligned} & 92.5 \pm 15.6 \\ & 4.12 \pm 1.26 \end{aligned}$
(Helgadóttir, Forsell, \& Ekblom, 2015)	$\begin{aligned} & N=165 \\ & \text { Age }=43.42 \pm 11.42 \end{aligned}$	ActiGraph GT3X+ On the right hip Epoch $=1 \mathrm{~min}$	$\geq 4 d$; waking hours $\geq 10 \mathrm{~h} / \mathrm{d}$ Non-wear (≥ 60 min zeros, with gap (2 min)) If excessive values, whole day excluded from analysis.	<100cpm	Wear-time	Hours(h)	14.14
	Groups: - Depressive disorders - Concurrent disorders - Anxiety disorders				Total SB	Hours(h) All subjects Depressive disorders Concurrent disorders Anxiety disorder Men Women	$\begin{aligned} & 9.11 \pm 1.62 \\ & 9.66 \pm 1.62 \\ & 9.02 \pm 1.59 \\ & 9.20 \pm 1.77 \\ & 9.43 \pm 1.70 \\ & 8.95 \pm 1.56 \end{aligned}$
					Bouts	Total time of BL $\geq 20 \mathrm{~min}$ (h)	

Pattern measures of sedentary behavior in adults: A literature review.

Pattern measures of sedentary behavior in adults: A literature review.

Pattern measures of sedentary behavior in adults: A literature review.

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
$\begin{aligned} & \text { (Jefferis e.a., } \\ & \text { 2016) } \end{aligned}$	$\begin{aligned} & \mathrm{N}=1078 \\ & \text { Age }=78.5 \pm 4.7 \end{aligned}$	ActiGraph GT3X Only vertical axis On a belt, over right hip Epoch = 1 min	$\geq 3 \mathrm{~d}$; waking hours $\geq 10 \mathrm{~h} / \mathrm{d}$ Non-wear (≥ 90 min zeros; with gap (2 min if $\geq 30 \mathrm{~min}$ before and after))	<100cpm	Wear-time	Hours(h)	14.27 ± 1.12
					Total SB	Hours (h)	10.20 ± 1.38
	Older men.				Bouts	\% of Total SB (\%) BL: 01-15min BL: $16-30 \mathrm{~min}$ BL: 31-60min BL: ≥ 61 min	
							37
							21
							24
							18
 Sardinha, 2015)	$\begin{aligned} & \mathrm{N}=351 \\ & \text { Age }=74.6 \pm 7.0 \end{aligned}$	ActiGraph GT1M Right hip, near the iliac crest Epoch $=1 \mathrm{~min}$	$\geq 3 \mathrm{~d}$ (incl. 1 weekend day) waking hours $\geq 10 \mathrm{~h} / \mathrm{d}$ Non-wear (≥ 60 min zeros + water activities)	<100 cpm	Wear-time	Hours (h)	
						All subjects	13.3
						Male	13.46
						Female	13.23
					Total SB	Hours (h)	
						All subjects	9.60 ± 1.95
						Male	9.87 ± 1.80
						Female	9.46 ± 2.02
					Bouts	Number(n)	
						All subjects	
						BL: $5-10 \mathrm{~min}$	156.0 ± 27.0
						BL: $11-20 \mathrm{~min}$	40.0 ± 14.0
						BL: $21-30 \mathrm{~min}$	16.0 ± 7.5
						BL: $31-60 \mathrm{~min}$	6.0 ± 3.9
						BL: >60min	1.3 ± 1.2
						Male	
						BL: 5-10min	156.5 ± 23.8
						BL: $11-20 \mathrm{~min}$	44.0 ± 13.7
						BL: $21-30 \mathrm{~min}$	18.1 ± 7.0
						BL: $31-60 \mathrm{~min}$	7.0 ± 3.8
						BL: >60min	1.6 ± 1.2
						Female	
						BL: $5-10 \mathrm{~min}$	156.2 ± 28.7
						BL: $11-20 \mathrm{~min}$	38.2 ± 14.6
						BL: $21-30 \mathrm{~min}$	14.8 ± 7.5
						BL: $31-60 \mathrm{~min}$	5.4 ± 3.8
						BL: $>60 \mathrm{~min}$	1.2 ± 1.2

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
(Júdice, Santos, Hamilton, Silva, 2015)	$\begin{aligned} & N=7 \\ & \text { Age }=49.7 \pm 12.6 \end{aligned}$ Overweight/Obese adult with computer based work. Crossover-RCT: - Control - Intervention	ActivPAL On right thigh. Epoch $=1 \mathrm{~min}$ ActiGraph GT3X On the right hip, near iliac crest. Only vertical axis Filter: AG-norm Epoch = 1min Actiheart (HR+Acc.) On an adapted polarband placed on the chest. Epoch $=1$ min	$1 w+1 w$; waking hours $\geq 10 \mathrm{~h} /$ day wear-time	ActivPAL: S+R Actigraph: <100 cpm Actiheart: <1.5METs	Total SB	Hours(h) Control ActivPAL ActiGraph GT3x Actiheart Intervention ActivPAL ActiGraph GT3x Actiheart Number (n) Control ActivPAL ActiGraph GT3x Actiheart Intervention ActivPAL ActiGraph GT3x Actiheart	$\begin{aligned} & 8.58 \pm 2.4 \\ & 10.7 \pm 1.6 \\ & 5.93 \pm 2.1 \\ & \\ & 5.27 \pm 2.9 \\ & 10.6 \pm 2.3 \\ & 5.7 \pm 2.6 \end{aligned}$ $\begin{aligned} & 46.6 \pm 16.7 \\ & 128.0 \pm 43.6 \\ & 258 \pm 79.8 \end{aligned}$ 53.7 ± 15.2 136 ± 34.5 305 ± 79.2
 Kang, 2015)	$\begin{aligned} & N=11 \\ & \text { Age }=30.67 \pm 7.24 \end{aligned}$	ActivPAL Mid-anterior position on right thigh ActiGraph GT3X On waist over right hip Epoch $=1 \mathrm{~s}-1$ min	Non-wear based on images (lifelogging)	ActivPAL: S+R Actigraph: <50 cpm $<100 \mathrm{cpm}$ <150 cpm Sojourn (vertical axis) Sojourn (three axis) Inclinometer	$\xrightarrow[\text { Wear-time }]{\text { Total SB }}$	Hours(h) Hours(h (95\% CI))) ActivPAL GT3X-Soj1x GT3X-Soj3x GT3X-Incli-1s GT3X-<8cnts/10s GT3X-Incli-10s GT3X-<50cpm GT3X-<100cpm GT3X-<150cpm GT3X-Incli-60s	$\begin{aligned} & 6.11 \pm 0.36 \\ & 3.95(2.90,4.99) \\ & 3.75(2.81,4.69) \\ & 3.94(2.88,4.99) \\ & 3.19(2.31,4.07) \\ & 4.38(3.63,5.13) \\ & 3.17(2.30,4.05) \\ & 3.89(3.04,4.74) \\ & 4.24(3.46,5.03) \\ & 4.42(3.65,5.18) \\ & 3.16(2.26,4.05) \end{aligned}$
					Bouts	Number(n (95\% CI))) ActivPAL GT3X-Soj1x GT3X-Soj3x GT3X-Incli-1s	$\begin{aligned} & 18.2(12.7,23.6) \\ & 23.8(18.9,28.8) \\ & 13.7(10.2,17.2) \\ & 55.1(35.6,74.6) \end{aligned}$

Pattern measures of sedentary behavior in adults: A literature review.

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
						BL: $\geq 30 \mathrm{~min}$	2.35 (0.03)
(Leask, Harvey, Skelton, \& Chastin, 2015)	$\begin{aligned} & \mathrm{N}=33 \\ & \text { Age }=65-82 \\ & \text { (median = 73.3) } \\ & \text { Community } \\ & \text { dwelling older } \\ & \text { adults } \end{aligned}$	ActivPAL	≥ 1 d; waking hours	S+R	Total SB	\% of wear-time (\% (range))	59.2 (28.3-94)
					Bouts	$\begin{aligned} & \text { Number (n(range)) } \\ & B L \geq 2 \min \end{aligned}$	$30(11-35)$
$\begin{aligned} & \text { (Lord e.a., } \\ & \text { 2011) } \end{aligned}$	$\begin{aligned} & \mathrm{N}=56 \\ & \text { Age: } 78.9 \pm 4.9 \end{aligned}$	ActivPAL$\text { sf = } 10 \mathrm{~Hz} ;$	$\begin{aligned} & 7 \mathrm{~d} \\ & 24 \mathrm{~h} / \mathrm{d} \end{aligned}$	S+L	Total SB	(hours)	12.46 ± 1.94
					Bouts	Gini index (G)	0.836 ± 0.04
	Older adults					Temporal diversity ($\mathrm{D}_{\text {1sed }}$)	15.2 ± 5.3
				$S \rightarrow S$	Breaks	Number per day	39.0 ± 10.7
(Lyden, Keadle, Staudenmayer, \& Freedson, 2014)	$\begin{aligned} & N=13 \\ & \text { Age: } 24.8 \pm 5.2 \end{aligned}$	Actigraph GT3X (1D and 3D) Epoch: 1 second	3d 10h/d	Soj-1x model	Total SB	(hours) (mean (95\% CI))	6.27 (5.70, 6.85)
					Breaks	Number (n) (mean (95\% CI)) Breakrate (n / SH) (mean ($95 \% \mathrm{CI}$))	$\begin{aligned} & 39.3(35.3,43.3) \\ & 6.6(5.5,7.7) \end{aligned}$
				Soj-3x model	Total SB	(hours) (mean (95\% CI))	5.80 (5.28, 6.33)
					Breaks	Number (n) (mean (95\% CI)) Breakrate (n / SH) (mean ($95 \% \mathrm{CI}$))	$\begin{aligned} & 29.4(23.3,35.5) \\ & -1.3(-12.7,10.1) \end{aligned}$
				$\leq 100 \mathrm{cpm}$	Total SB	(hours) (mean (95\% CI))	6.52 (6.06, 6.98)
					Breaks	Number (n) (mean (95\% CI)) Breakrate (n / SH) (mean (95\% CI))	$\begin{aligned} & 54.4(51.5,72.9) \\ & 11.2(8.7,13.8) \end{aligned}$
				$\leq 50 \mathrm{cpm}$	Total SB	(hours) (mean (95\% CI))	5.95 (5.43, 6.46)
					Breaks	Number (n) (mean (95\% CI)) Breakrate (n / SH) (mean ($95 \% \mathrm{CI}$))	$\begin{aligned} & 62.2(51.5,72.9) \\ & 11.2(8.7,13.8) \end{aligned}$
				8 counts per 10 sec	Total SB	(hours) (mean (95\% CI))	6.40 (5.91, 6.89)
					Breaks	Number (n) (mean (95\% CI)) Breakrate (n / SH) (mean ($95 \% \mathrm{CI}$))	$\begin{aligned} & 56.9(45.3,68.4) \\ & 9.5(7.2,11.8) \end{aligned}$
(Lynch e.a., 2016)	$\begin{aligned} & \mathrm{N}=185 \\ & \text { Age }=64.2 \pm 10.3 \end{aligned}$	ActiGraph GT3X+ Elastic belt over right hip. Epoch: 1 min	Waking hours $\geq 10 \mathrm{~h} / \mathrm{d}$ Non-wear ($\geq 60 \mathrm{~min}$ zeros, with gap ($2 \mathrm{~min}<50 \mathrm{cpm}$))	<100 cpm	Wear-time	Hours(h)	14.41
					Total SB	Hours(h)	8.77 ± 1.55
					Bouts	Number (n) BL: $\geq 20 \mathrm{~min}$	6.1

Pattern measures of sedentary behavior in adults: A literature review.

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
						Number (n (95\% CI)) - m-disability present - m-disability absent	$\begin{aligned} & 87.6(85.1,90.1) \\ & 89.6(87.3,91.9) \end{aligned}$
$\begin{aligned} & \text { (Ortlieb e.a., } \\ & \text { 2014) } \end{aligned}$	$\begin{aligned} & N=168 \\ & \text { Age: } 65-89 \end{aligned}$	Actigraph GT3X; Epoch: 1 min	$\begin{aligned} & \geq 4 \mathrm{~d} \\ & \geq 10 \mathrm{~h} / \mathrm{d} \end{aligned}$	$\leq 100 \mathrm{cpm}$	Total SB	(hours) All subjects	8.4 ± 1.48
	Groups - total PA/day: 1) 'rare' ($<25 \%$) 2) 'average' (≥ 25 <75\%)	1D: vertical axis only	Non-wear (≥ 20 min zeros, with gap (2 min))			\% of wear time (median (5\%, 95\%)) All Rare Average Frequent	$\begin{aligned} & 65(50,82) \\ & 74(66,85) \\ & 65(54,74) \\ & 59(41,67) \end{aligned}$
	3) 'frequent' ($\geq 75 \%$				Bouts	BL (min) (mean (5\%, 95\%)) All Rare Average Frequent	$\begin{aligned} & 7.08(4.78,11.81) \\ & 8.64(6.13,12.58) \\ & 6.91(4.80,9.97) \\ & 6.31(4.18,8.58) \end{aligned}$
						BL (min) (median (5\%, 95\%)) All Rare Average Frequent	$\begin{aligned} & 3.00(2.00,4.50) \\ & 3.00(2.00,5.00) \\ & 3.00(2.00,4.00) \\ & 2.00(2.00,3.00) \end{aligned}$
						\% of total SB (\%) All BL: >3 min Rare BL: >3 min Average BL: >3 min Frequent BL: >2 min	$\begin{aligned} & 89(84,92) \\ & 90(86,92) \\ & 88(84,92) \\ & 88(81,91) \end{aligned}$
						Gini index (G (5\%, 95\%)) All Rare Average Frequent	$\begin{aligned} & 0.63(0.57,0.68) \\ & 0.65(0.60,0.68) \\ & 0.63(0.58,0.68) \\ & 0.62(0.57,0.67) \end{aligned}$
(Paraschiv- Ionescu, Buchser, Aminian, 2008)	$N=30$ Groups: 1) Healthy subjects	Three inertial sensors (each with two accelerometers and one gyroscope) fixed	5d $8 \mathrm{~h} / \mathrm{d}$ No epoch length reported.	S+L	Sequence of activity-rest periods	Detrended Fluctuation Analysis (DFA) scaling component (α) Healthy subjects Chronic Pain patients	$\begin{aligned} & 0.856 \pm 0.09 \\ & 0.756 \pm 0.09 \end{aligned}$

Pattern measures of sedentary behavior in adults: A literature review.

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
					Sequence of activity-rest periods	Complementary cumulative probability distribution (CCPD) 1. Scaling factor ($\tau_{\Delta}{ }^{\text {pos }}, \tau_{\Delta}^{\text {neg }}$) Healthy subjects Chronic Pain patients	$\begin{aligned} & 296 \pm 133,413 \pm 208 \\ & 614 \pm 340,297 \pm 158 \end{aligned}$
						2. Characteristic shape parameter $\left(\beta_{\Delta}^{\text {pos }}, \beta_{\Delta}^{\text {neg }}\right)$ Healthy subjects Chronic Pain patients	$\begin{aligned} & 0.66 \pm 0.15,0.63 \pm 0.15 \\ & 0.71 \pm 0.16,0.77 \pm 0.19 \end{aligned}$
						Fano factor scaling component (α_{F}) Healthy subjects Chronic Pain patients	$\begin{aligned} & 0.34 \pm 0.08 \\ & 0.19 \pm 0.11 \end{aligned}$
					Structural complexity	Permutation entropy (PE) Healthy subjects Chronic Pain patients	$\begin{aligned} & 0.28 \pm 0.09 \\ & 0.16 \pm 0.07 \end{aligned}$
 Straker, 2013)	$\begin{aligned} & N=50 \\ & \text { Age: } 36.4 \pm 8.6 \end{aligned}$	Actical Attached to an elastic belt, worn over the right hip. Epoch: 1 min	$\geq 4 d$ (≥ 3 work, ≥ 1 non-work) $\geq 8,34 \mathrm{~h} / \mathrm{d}$ Non-wear (>120 min zeros)	< 91 cpm	Wear-time	Hours (h) Workdays - all day Workdays - work hours Non-workdays	$\begin{aligned} & 14.9 \pm 1.09 \\ & 8.9 \pm 0.77 \\ & 13.7 \pm 1.43 \end{aligned}$
	Office workers				Total SB	Hours(h) Workdays - all day Non-Workdays	$\begin{aligned} & 11.3 \pm 0.98 \\ & 9.30 \pm 1.47 \end{aligned}$
						\% of wear time (\%) Workdays - all day Non-Workdays	$\begin{aligned} & 75.9 \\ & 69.7 \end{aligned}$
					Bouts	$\%$ of wear time; BL: >30 min Workdays - all day Workdays - work hours Workdays - non-work hours Non-workdays	$\begin{aligned} & 34.1 \pm 11.6 \\ & 40.8 \pm 16.6 \\ & 22.8 \pm 10.9 \\ & 26.9 \pm 11.1 \end{aligned}$
					Breaks	Number (n / SH) Workdays - all day Workdays - work hours	$\begin{aligned} & 6.0 \pm 1.4 \\ & 5.1 \pm 1.7 \end{aligned}$

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
						Workdays - non-work hours Non-workdays	$\begin{aligned} & 7.9 \pm 2.1 \\ & 9.2 \pm 9.8 \end{aligned}$
(Parry, Straker, Gilson, \& Smith, 2013)	$\begin{aligned} & N=62 \\ & \text { Age: } 41.4 \pm 10.9 \end{aligned}$	Actigraph GT3X Epoch: 1 min 7 days. 60sec epoch.	$\begin{aligned} & \geq 4+4 \mathrm{~d} \\ & (\geq 3 \text { work, } \geq 1 \text { non-work) } \\ & \geq 8,34 \mathrm{~h} / \mathrm{d} \end{aligned}$	< 100 cpm	Wear-time	Hours (h) Workdays - all day Workdays - work hours	$\begin{aligned} & 15.37 \pm 1.40 \\ & 8.36 \pm 1.09 \end{aligned}$
	Office workers Intervention	Elastic belt to be worn over the right hip.	Waking hours Non-wear (≥ 120 min zeros)		Total SB	\% of wear time PRE Workdays - all day Workdays - work hours POST Workdays - all day Workdays - work hours	$\begin{aligned} & 72.85 \pm 7.06 \\ & 78.29 \pm 8.41 \\ & \\ & 71.25 \pm 7.27 \\ & 76.6 \pm 8.6 \end{aligned}$
					Bouts	\% of wear time; BL: >30 PRE Workdays - all day Workdays - work hours POST Workdays - all day Workdays - work hours	$\begin{array}{r} 24.37 \pm 12.73 \\ 28.98 \pm 19.34 \\ \\ 22.29 \pm 13.16 \\ 25.74 \pm 18.66 \end{array}$
					Breaks	Break rate (n / SH) PRE Workdays - all day Workdays - work hours POST Workdays - all day Workdays - work hours	$\begin{aligned} & 7.81 \pm 2.45 \\ & 6.95 \pm 3.20 \\ & \\ & 8.45 \pm 2.86 \\ & 7.67 \pm 3.41 \end{aligned}$
(Pettapiece- Phillips e.a., 2016)	$\begin{aligned} & N=50 \\ & \text { Age }=37.2(18-62) \end{aligned}$ Women - Control - BRCA1 mutation	ActiGraph GT3X Elasticized belt Epoch $=1 \mathrm{sec}$	```7d; waking hours \geq10h/d Non-wear (}\geq10\textrm{min}\mathrm{ zeros)```	ActiLife ve 6.8.2	Total SB Bouts	Hours(h) All subjects BL - longest bout (in 7days) (min) All subjects	8.6 ± 1.5 119.3 ± 64.2
(Prince, Blanchard, Grace, \& Reid, 2015)	$\begin{aligned} & \mathrm{N}=263 \\ & \text { Age }=63.69 .3 \end{aligned}$	ActiGraph GT3X Right hip Vector Magnitude Epoch $=1 \mathrm{~min}$	$\geq 4 d$; waking hours $\geq 10 \mathrm{~h} / \mathrm{d}$ Non-wear ($\geq 60 \mathrm{~min}$ zeros, with gap ($2 \mathrm{~min}<150 \mathrm{cpm}$)	$\leq 150 \mathrm{cpm}$	Wear-time	Hours(h) All subjects Men Women	$\begin{aligned} & 14.14 \pm 1.30 \\ & 14.21 \pm 1.28 \\ & 13.93 \pm 1.32 \end{aligned}$

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
	Cardiac rehabilitation graduates				Total SB	Hours(h) All subjects Men Women	$\begin{aligned} & 8.0 \pm 1.6 \\ & 8.2 \pm 1.5 \\ & 7.2 \pm 1.5 \end{aligned}$
					Bouts	Number (n); BL: ≥ 10 min All subjects Men Women	$\begin{aligned} & 14.1 \pm 3.8 \\ & 14.7 \pm 3.6 \\ & 12.3 \pm 3.7 \end{aligned}$
(Prioreschi, Makda, Tikly, \& McVeigh, 2015)	$\begin{aligned} & \mathrm{N}=29 \\ & \text { Age }=52.7 \pm 11 \end{aligned}$	Actical Velcro belt on hip of dominant leg. Epoch $=1 \mathrm{~min}$	```\geq4d; waking hours \geq10h/d Non-wear (}<60\textrm{min}\mathrm{ zeros)```	s100cpm	Wear-time	Hours(h) normal bone mass low bone mass	$\begin{aligned} & 17 \pm 3 \\ & 16 \pm 3 \end{aligned}$
	Rheumatoid Arthritis, women. - normal bone mass - low bone mass				Total SB	\% of wear-time (\%) normal bone mass low bone mass	$\begin{aligned} & 65 \pm 11 \\ & 74 \pm 10 \end{aligned}$
					Bouts	Number (n); BL: ≥ 60 min normal bone mass low bone mass	$\begin{aligned} & 7 \pm 3 \\ & 8 \pm 3 \end{aligned}$
					Breaks	Number (n) normal bone mass low bone mass	$\begin{aligned} & 72 \pm 21 \\ & 53 \pm 18 \end{aligned}$
$\begin{aligned} & \text { (N. Reid e.a., } \\ & \text { 2013) } \end{aligned}$	$\begin{aligned} & N=31 \\ & \text { Age: } 84.2 \\ & \text { (range 61.4-95.8) } \end{aligned}$	ActivPAL3 ${ }^{\text {TM }}$ Epoch: 15 seconds	7d 24h/d Waking hours $\geq 80 \%$ or $\geq 10 \mathrm{~h}$ of waking time Non-wear (diary)	S+L	Waking hours	Hours(h)	14.6 ± 2.0
					Total SB	(hours) (mean (Cl 95\%))	12.4 (11.3, 13.3)
						\% of waking hours	85
	Older adults In residential care				Bouts	\% of Total SB (\%) Duration: $\geq 30 \mathrm{~min}$ Duration: $\geq 60 \mathrm{~min}$	$\begin{aligned} & 73 \\ & 44 \end{aligned}$
						Bout duration at 10% total SB (min) Bout duration at 50% total SB (min) Bout duration at 90% total SB (min)	$\begin{aligned} & 11 \\ & 53 \\ & 142 \\ & \hline \end{aligned}$
(R. E. R. . Reid, Carver, 	$\begin{aligned} & N=71 \\ & \text { Age }=50.27 \pm 9.38 \end{aligned}$	ActivPAL ${ }^{\text {TM }} 3$ Adhesive patch on mid-thigh Epoch $=15 \mathrm{sec}$	$\begin{aligned} & \geq 4 \mathrm{~d} \\ & \geq 22 \mathrm{~h} / \mathrm{d} ; \end{aligned}$ Sleep time was not analysed	Sitting Break = Transition	Total SB	Hours (h)	9.74 ± 2.29
					Breaks	Number(n)	48.20 ± 15.40

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
Andersen, 2015)	Adults, post bariatric surgery			from sitting to standing			
(L. B. . c Sardinha, Santos, Silva, Owen, 2015)	$\begin{aligned} & \mathrm{N}=215 \\ & \text { Age }=73.3 \pm 5.9 \end{aligned}$ Non- institutionalized older adults	ActiGraph GT1M Right hip, near iliac crest Epoch: $15 \mathrm{sec} \rightarrow 1$ min	$\geq 3 \mathrm{~d}$, incl. 1 weekend day $\geq 10 \mathrm{~h} / \mathrm{d}$ Non-wear ($\geq 60 \mathrm{~min}$ zeros)	<100 cpm	Wear-time	Hours(h)	13.38 ± 1.58
					Total SB	Hours(h)	8.55 ± 1.89
					Breaks	Number(n)	78.9 ± 16.0
(L. B. Sardinha e.a., 2015)	$\begin{aligned} & \mathrm{N}=371 \\ & \text { Age }=74.7 \pm 6.9 \end{aligned}$ Non- institutionalized older adults - Low risk for physical dependence - High risk for physical dependence	ActiGraph GT1M Right hip, near iliac crest Epoch: 15sec $\rightarrow 1$ min	$\geq 3 \mathrm{~d}$, incl. 1 weekend day $\geq 10 \mathrm{~h} / \mathrm{d}$ Non-wear ($\geq 60 \mathrm{~min}$ zeros)	<100 cpm	Wear-time	Hours(h) All subjects Low risk for physical dependence High risk for physical dependence	$\begin{aligned} & 13.72 \pm 1.54 \\ & 13.87 \pm 1.57 \\ & 13.30 \pm 1.34 \end{aligned}$
					Total SB	Hours(h) All subjects Low risk for physical dependence High risk for physical dependence	$\begin{aligned} & 9.00 \pm 2.16 \\ & 8.76 \pm 2.09 \\ & 9.70 \pm 2.21 \end{aligned}$
					Breaks	Number(n) All subjects Low risk for physical dependence High risk for physical dependence	$\begin{aligned} & 74.9 \pm 20.0 \\ & 78.0 \pm 17.6 \\ & 65.9 \pm 23.6 \end{aligned}$
						Number per SB hour ($n / S H$) All subjects Low risk for physical dependence High risk for physical dependence	$\begin{aligned} & 9.0 \pm 3.6 \\ & 9.5 \pm 3.3 \\ & 7.5 \pm 3.9 \end{aligned}$
(Sartini e.a., 2015)	$\begin{aligned} & \mathrm{N}=1455 \\ & \text { Age }=78.5 \pm 4.6 \end{aligned}$	ActiGraph GT3X Only vertical axis On elasticated belt over right hip Epoch $=1 \mathrm{~min}$	$\geq 3 d$; waking hours $\geq 10 \mathrm{~h} / \mathrm{d}$ Non-wear ($\geq 90 \mathrm{~min}$ zeros, with gap (2 min if $\geq 30 \mathrm{~min}$ before and after)) Only hours with ≥ 45 valid wear minutes were included. Means were adjusted for various factors	<100cpm	Wear-time	Hours(h, range)	14.22 (14.17,14.28)
	Older men				Total SB	\% of wear-time (\%)	72.6 (72.1, 73.0)
					Bouts $\geq 60 \mathrm{~min}$	\% of bouts at period of the day (\%) Evenings ($7 \mathrm{p},-10.59 \mathrm{pm}$) 8-9 pm 9-10 pm	$\begin{aligned} & 49 \\ & 13.6 \\ & 14.0 \end{aligned}$
	$N=442$		$\geq 6 \mathrm{~d}$ (incl. Sat. and Sun.)	$\mathrm{MET} \leq 1.8$	Total SB	(hours)	

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
(Scheers, Lefevre, 2012)	Age: 41.4 ± 9.8	SenseWear Pro3 Armband (SWA) Epoch: 1 min Worn over the triceps muscle of the right	$\geq 95 \%$ of $24 \mathrm{~h} / \mathrm{d}$ (Except during water-based activities)	(incl. sleep)		Men - normal weight Women - normal weight Men - Overweight Women - Overweight Men - Obese Women - Obese	$\begin{aligned} & 16.82 \pm 1.87 \\ & 16.48 \pm 1.59 \\ & 17.37 \pm 1.84 \\ & 17.52 \pm 1.56 \\ & 17.91 \pm 1.60 \\ & 18.36 \pm 2.00 \end{aligned}$
					Bouts	BL (min) Men - normal weight Women - normal weight Men - Overweight Women - Overweight Men - Obese Women - Obese	$\begin{aligned} & 13.63 \pm 4.49 \\ & 13.09 \pm 3.03 \\ & 14.52 \pm 3.56 \\ & 15.41 \pm 3.68 \\ & 15.52 \pm 3.66 \\ & 18.44 \pm 7.68 \end{aligned}$
					Breaks	Number (n) Men - normal weight Women - normal weight Men - Overweight Women - Overweight Men - Obese Women - Obese	$\begin{aligned} & 77.79 \pm 15.17 \\ & 77.13 \pm 12.21 \\ & 73.65 \pm 12.61 \\ & 69.98 \pm 13.26 \\ & 70.84 \pm 10.90 \\ & 64.70 \pm 16.61 \end{aligned}$
(Shiroma, Freedson, Trost, \& Lee, 2013a)	$N=7247$	Actigraph GT3X+	$\geq 4 \mathrm{~d}$	< 100 cpm	Wear-time	Hours (h)	14.8 ± 1.2
	Women		$\geq 10 h / d$		Total SB	Hours (h)	9.7 ± 1.5
						\% of wear time (95\% CI)	65.5 (65.5, 64.7)
					Breaks	Number (n / SH) (95\% CI)	9.0 (9.0, 9.1)
					Bouts	Number (n) ($95 \% \mathrm{Cl}$)	85.9 (85.5, 86.3)
						Number (n) Duration: >1 min Duration: $\geq 5 \mathrm{~min}$ Duration: $\geq 10 \mathrm{~min}$ Duration: $\geq 20 \mathrm{~min}$ Duration: $\geq 30 \mathrm{~min}$ Duration: $\geq 40 \mathrm{~min}$ Duration: $\geq 50 \mathrm{~min}$ Duration: $\geq 60 \mathrm{~min}$	$\begin{aligned} & 85.9 \pm 16.1 \\ & 29.8 \pm 4.7 \\ & 15.9 \pm 3.2 \\ & 7.0 \pm 2.2 \\ & 3.8 \pm 1.6 \\ & 2.2 \pm 1.2 \\ & 1.4 \pm 0.9 \\ & 0.9 \pm 0.7 \end{aligned}$

Pattern measures of sedentary behavior in adults: A literature review.

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
(Spinney e.a., 2015)	Office workers		Analysis only during office hours	$s \rightarrow$ S	Breaks	Number per SB hour (n / SH)	4.0 ± 2.8
(Straker e.a., 2014)	$\begin{aligned} & N=24(3 * 8) \\ & \text { Age: } 38.2 \pm 8.3 \end{aligned}$ Occupational groups: 1) Seated office workers 2) Standing office workers 3) Teachers	Actical (omnidirectional) On belt over right anterior iliac spine Epoch: 1min	4d	< 91 cpm	Bouts	\% of Wear-time (\%); BL: >30 min Seated office workers Standing office workers Teachers	$\begin{aligned} & 37.3 \\ & 25.7 \\ & 15.7 \end{aligned}$
					Breaks + Bouts	\% of Wear-time (\%); BL: 0-5 min Seated office workers Standing office workers Teachers	$\begin{aligned} & 21.8 \\ & 26.8 \\ & 34.6 \end{aligned}$
(Tieges e.a., 2015)	$\begin{aligned} & \mathrm{N}=96 \\ & \text { Age }=72.2(64-80) \end{aligned}$	ActivPAL On unaffected leg	7d Including sleep $\geq 24 \mathrm{~h} / \mathrm{d}$	S+L Sleep time was included in the analysis	Total SB	\% of day (24h)	81
	Patients with acute stroke					Hours of day (24h) (median (IQR) Overall 1mo after stroke 6 mo after stroke 12 mo after stroke	$\begin{aligned} & 19.5(18.1-21.2) \\ & 19.9(18.4-22.1) \\ & 19.1(17.8-20.8) \\ & 19.3(17.3-20.9) \end{aligned}$
					Bouts	\% of Total SB (\%) (BL is median IQR) Overall - BL: 102 min 1mo after stroke - BL: 99 min 6 mo after stroke - BL: 102.6 min 12 mo after stroke - BL: 102 min	50 (W_{50}) 50 (W_{50}) 50 (W_{50}) $50\left(W_{50}\right)$
						Number per SB hour (n / SH) Overall 1mo after stroke 6 mo after stroke 12 mo after stroke	$\begin{aligned} & 2.30(1.80-2.90) \\ & 2.21(1.70-2.88) \\ & 2.41(1.87-2.96) \\ & 2.48(1.91-2.94) \end{aligned}$
(Van Cauwenberg, Van Holle, De Bourdeaudhuij, Deforche, 2015)	$\begin{aligned} & \mathrm{N}=442 \\ & \text { Age }=74.2 \pm 6.2 \end{aligned}$	ActiGraph GT3X+ Epoch = 1 min	$\geq 5 d$; waking hours $\geq 10 \mathrm{~h} / \mathrm{d}$ Non-wear (≥ 90 min zeros)	<100 cpm	Total SB	Hours(h) Overall	9.67 ± 1.63
	Older adults					\% of wear-time (\%) Morning (7h-12h) Afternoon (12h-17h) Evening (17h-23h)	$\begin{aligned} & 50.33 \\ & 66.40 \\ & 68.47 \end{aligned}$

Pattern measures of sedentary behavior in adults: A literature review.

Pattern measures of sedentary behavior in adults: A literature review.

Study	Population	Sensor \& settings	Data cleaning	SB classification	SB pattern measure	Unit	Per subject / day (mean \pm SD)
(Van Dommelen e.a., 2016)	$\begin{aligned} & \mathrm{N}=205 \\ & \text { Age }=45.8 \pm 9.6 \end{aligned}$ Adults; stratification based on occupation: - financial service provider - white collar - research institute white collar - construction company - blue	ActiGraph On right hip	$\geq 4 d$, waking hours ≥ 2 work days ($\geq 3 \mathrm{~h}$ work) $\geq 10 \mathrm{~h} / \mathrm{d}$ wear-time Non-wear ($\geq 60 \mathrm{~min}$ zeros, with gap ($2 \mathrm{~min}<100$ cpm)) Analysis of: 1) total wear-time 2) occupational time	<100 cpm	Wear-time	Hours(h) Total time white collar, financial, men white collar, financial, women white collar, research, men white collar, research, women blue collar, construction, men Occupational time white collar, financial, men white collar, financial, women white collar, research, men white collar, research, women blue collar, construction, men	$\begin{aligned} & 14.9 \pm 1.1 \\ & 14.7 \pm 1.0 \\ & 15.0 \pm 0.8 \\ & 14.8 \pm 0.8 \\ & 15.4 \pm 1.2 \\ & 8.5 \pm 1.0 \\ & 8.3 \pm 1.0 \\ & 8.2 \pm 1.1 \\ & 7.8 \pm 1.5 \\ & 7.7 \pm 0.7 \end{aligned}$
	collar				Total SB	\% of Wear-time (\%) Total time white collar, financial, men white collar, financial, women white collar, research, men white collar, research, women blue collar, construction, men Occupational time white collar, financial, men white collar, financial, women white collar, research, men white collar, research, women blue collar, construction, men	$\begin{aligned} & 70.0 \pm 5.2 \\ & 67.4 \pm 6.9 \\ & 65.7 \pm 5.3 \\ & 63.5 \pm 6.9 \\ & 55.5 \pm 9.3 \\ & 78.5 \pm 5.6 \\ & 79.5 \pm 5.9 \\ & 77.0 \pm 7.4 \\ & 76.3 \pm 7.6 \\ & 43.6 \pm 16.9 \end{aligned}$
					Bouts	$\%$ of Total SB (\%) BL: $\geq 30 \mathrm{~min}$ Total time white collar, financial, men white collar, financial, women white collar, research, men white collar, research, women blue collar, construction, men Occupational time white collar, financial, men white collar, financial, women	$\begin{aligned} & 22.3 \pm 8.9 \\ & 21.911 .2 \\ & 22.2 \pm 6.9 \\ & 19.2 \pm 7.6 \\ & 12.2 \pm 7.1 \\ & \\ & 27.4 \pm 16.3 \\ & 29.8 \pm 17.9 \end{aligned}$

Pattern measures of sedentary behavior in adults: A literature review.

References

Barber, S. E., Forster, A., \& Birch, K. M. (2015). Levels and Patterns of Daily Physical Activity and Sedentary Behavior Measured Objectively in Older Care Home Residents in the United Kingdom. Journal of Aging and Physical Activity, 23(1), 133-143. https://doi.org/10.1123/JAPA.2013-0091
Barreira, T. V. . b, Zderic, T. W. ., Schuna, J. M. . c, Hamilton, M. T. ., \& Tudor-Locke, C. . (2015). Freeliving activity counts-derived breaks in sedentary time: Are they real transitions from sitting to standing? Gait and Posture, 42(1), 70-72. https://doi.org/10.1016/j.gaitpost.2015.04.008
Baruth, M. ., Sharpe, P. A. ., Hutto, B. ., Wilcox, S. ., \& Warren, T. Y. . (2013). Patterns of sedentary behavior in overweight and obese women. Ethnicity and Disease, 23(3), 336-342.
Bellettiere, J., Carlson, J. A., Rosenberg, D., Singhania, A., Natarajan, L., Berardi, V., ... Kerr, J. (2015). Gender and Age Differences in Hourly and Daily Patterns of Sedentary Time in Older Adults Living in Retirement Communities. Plos One, 10(8), e0136161. https://doi.org/10.1371/journal.pone. 0136161
Blikman, L. J. ., Van Meeteren, J. ., Horemans, H. L. ., Kortenhorst, I. C. ., Beckerman, H. ., Stam, H. J. ., \& Bussmann, J. B. . (2015). Is physical behavior affected in fatigued persons with multiple sclerosis? Archives of Physical Medicine and Rehabilitation, 96(1), 24-29. https://doi.org/10.1016/j.apmr.2014.08.023
Boerema, S. T. . b, Essink, G. B. . b, Tönis, T. M. . b, van Velsen, L. . b, \& Hermens, H. J. . b. (2015). Sedentary behaviour profiling of officeworkers: A sensitivity analysis of sedentary cut-points. Sensors (Switzerland), 16(1). https://doi.org/10.3390/s16010022
Carson, V. . b, Wong, S. L. ., Winkler, E. ., Healy, G. N. . e, Colley, R. C. . f, \& Tremblay, M. S. . f. (2014). Patterns of sedentary time and cardiometabolic risk among Canadian adults. Preventive Medicine, 65, 23-27. https://doi.org/10.1016/j.ypmed.2014.04.005
Cavanaugh, J. T. ., Kochi, N. ., \& Stergiou, N. . c. (2010). Nonlinear analysis of ambulatory activity patterns in community-dwelling older adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 65(2), 197-203. https://doi.org/10.1093/gerona/glp144
Chapman, J. J., Fraser, S. J., Brown, W. J., \& Burton, N. W. (2015). Physical activity and sedentary behaviour of adults with mental illness. Journal of Science and Medicine in Sport. https://doi.org/10.1016/j.jsams.2015.07.017
Chastin, S. F. ., Baker, K. ., Jones, D. ., Burn, D. ., Granat, M. H. ., \& Rochester, L. . c. (2010). The pattern of habitual sedentary behavior is different in advanced Parkinson's disease. Movement Disorders, 25(13), 2114-2120.
Chastin, S. F. M. ., Mandrichenko, O. ., Helbostadt, J. L. ., \& Skelton, D. A. . (2014). Associations between objectively-measured sedentary behaviour and physical activity with bone mineral density in adults and older adults, the NHANES study. Bone, 64, 254-262. https://doi.org/10.1016/j.bone.2014.04.009
Chastin, S. F. M., \& Granat, M. H. (2010). Methods for objective measure, quantification and analysis of sedentary behaviour and inactivity. Gait and Posture, 31(1), 82-86. https://doi.org/10.1016/j.gaitpost.2009.09.002

Chastin, S. F. M., Winkler, E. A. H., Eakin, E. G., Gardiner, P. A., Dunstan, D. W., Owen, N., \& Healy, G. N. (2015). Sensitivity to Change of Objectively-Derived Measures of Sedentary Behavior. Measurement in Physical Education and Exercise Science, 19(3), 138-147. https://doi.org/10.1080/1091367X.2015.1050592
Chen, T. ., Narazaki, K. ., Haeuchi, Y. ., Chen, S. ., Honda, T. . c, \& Kumagai, S. . d. (2016). Associations of sedentary time and breaks in sedentary time with disability in instrumental activities of daily living in community-dwelling older adults. Journal of Physical Activity and Health, 13(3), 303309. https://doi.org/10.1123/jpah.2015-0090

Claridge, E. A. ., McPhee, P. G. ., Timmons, B. W. . c, Ginis, K. A. M. ., MacDonald, M. J. ., \& Gorter, J. W. . (2015). Quantification of physical activity and sedentary time in adults with cerebral palsy. Medicine and Science in Sports and Exercise, 47(8), 1719-1726. https://doi.org/10.1249/MSS. 0000000000000589
Cooper, A. R. ., Sebire, S. ., Montgomery, A. A. ., Peters, T. J. . c, Sharp, D. J. ., Jackson, N. ., ... Andrews, R. C. . (2012). Sedentary time, breaks in sedentary time and metabolic variables in people with newly diagnosed type 2 diabetes. Diabetologia, 55(3), 589-599. https://doi.org/10.1007/s00125-011-2408-x
Davis, M. G. ., Fox, K. R. ., Stathi, A. ., Trayers, T. ., Thompson, J. L. ., \& Cooper, A. R. . (2014). Objectively measured sedentary time and its association with physical function in older adults. Journal of Aging and Physical Activity, 22(4), 474-481. https://doi.org/10.1123/JAPA.2013-0042
Diaz, K. M., Howard, V. J., Hutto, B., Colabianchi, N., Vena, J. E., Blair, S. N., \& Hooker, S. P. (2016). Patterns of Sedentary Behavior in US Middle-Age and Older Adults: The REGARDS Study. Medicine and Science in Sports and Exercise, 48(3), 430-438. https://doi.org/10.1249/MSS. 0000000000000792
Ezeugwu, V., Klaren, R. E., A Hubbard, E., Manns, P. T., \& Motl, R. W. (2015). Mobility disability and the pattern of accelerometer-derived sedentary and physical activity behaviors in people with multiple sclerosis. Preventive medicine reports, 2, 241-6. https://doi.org/10.1016/j.pmedr.2015.03.007
Falconer, C. L. ., Page, A. S. ., Andrews, R. C. ., \& Cooper, A. R. . b. (2015). The Potential Impact of Displacing Sedentary Time in Adults with Type 2 Diabetes. Medicine and Science in Sports and Exercise, 47(10), 2070-2075. https://doi.org/10.1249/MSS. 0000000000000651
Fanning, J. ., Porter, G. ., Awick, E. A. ., Wójcicki, T. R. ., Gothe, N. P. ., Roberts, S. A. ., ... McAuley, E. . (2016). Effects of a DVD-delivered exercise program on patterns of sedentary behavior in older adults: A randomized controlled trial. Preventive Medicine Reports, 3, 238-243. https://doi.org/10.1016/j.pmedr.2016.03.005
García-Hermoso, A. ., Martínez-Vizcaíno, V. ., Recio-Rodríguez, J. I. ., Sánchez-López, M. ., GómezMarcos, M. T. ., \& García-Ortiz, L. . (2015). Sedentary behaviour patterns and carotid intimamedia thickness in Spanish healthy adult population. Atherosclerosis, 239(2), 571-576. https://doi.org/10.1016/j.atherosclerosis.2015.02.028
García-Hermoso, A. . p, Notario-Pacheco, B. ., Recio-Rodríguez, J. I. ., Martínez-Vizcaíno, V. ., Rodrigo de Pablo, E. ., Magdalena Belio, J. F. . o, ... Zuazagoitia, A. . (2015). Sedentary behaviour patterns and arterial stiffness in a Spanish adult population - The EVIDENT trial. Atherosclerosis, 243(2), 516-522. https://doi.org/10.1016/j.atherosclerosis.2015.10.004

Gardiner, P. A. ., Eakin, E. G. . b, Healy, G. N. . b, \& Owen, N. . b. (2011). Feasibility of reducing older adults' sedentary time. American Journal of Preventive Medicine, 41(2), 174-177. https://doi.org/10.1016/j.amepre.2011.03.020
Gennuso, K. P. ., Gangnon, R. E. . c, Thraen-Borowski, K. M. ., \& Colbert, L. H. . (2014). Dose-response relationships between sedentary behaviour and the metabolic syndrome and its components. Diabetologia, 58(3), 485-492. https://doi.org/10.1007/s00125-014-3453-z
Gupta, N., Heiden, M., Aadahl, M., Korshoj, M., Jorgensen, M. B., \& Holtermann, A. (2016). What Is the Effect on Obesity Indicators from Replacing Prolonged Sedentary Time with Brief Sedentary Bouts, Standing and Different Types of Physical Activity during Working Days? A Cross-Sectional Accelerometer-Based Study among Blue-Collar Workers. PloS one, 11(5), e0154935-e0154935. https://doi.org/10.1371/journal.pone. 0154935
Hallman, D. M., Mathiassen, S. E., Gupta, N., Korshoj, M., \& Holtermann, A. (2015). Differences between work and leisure in temporal patterns of objectively measured physical activity among bluecollar workers. Bmc Public Health, 15, 976. https://doi.org/10.1186/s12889-015-2339-4
Healy, G. N. . b, Matthews, C. E. ., Dunstan, D. W. . b, Winkler, E. A. H. ., \& Owen, N. . b. (2011). Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 200306. European Heart Journal, 32(5), 590-597. https://doi.org/10.1093/eurheartj/ehq451
Healy, G. N., Dunstan, D. W., Salmon, J., Cerin, E., Shaw, J. E., Zimmet, P. Z., \& Owen, N. (2008). Breaks in sedentary time - Beneficial associations with metabolic risk. Diabetes Care, 31(4), 661-666. https://doi.org/10.2337/dc07-2046
Helgadóttir, B. ., Forsell, Y. ., \& Ekblom, O. . (2015). Physical activity patterns of people affected by depressive and anxiety disorders as measured by accelerometers: A cross-sectional study. PLoS ONE, 10(1). https://doi.org/10.1371/journal.pone. 0115894
Jefferis, B. J. . b, Parsons, T. J. . b, Sartini, C. . b, Ash, S. ., Lennon, L. T. ., Wannamethee, S. G. ., ... Whincup, P. H. . (2016). Does duration of physical activity bouts matter for adiposity and metabolic syndrome? A cross-sectional study of older British men. International Journal of Behavioral Nutrition and Physical Activity, 13(1). https://doi.org/10.1186/s12966-016-0361-2
Jefferis, B. J. . b, Sartini, C. ., Shiroma, E. ., Whincup, P. H. ., Wannamethee, S. G. ., \& Lee, I.-M. . (2015).
Duration and breaks in sedentary behaviour: Accelerometer data from 1566 communitydwelling older men (British Regional Heart Study). British Journal of Sports Medicine, 49(24), 1591-1594. https://doi.org/10.1136/bjsports-2014-093514
Júdice, P. B. ., Santos, D. A. ., Hamilton, M. T. ., Sardinha, L. B. ., \& Silva, A. M. . (2015). Validity of GT3X and Actiheart to estimate sedentary time and breaks using ActivPAL as the reference in freeliving conditions. Gait and Posture, 41(4), 917-922. https://doi.org/10.1016/j.gaitpost.2015.03.326
Judice, P. B., Silva, A. M., \& Sardinha, L. B. (2015). Sedentary bout durations are associated with abdominal obesity in older adults. Journal of Nutrition Health \& Aging, 19(8), 798-804. https://doi.org/10.1007/s12603-015-0501-4

Kim, Y. ., Barry, V. W. ., \& Kang, M. . (2015). Validation of the ActiGraph GT3X and activPAL Accelerometers for the Assessment of Sedentary Behavior. Measurement in Physical Education and Exercise Science, 19(3), 125-137. https://doi.org/10.1080/1091367X.2015.1054390

Kim, Y. ., Welk, G. J. ., Braun, S. I. ., \& Kang, M. . (2015). Extracting objective estimates of sedentary behavior from accelerometer data: Measurement considerations for surveillance and research applications. PLoS ONE, 10(2). https://doi.org/10.1371/journal.pone. 0118078
Leask, C. F., Harvey, J. A., Skelton, D. A., \& Chastin, S. F. M. (2015). Exploring the context of sedentary behaviour in older adults (What, where, why, when and with whom). European Review of Aging and Physical Activity, 12(1). https://doi.org/10.1186/s11556-015-0146-7
Lord, S. ., Chastin, S. F. M. ., McInnes, L. ., Little, L. ., Briggs, P. ., \& Rochester, L. . (2011). Exploring patterns of daily physical and sedentary behaviour in community-dwelling older adults. Age and Ageing, 40(2), 205-210. https://doi.org/10.1093/ageing/afq166
Lyden, K. ., Keadle, S. K. ., Staudenmayer, J. ., \& Freedson, P. S. . (2014). A method to estimate free-living active and sedentary behavior from an accelerometer. Medicine and Science in Sports and Exercise, 46(2), 386-397. https://doi.org/10.1249/MSS.0b013e3182a42a2d
Lynch, B. M. . b c, Boyle, T. . e f, Winkler, E. ., Occleston, J. . h, Courneya, K. S. ., \& Vallance, J. K. . (2016). Patterns and correlates of accelerometer-assessed physical activity and sedentary time among colon cancer survivors. Cancer Causes and Control, 27(1), 59-68. https://doi.org/10.1007/s10552-015-0683-4
Maddocks, M., \& Wilcock, A. (2012). Exploring physical activity level in patients with thoracic cancer: Implications for use as an outcome measure. Supportive Care in Cancer, 20(5), 1113-1116. https://doi.org/10.1007/s00520-012-1393-z

Manns, P. ., Ezeugwu, V. ., Armijo-Olivo, S. ., Vallance, J. ., \& Healy, G. N. . e f. (2015). Accelerometerderived pattern of sedentary and physical activity time in persons with mobility disability: National Health and Nutrition Examination Survey 2003 to 2006. Journal of the American Geriatrics Society, 63(7), 1314-1323. https://doi.org/10.1111/jgs. 13490
Ortlieb, S., Dias, A., Gorzelniak, L., Nowak, D., Karrasch, S., Peters, A., ... Schulz, H. (2014). Exploring patterns of accelerometry-assessed physical activity in elderly people. The international journal of behavioral nutrition and physical activity, 11(1), 28-28. https://doi.org/10.1186/1479-5868-11-28
Paraschiv-lonescu, A. ., Perruchoud, C. . c, Buchser, E. . c, \& Aminian, K. . (2009). Multidimensional analysis of human activity patterns in health and disease. In Proceedings of the 2nd IASTED International Conference on Telehealth and Assistive Technology, TAT 2009 (pp. 31-36). Cambridge, MA. Geraadpleegd van http://www.scopus.com/inward/record.url?eid=2-s2.077952360201\&partnerID=40\&md5=4aaf8d1aafb0ebd459efb40fa2044db3
Paraschiv-Ionescu, A., Buchser, E., Rutschmann, B., \& Aminian, K. (2008). Nonlinear analysis of human physical activity patterns in health and disease. Physical Review E, 77(2), 021913. https://doi.org/10.1103/PhysRevE.77.021913
Parry, S. ., Straker, L. ., Gilson, N. D. ., \& Smith, A. J. . (2013). Participatory workplace interventions can reduce sedentary time for office workers - A randomised controlled trial. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone. 0078957
Parry, S., \& Straker, L. (2013). The contribution of office work to sedentary behaviour associated risk. BMC Public Health, 13(1). https://doi.org/10.1186/1471-2458-13-296

Pettapiece-Phillips, R. . b, Kotlyar, M. ., Chehade, R. ., Salmena, L. . d, Narod, S. A. . b e, Akbari, M. . e, ... Kotsopoulos, J. . b e. (2016). Uninterrupted sedentary behavior downregulates BRCA1 gene
expression. Cancer Prevention Research, 9(1), 83-88. https://doi.org/10.1158/1940-6207.CAPR-15-0291

Prince, S. A. ., Blanchard, C. M. ., Grace, S. L. ., \& Reid, R. D. . (2015). Objectively-measured sedentary time and its association with markers of cardiometabolic health and fitness among cardiac rehabilitation graduates. European Journal of Preventive Cardiology, 23(8), 818-825. https://doi.org/10.1177/2047487315617101
Prioreschi, A. ., Makda, M. A. ., Tikly, M. ., \& McVeigh, J. A. . (2015). Habitual Physical Activity, Sedentary Behaviour and Bone Health in Rheumatoid Arthritis. International Journal of Sports Medicine, 36(12), 1021-1026. https://doi.org/10.1055/s-0035-1550049
Reid, N., Eakin, E., Henwood, T., Keogh, J. W. L., Senior, H. E., Gardiner, P. A., ... Healy, G. N. (2013). Objectively Measured Activity Patterns among Adults in Residential Aged Care. International Journal of Environmental Research and Public Health, 10(12), 6783-6798. https://doi.org/10.3390/ijerph10126783
Reid, R. E. R. ., Carver, T. E. ., Andersen, K. M. ., Court, O. ., \& Andersen, R. E. . (2015). Physical Activity and Sedentary Behavior in Bariatric Patients Long-Term Post-Surgery. Obesity Surgery, 25(6), 1073-1077. https://doi.org/10.1007/s11695-015-1624-8
Sardinha, L. B. . c, Santos, D. A. ., Silva, A. M. ., Baptista, F. ., \& Owen, N. . (2015). Breaking-up sedentary time is associated with physical function in older adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 70(1), 119-124. https://doi.org/10.1093/gerona/glu193
Sardinha, L. B., Ekelund, U., dos Santos, L., Cyrino, E. S., Silva, A. M., \& Santos, D. A. (2015). Breaking-up sedentary time is associated with impairment in activities of daily living. Experimental Gerontology, 72, 57-62. https://doi.org/10.1016/j.exger.2015.09.011
Sartini, C., Wannamethee, S. G., Iliffe, S., Morris, R. W., Ash, S., Lennon, L., ... Jefferis, B. J. (2015). Diurnal patterns of objectively measured physical activity and sedentary behaviour in older men. Bmc Public Health, 15, 609. https://doi.org/10.1186/s12889-015-1976-y
Scheers, T. . b, Philippaerts, R. ., \& Lefevre, J. . (2012). Variability in physical activity patterns as measured by the SenseWear Armband: How many days are needed? European Journal of Applied Physiology, 112(5), 1653-1662.
Shiroma, E. J., Freedson, P. S., Trost, S. G., \& Lee, I.-M. (2013a). Patterns of Accelerometer-Assessed Sedentary Behavior in Older Women. Jama-Journal of the American Medical Association, 310(23), 2562-2563. https://doi.org/10.1001/jama.2013.278896
Shiroma, E. J., Freedson, P. S., Trost, S. G., \& Lee, I.-M. (2013b). Patterns of Accelerometer-Assessed Sedentary Behavior in Older Women. Medicine and Science in Sports and Exercise, 45(5), 102102.

Spinney, R. ., Smith, L. ., Ucci, M. ., Fisher, A. ., Konstantatou, M. ., Sawyer, A. ., ... Marmot, A. . (2015). Indoor tracking to understand physical activity and sedentary behaviour: Exploratory study in UK office buildings. PLoS ONE, 10(5). https://doi.org/10.1371/journal.pone. 0127688

Straker, L., Campbell, A., Mathiassen, S. E., Abbott, R. A., Parry, S., \& Davey, P. (2014). Capturing the Pattern of Physical Activity and Sedentary Behavior: Exposure Variation Analysis of Accelerometer Data. Journal of Physical Activity \& Health, 11(3), 614-625. https://doi.org/10.1123/jpah.2012-0105

Pattern measures of sedentary behavior in adults: A literature review.

Tieges, Z. . b, Mead, G. . b, Allerhand, M. . c, Duncan, F. ., Van Wijck, F. ., Fitzsimons, C. ., ... Chastin, S. . (2015). Sedentary behavior in the first year after stroke: A longitudinal cohort study with objective measures. Archives of Physical Medicine and Rehabilitation, 96(1), 15-23. https://doi.org/10.1016/j.apmr.2014.08.015

Van Cauwenberg, J. . b c, Van Holle, V. . d, De Bourdeaudhuij, I. ., Owen, N. ., \& Deforche, B. . b. (2015). Diurnal patterns and correlates of older adults' sedentary behavior. PLoS ONE, 10(8). https://doi.org/10.1371/journal.pone. 0133175
van der Berg, J. D. . b, Stehouwer, C. D. A. . d, Bosma, H. . b, van der Velde, J. H. P. M. . e f, Willems, P. J. B. . f, Savelberg, H. H. C. M. . f, ... Koster, A. . b. (2016). Associations of total amount and patterns of sedentary behaviour with type 2 diabetes and the metabolic syndrome: The Maastricht Study. Diabetologia, 59(4), 709-718. https://doi.org/10.1007/s00125-015-3861-8
Van Dommelen, P. ., Coffeng, J. K. . c, Van Der Ploeg, H. P. . d, Van Der Beek, A. J. . c, Boot, C. R. L. . c, \& Hendriksen, I. J. M. . c. (2016). Objectively measured total and occupational sedentary time in three work settings. PLoS ONE, 11(3). https://doi.org/10.1371/journal.pone. 0149951

