
Online Appendix

to

Covariance Regression Models for Studying

Treatment Effect Heterogeneity Across One or More Outcomes:

Understanding How Treatments Shape Inequality

Deirdre Bloome
University of Michigan

Daniel Schrage
University of Southern California

Sociological Methods and Research



Appendix A: Hoff and Niu (2012) Covariance Regression Model

Using a random-effects representation, the covariance regression model for the observed data

can be written as

Yi = µXi
+ λi ×BXi + εi, (A.1)

where Yi is the multivariate response vector, Xi is a vector of predictor variables, µXi
is a

vector of conditional means for the responses given the predictors, εi is the vector of residuals,

and, crucially for the random-effects representation, λi describes additional variability beyond

that captured in εi. B is a matrix; each row describes how the additional variability in

the corresponding response variable is related to the predictor variables. Using standard

assumptions of random-effects models,1 this equation implies that the covariance matrix of

Yi, given predictors Xi, is

ΣXi
= Ψ +BXiX

T
i B

T , (A.2)

where Ψ is the baseline covariance matrix of the residuals εi. The elements of B indicate

how heteroskedasticity in the response vector varies across groups. For added flexibility, the

model can be expanded in rank to allow somewhat more freedom in the relationship between

the variances and covariances. A rank-2 model, for example, adds an additional set of random

effects akin to λi and an additional matrix of parameters akin to B; further rank expansion

is accomplished in this way by adding more random effects and more sets of covariance

parameters.2

Reference: Hoff, Peter, and Xiaoyue Niu. 2012. “A Covariance Regression Model.” Statistica

Sinica 22: 729–753.

1 These assumptions include that the expectations of εi, λi, and λiεi all equal zero, and the variance of λi is
one. For estimation, we further assume that εi is distributed multivariate normal and λi also follows a
normal distribution.

2 In practice, this increases the number of parameters and adds additional non-identifiability, which makes
model fitting more difficult.

1



Appendix B: Stan Implementation of Covariance Regression

The Stan3 code below implements our model, with two simplifications for clarity of presen-

tation. First, the model fits data with only two outcomes. (All of the extra work needed

to fit more than two outcomes is about efficiently managing the additional δ parameters,

which distracts from the core of the model.) Second, this implementation follows the earlier

model presentation in restricting the predictors X to be the same for the mean, variance,

and correlation models rather than allowing different predictors for each, as we did in our

empirical application. The results reported in this paper use a more general model that

relaxes these two restrictions, and code for that model is available upon request.

3 See http://mc-stan.org to download Stan and for documentation of the modeling language.

2

http://mc-stan.org


// Stan model for covariance regression

data {

int<lower=1> n_obs; // # of obs

int<lower=1> n_predictors; // # of params (including intercept)

int<lower=2> n_outcomes; // p

row_vector[n_outcomes] y[n_obs];

row_vector[n_predictors] x[n_obs];

}

parameters {

matrix[n_predictors,n_outcomes] beta; // mean coefficients

matrix[n_predictors,n_outcomes] gamma; // variance coefficients

vector[n_predictors] delta; // correlation coefficients

}

transformed parameters {

cholesky_factor_cov[n_outcomes] Sigma_chol[n_obs];

{

matrix[n_outcomes,n_outcomes] Sigma;

for(i in 1:n_obs) {

Sigma[1,1] = exp(x[i]*col(gamma,1));

Sigma[2,2] = exp(x[i]*col(gamma,2));

Sigma[1,2] = sqrt(Sigma[1,1])

* sqrt(Sigma[2,2])

* ((2*inv_logit(x[i]*delta)) - 1);

Sigma[2,1] = Sigma[1,2];

Sigma_chol[i] = cholesky_decompose(Sigma);

}

}

}

model {

// Weak priors on model coefficients.

to_vector(beta) ~ cauchy(0, 1);

to_vector(gamma) ~ cauchy(0, 1);

delta ~ cauchy(0, 1);

// Multivariate normal likelihood.

// In multi_normal(), Sigma is not vectorized, so loop over rows of y.

for(i in 1:n_obs) {

y[i] ~ multi_normal_cholesky((x[i] * beta), Sigma_chol[i]);

}

}

3


