
Supplementary: e-Methods 

 

Missing-indicator method 

Missing data was a significant problem since the database originated from eight 

different hospitals and every hospital had their own completeness. Variables 

particularly affected (>5% missing data) were myocardial infarction (missing in 

42.15%), dyslipidemia (missing in 52.97%), any alcohol current use (missing 

29.32%), use of anticoagulants (missing 43.32%), use of anti-platelet (missing 

33.71%), blood glucose (missing 14.22%), OTT (missing 5.10%) and DNT (missing 

33.84%). We processed these characteristics using the missing-indicator method. A 

certain variable 𝑄𝑖 was introduced with respect to each real feature 𝑥𝑖, where 𝑄𝑖 

referred to the existence of 𝑥𝑖. Then we replaced 𝑥𝑖 with 𝑄𝑖𝑥𝑖, and inputted it along 

with 1 − 𝑄𝑖 into machine learning models. This process made the input feature 

matrix become sparse which to a certain extent would have negative impact on 

accuracy of our models. Therefore, features with a limited number of missing entries 

(<5%) were not filled using the missing-indicator method. 

 

Implemental details of feature selection 

Wrapper method, correlation-based feature selection in filter method and conservative 

mean feature selection were used to conduct the dimensional reduction process of the 

feature vector. Conservative mean method aims to maximize the correlation between 

features and label, compared with that of correlation-based feature selection. It 

calculated the AUC values between different features and the labels with K-fold 

validation methods. In this study, the wrapper method took the AUCs of the 

cross-validation result of a certain model as the corresponding merit function and 

chose the feature subset that could maximize it. Correlation-based feature selection 

method in filter method tended to maximize the correlation between feature subsets 

and label, meanwhile minimizing the correlation between different features. It can be 

expressed as equation (1), where 𝑟𝑐𝑓̅̅ ̅̅  denoted the averaged feature-class correlation, 

𝑟𝑓𝑓̅̅ ̅̅  denoted the average feature-feature inter-correlation, k was the number of 

features in the feature subset, and 𝑀𝑒𝑟𝑖𝑡𝑆𝑘
 denoted the heuristic “merit” of a feature 



subset S containing k features. 

 

 

 
𝑀𝑒𝑟𝑖𝑡𝑆𝑘

=
𝑘𝑟𝑐𝑓̅̅ ̅̅

√𝑘 + 𝑘(𝑘 − 1)𝑟𝑓𝑓̅̅ ̅̅
 

(1) 

 

For the correlation-based feature selection method, equal-frequency and equal-width 

discretization methods were used to better calculate the information entropy of 

features and label. Symmetrical uncertainty, RELIEF (relevant feature) and MDL 

(minimum description length) were set as the merit function to measure the merit of 

feature subsets.  

To search for the optimal subsets in wrapper and filter method, forward search, 

backward search, and genetic algorithm and exhaustive search were used. When the 

dimension of feature sets was limited, exhaustive search was the best choice and 

could always find the global optimum. Yet when the dimension of feature sets was 

high, heuristic search algorithms were preferred, like forward and backward search 

and genetic algorithm. In our study, because of missing-indicator method, we 

manually restricted the states of 1 − 𝑄𝑖 and 𝑄𝑖𝑥𝑖 shared with each other because 

they were related to the same feature. For instance, if the factor “alcohol consumption” 

is true was put into the optimal feature subsets, the other factor concerning whether 

drinking is missing should be put into the subsets as well. This operation decreased 

the space to search from 226 to 218 in our case. Therefore, we chose the genetic 

algorithm, because exhaustive search was computationally expensive and forward and 

backward search easily converged to local optimum. In our study, Roulette Wheel 

selection and multiple-point crossover were used in the selection and crossover stages 

of the genetic algorithm. We then adapted the former merit function and set the fitness 

function of genetic algorithm to be (2). By setting power larger than one, difference 

between individuals will be expanded, which accelerated the process of convergence. 

The operations of deleting average from merit function and adding twice the 

difference between average and minimum to it was to make the power operation more 

effective. Otherwise, it was difficult for offspring to inherit the optimal features from 

their parents and converge to an optimum under the mechanism of Roulette Wheel 

selection and current merit function. 

 



 𝑦1 = 𝑀𝑒𝑟𝑖𝑡 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝 

 

𝑦2 = 𝑦1 + 2 × (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝) 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = (𝑀𝑒𝑟𝑖𝑡)𝛾       𝛾 > 1 

 

 

(2) 

 

Imbalanced data processing details 

In this study, the over-sampling method was deployed, which sampled the minority 

examples until their total number approximated that of majority examples. During this 

process, the degree of class distribution balance was varied to be almost equal. 

Another measure that was taken was cost-sensitive adaptation. The loss function and 

learning rate were modified to penalize differently. For Logistic regression and 

perceptron, the loss function was cross-entropy. The weight that misclassified 

minority examples was higher than weights corresponding to other situations (3), was 

the cost function of original Logistic regression and perceptron, and (4) was the cost 

function after modification was made. ℎ𝜃(𝑥(𝑖)) referred to the float value generated 

by machine learning algorithms. 𝑦(𝑖) referred to the real label of a certain sample. 

Letter “m ”  was the number of samples in the data sets. The penalties of 

misclassifying positive samples and negative samples were determined by the value 

of ℎ𝜃(𝑥(𝑖)) and the number of positive and negative samples. Then when using 

gradient descent to update parameters, 𝐽(𝜃) would be easily stuck in the local 

optimum where all the samples were labeled as majority class and in this case 

none-sICH type. Different weights 𝜌+ and 𝜌− were added to the cost function to 

punish various types of sample differently. sICH groups were taken as positive types 

and were multiplied by 𝜌+, at the same time none-sICH groups were taken as 

negative types and were multiplied by 𝜌−. 𝜌+ was set to be larger than 𝜌− in order 

to increase the punishment when the sICH samples were misclassified. 

 

 
𝐽(𝜃) = −

1

𝑚
[∑ 𝑦(𝑖)𝑙𝑜𝑔ℎ𝜃(𝑥(𝑖)) + (1 − 𝑦(𝑖))log (1 − ℎ𝜃(𝑥(𝑖))))

𝑚

𝑖=1
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(3) 

 
𝐽(𝜃) = −

1

𝑚
[∑ 𝜌+𝑦(𝑖)𝑙𝑜𝑔ℎ𝜃(𝑥(𝑖)) + 𝜌−(1 − 𝑦(𝑖))log (1 − ℎ𝜃(𝑥(𝑖))))

𝑚

𝑖=1

] 
 

(4) 



 

The learning rate in the gradient descent was adapted. For the samples belonging to 

majority class, we used a comparatively small learning rate. Meanwhile, for the 

samples belonging to minority class, we used a comparatively large learning rate, 

enabling the update of parameters to be more significant with regard to the minority 

class. It was demonstrated in the parameter updating equation (5), where cost function 

𝐽+(𝜃)  merely contained sICH samples and 𝐽−(𝜃)  merely contained none-sICH 

samples. 

 

 
𝜃𝑗 ≔ 𝜃𝑗 − 𝛼+

𝜕

𝜕𝜃𝑗
𝐽+(𝜃) − 𝛼−

𝜕

𝜕𝜃𝑗
𝐽−(𝜃) 

(5) 

 

Multivariate SVM was also used to handle the problem that zero-one classification 

loss brought with imbalanced data. Setting AUC value as the loss function instead, the 

SVM turned out to have better performance. The original SVM problem after 

modification could be presented as following. Here Δ(�̅�′, �̅�) denoted non-linear 

AUC value instead of linear zero/one error rate. This optimization problem and its 

restriction could be expressed in (6) and (7).  

 

𝑚𝑖𝑛𝒘,𝜉≥0

1

2
𝒘 ∙ 𝒘 + 𝐶𝜉 

 

 

(6) 

s. t. : ∀�̅�′ ∈ �̅�\�̅�:  𝒘𝑇[Ψ(�̅�, �̅�) − Ψ(�̅�, �̅�′)] ≥ Δ(�̅�′, �̅�) − 𝜉 (7) 

 

Explicit supervised ranking strategy 

The supervised method was mainly established on the principle of minimizing entropy. 

However, the splitting points set which could minimize entropy were not necessary 

the ones best suited for clinical use. For instance, the practice of minimizing 

information entropy would elicit problem like selecting an extremely narrow range 

which could minimize the overall information entropy yet violate the medical 

requirement for discretization. Therefore, we added two penalty terms to the overall 

information entropy formula to construct an evaluation function serving to find the set 

of splitting points with which our needs could be satisfied. In this case, we could 

manually set the approximate expected width of each rank, and a special case for this 

is the former unsupervised equal frequency method. We set the first penalty term to 



measure the extent to which the widths of calculated splitting points deviated the 

expected widths. It could be suggested by the equation (8). 𝑛 refers to the number of 

ranks; 𝐿 refers to the total number of training sets; 𝑊�̃� refers to the number of 

samples in the 𝑖𝑡ℎ  rank which is generated by the algorithm; 𝑊𝑖  refers to the 

expected number of samples in the 𝑖𝑡ℎ rank. 

 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦1  = ∑(
𝑊�̃�

𝐿
−  

𝑊𝑖

𝐿
)2

𝑛

𝑖=1

 
 

(8) 

 

From the perspective of clinical practice, we increased the sICH rate in the highest 

rank to the overall number of the highest rank. The accuracy of estimation in this 

group was considered more important than that in other groups. We set the second 

penalty term to be the inverse of the aforementioned rate. In sum, the evaluation 

function for the supervised discretization methods consisted of information entropy 

and two penalty terms, which were multiplied by corresponding weights to balance 

their influence on the choice of splitting points. These weights were hyper-parameters 

to be determined by cross-validation. 

We first partitioned training sets into searching sets and cross-validation sets, which 

occupied 70% and 30% of the original training sets respectively. Then a group of 

possible hyper-parameters was input into the supervised discretization method, and a 

number of results were proposed by minimizing the aforementioned evaluation 

function. Exhaustive search for optimal splitting-point set was executed over 

searching sets, and results were produced with respect to cross-validation sets. We 

selected the results that best satisfy our expectation and their corresponding 

hyper-parameters. Next, supervised discretization method was conducted over the 

whole training sets under the hyper-parameters we got from the former step, and 

splitting points were generated. 



 

Code implementation of the system 

The code implement of this system was based on the Python 3.6 platform. The results 

of Fisher’s exact test and Kruskal-Wallis test were figured out with ‘SciPy 0.19.1’. 

The implementation of feature selection was based on the ‘numpy 1.11.3’ package. As 

for classifiers, the multivariate SVM was calculated using ‘svm-perf’ package in C 

and the original SVM was calculated using ‘libsvm 3.22’ package. Random forest was 

established by using ‘Scikit-Learn 0.18.1’ package. For Logistic regression and neural 

network, ‘Theano 0.9.0’ and ‘TensorFlow 1.2.1’ were both used. 

 

The overall schematic of the machine learning process 

 

(A) Overview of the machine learning system: It demonstrates the structure of the 

machine learning systems for the prediction of sICH after stroke thrombolysis. The 

whole dataset of AIS first went through data preprocessing which included missing 

data imputation, data cleansing and normalization. Then, the training set went through 

feature selection, imbalanced processing, classifier and discretization. This process 

generated parameters and the testing set was used to evaluate the accuracy of this 

system. (B) Structure for wrapper and filter feature selection: wrapper and filter 

feature selection provided different merit functions to evaluation process, yet they 

share the same searching process. (C) Structure for ranking: ranking was conducted 

regarding the training set. First, a search was performed to find optimal 



hyper-parameters; then hyper-parameters were used to figure out split point groups. 

 

 

 


