Suppl. Table 1. The articles selected for the analysis of reporting completeness (*listed chronologically*).

A. Articles published before the ARRIVE guidelines.

- 1. Imai H, Nakamoto H, Ishida Y, et al. Glucocorticoid restores the deterioration of water transport in the peritoneum through increment in aquaporin. *Adv Perit Dial* 2000;16:297-302.
- 2. Duman S, Gunal AI, Sen S, et al. Does enalapril prevent peritoneal fibrosis induced by hypertonic (3.86%) peritoneal dialysis solution? *Perit Dial Int* 2001;21(2):219-224.
- 3. Gunal AI, Duman S, Sen S, et al. By reducing TGF beta 1, octreotide lessens the peritoneal derangements induced by a high glucose solution. *J Nephrol* 2001;14(3):184-189.
- 4. Gunal AI, Celiker H, Akpolat N, et al. By reducing production of vascular endothelial growth factor octreotide improves the peritoneal vascular alterations induced by hypertonic peritoneal dialysis solution. *Perit Dial Int* 2002;22(3):301-306.
- 5. Imai H, Nakamoto H, Fucshima R, et al. Glucocorticoid protects against the development of encapsulating peritoneal sclerosis on peritoneal dialysis. *Adv Perit Dial* 2002;18:124-130.
- 6. Sawada T, Ishii Y, Tojimbara T, et al. The ACE inhibitor, quinapril, ameliorates peritoneal fibrosis in an encapsulating peritoneal sclerosis model in mice. *Pharmacol Res* 2002;46(6):505-510.
- 7. Zhu Z, Peng W, Wang Y, et al. The effect of ligustrazine on peritoneal transport in peritoneal dialysis. *J Huazhong Univ Sci Technolog Med Sci* 2002;22(4):334-336.
- 8. Gunal AI, Celiker H, Ustundag B, et al. The effect of oxidative stress inhibition with trimetazidine on the peritoneal alterations induced by hypertonic peritoneal dialysis solution. *J Nephrol* 2003;16(2):225-230.
- 9. Imai H, Nakamoto H, Fukushima R, et al. Role of adhesion molecules in the progression of peritoneal sclerosis. *Adv Perit Dial* 2003;19:180-185.
- 10. Nishino T, Miyazaki M, Abe K, et al. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress peritoneal fibrosis in rats. *Kidney Int* 2003;64(3):887-896.
- 11. Duman S, Wieczorowska-Tobis K, Styszynski A, et al. Intraperitoneal enalapril ameliorates morphologic changes induced by hypertonic peritoneal dialysis solutions in rat peritoneum. *Adv Perit Dial* 2004;20:31-36.
- 12. Io H, Hamada C, Ro Y, et al. Morphologic changes of peritoneum and expression of VEGF in encapsulated peritoneal sclerosis rat models. *Kidney Int* 2004;65(5):1927-1936.
- 13. Yoshio Y, Miyazaki M, Abe K, et al. TNP-470, an angiogenesis inhibitor, suppresses the progression of peritoneal fibrosis in mouse experimental model. *Kidney Int* 2004; 66(4): 1677-1685.
- 14. Duman S, Sen S, Duman C, et al. Effect of valsartan versus lisinopril on peritoneal sclerosis in rats. *Int J Artif Organs* 2005;28(2):156-163.
- 15. Duman S, Sen S, Sozmen EY, et al. Atorvastatin improves peritoneal sclerosis induced by hypertonic PD solution in rats. *Int J Artif Organs* 2005;28(2):170-176.
- 16. Higuchi C, Tanihata Y, Nishimura H, et al. Effects of glucose and plasminogen activator inhibitor-1 on collagen metabolism in the peritoneum. *Ther Apher Dial* 2005;9(2):173-181.

- 17. Kakuta T, Tanaka R, Satoh Y, et al. Pyridoxamine improves functional, structural, and biochemical alterations of peritoneal membranes in uremic peritoneal dialysis rats. *Kidney Int* 2005;68(3):1326-1336.
- 18. Nakamura S, Niwa T. Pyridoxal phosphate and hepatocyte growth factor prevent dialysateinduced peritoneal damage. *J Am Soc Nephrol* 2005;16(1):144-150.
- 19. van Westrhenen R, Aten J, Aberra M, et al. Effects of inhibition of the polyol pathway during chronic peritoneal exposure to a dialysis solution. *Perit Dial Int* 2005;25(suppl 3):S18-21.
- 20. Noh H, Kim JS, Han KH, et al. Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. *Kidney Int* 2006;69(11):2022-2028.
- 21. Sayarlioglu H, Dogan E, Erkoc R, et al. The effect of colchicine on the peritoneal membrane. *Ren Fail* 2006;28(1):69-75.
- 22. Styszynski A, Wieczorowska-Tobis K, Podkowka R, et al. Effects of glutathione supplementation during peritoneal dialysis. *Adv Perit Dial* 2006;22:88-93.
- 23. Yao Q, Pawlaczyk K, Ayala ER, et al. Peroxisome proliferator-activated receptor-gamma agonists diminish peritoneal functional and morphological changes induced by bioincompatible peritoneal dialysis solution. *Blood Purif* 2006;24(5-6):575-582.
- Zareie M, Fabbrini P, Hekking LH, et al. Novel role for mast cells in omental tissue remodeling and cell recruitment in experimental peritoneal dialysis. J Am Soc Nephrol 2006; 17(12):3447-3457.
- 25. Ro Y, Hamada C, Inaba M, et al. Inhibitory effects of matrix metalloproteinase inhibitor ONO-4817 on morphological alterations in chlorhexidine gluconate-induced peritoneal sclerosis rats. *Nephrol Dial Transplant* 2007;22(10):2838-2848.
- 26. Tanabe K, Maeshima Y, Ichinose K, et al. Endostatin peptide, an inhibitor of angiogenesis, prevents the progression of peritoneal sclerosis in a mouse experimental model. *Kidney Int* 2007;71(3):227-238.
- van WR, Aten J, Hajji N, et al. Cyclosporin A induces peritoneal fibrosis and angiogenesis during chronic peritoneal exposure to a glucose-based, lactate-buffered dialysis solution in the rat. *Blood Purif* 2007;25(5-6):466-472.
- 28. Bozkurt D, Bicak S, Sipahi S, et al. The effects of colchicine on the progression and regression of encapsulating peritoneal sclerosis. *Perit Dial Int* 2008;28(suppl 5):S53-S57.
- 29. Bozkurt D, Cetin P, Sipahi S, et al. The effects of renin-angiotensin system inhibition on regression of encapsulating peritoneal sclerosis. *Perit Dial Int* 2008;28(suppl 5):S38-S42.
- 30. Bozkurt D, Taskin H, Sezak M, et al. Rosiglitazone, a peroxisome proliferator-activated receptor agonist, improves peritoneal alterations resulting from an encapsulated peritoneal sclerosis model. *Adv Perit Dial* 2008;24:32-38.
- 31. Duman S, Bozkurt D, Sipahi S, et al. Effects of everolimus as an antiproliferative agent on regression of encapsulating peritoneal sclerosis in a rat model. *Adv Perit Dial* 2008;24:104-110.
- 32. Hung KY, Huang JW, Chiang CK, et al. Preservation of peritoneal morphology and function by pentoxifylline in a rat model of peritoneal dialysis: molecular studies. *Nephrol Dial Transplant* 2008;23(12):3831-3840.
- 33. Nakamoto H, Imai H, Fukushima R, et al. Role of the renin-angiotensin system in the pathogenesis of peritoneal fibrosis. *Perit Dial Int* 2008;28(suppl 3):S83-S87.

- 34. Aroeira LS, Lara-Pezzi E, Loureiro J, et al. Cyclooxygenase-2 mediates dialysate-induced alterations of the peritoneal membrane. *J Am Soc Nephrol* 2009;20(3):582-592.
- 35. Bozkurt D, Hur E, Ulkuden B, et al. Can N-acetylcysteine preserve peritoneal function and morphology in encapsulating peritoneal sclerosis? *Perit Dial Int* 2009;29(suppl 2):S202-S205.
- Bozkurt D, Sipahi S, Cetin P, et al. Does immunosuppressive treatment ameliorate morphology changes in encapsulating peritoneal sclerosis? *Perit Dial Int* 2009;29(suppl 2): S206-S210.
- 37. Fabbrini P, Schilte MN, Zareie M, et al. Celecoxib treatment reduces peritoneal fibrosis and angiogenesis and prevents ultrafiltration failure in experimental peritoneal dialysis. *Nephrol Dial Transplant* 2009;24(12):3669-3676.
- 38. Mondello S, Mazzon E, Di PR, et al. Erythropoietin suppresses peritoneal fibrosis in rat experimental model. *Eur J Pharmacol* 2009;604(1-3):138-149.
- 39. Mondello S, Mazzon E, Di PR, et al. Thalidomide suppresses sclerosing encapsulating peritonitis in a rat experimental model. *Shock* 2009;32(3):332-339.
- 40. Nakav S, Kachko L, Vorobiov M, et al. Blocking adenosine A2A receptor reduces peritoneal fibrosis in two independent experimental models. *Nephrol Dial Transplant* 2009;24(8):2392-2399.
- 41. Saito H, Kitamoto M, Kato K, et al. Tissue factor and factor v involvement in rat peritoneal fibrosis. *Perit Dial Int* 2009;29(3):340-351.
- 42. Sawada T, Ishii Y, Nakajima I, et al. An experimental model of encapsulating peritoneal sclerosis. *Perit Dial Int* 2009;29(suppl 2):S49-S50.
- 43. Schilte MN, Loureiro J, Keuning ED, et al. Long-term intervention with heparins in a rat model of peritoneal dialysis. *Perit Dial Int* 2009;29(1):26-35.
- 44. Takahashi S, Taniguchi Y, Nakashima A, et al. Mizoribine suppresses the progression of experimental peritoneal fibrosis in a rat model. *Nephron Exp Nephrol* 2009;112(2):e59-e69.
- 45. Flessner MF, Credit K, Richardson K, et al. Peritoneal inflammation after twenty-week exposure to dialysis solution: effect of solution versus catheter-foreign body reaction. *Perit Dial Int* 2010;30(3):284-293.
- 46. Ke CY, Lee CC, Lee CJ, et al. Aliskiren ameliorates chlorhexidine digluconate-induced peritoneal fibrosis in rats. *Eur J Clin Invest* 2010;40(4):301-309.
- Loureiro J, Schilte M, Aguilera A, et al. BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposure. *Nephrol Dial Transplant* 2010;25(4):1098-1108.
- 48. Sandoval P, Loureiro J, Gonzalez-Mateo G, et al. PPAR-gamma agonist rosiglitazone protects peritoneal membrane from dialysis fluid-induced damage. *Lab Invest* 2010;90(10):1517-1532.
- 49. Yenicerioglu Y, Uzelce O, Akar H, et al. Effects of atorvastatin on development of peritoneal fibrosis in rats on peritoneal dialysis. *Ren Fail* 2010;32(9):1095-1102.
- 50. Bozkurt D, Sarsik B, Hur E, et al. A novel angiogenesis inhibitor, sunitinib malate, in encapsulating peritoneal sclerosis. *J Nephrol* 2011;24(3):359-365.
- 51. Duan S, Yu J, Liu Q, et al. Epithelial-to-mesenchymal transdifferentiation of peritoneal mesothelial cells mediated by oxidative stress in peritoneal fibrosis rats. *Zhong Nan Da Xue Xue Bao Yi Xue Ban* 2011;36(1):34-43.

- 52. Kihm LP, Muller-Krebs S, Klein J, et al. Benfotiamine protects against peritoneal and kidney damage in peritoneal dialysis. *J Am Soc Nephrol* 2011;22(5):914-926.
- 53. Lee CJ, Subeq YM, Lee RP, et al. Beneficial effects of enalapril on chlorhexidine digluconateinduced liver peritoneal fibrosis in rats. *Chin J Physiol* 2011;54(4):225-234.
- 54. Subeq YM, Ke CY, Lin NT, et al. Valsartan decreases TGF-beta1 production and protects against chlorhexidine digluconate-induced liver peritoneal fibrosis in rats. *Cytokine* 2011;53(2):223-230.
- 55. Washida N, Wakino S, Tonozuka Y, et al. Rho-kinase inhibition ameliorates peritoneal fibrosis and angiogenesis in a rat model of peritoneal sclerosis. *Nephrol Dial Transplant* 2011;26(9):2770-2779.

B. Articles published after the ARRIVE guidelines.

- 56. Arai H, Furusu A, Nishino T, et al. Thalidomide prevents the progression of peritoneal fibrosis in mice. *Acta Histochem Cytochem* 2011;44(2):51-60.
- 57. Chunming J, Miao Z, Cheng S, et al. Tanshinone IIA attenuates peritoneal fibrosis through inhibition of fibrogenic growth factors expression in peritoneum in a peritoneal dialysis rat model. *Ren Fail* 2011;33(3):355-362.
- 58. Ertilav M, Timur O, Hur E, et al. What does the dialysate level of matrix metalloproteinase 2 tell us? *Adv Perit Dial* 2011;27:6-10.
- 59. Kushiyama T, Oda T, Yamada M, et al. Effects of liposome-encapsulated clodronate on chlorhexidine gluconate-induced peritoneal fibrosis in rats. *Nephrol Dial Transplant* 2011;26(10):3143-3154.
- 60. Zhao ZZ, Cao Y, Liu ZS, et al. Effects of recombinant human endostatin on peritoneal angiogenesis in peritoneal dialysis rats. *Nephrology* 2011;16(6):599-606.
- 61. Baroni G, Schuinski AF, Berticelli PT, et al. The influence of simvastatin in induced peritoneal fibrosis in rats by peritoneal dialysis solution with glucosis 4.25%. *Acta Cir Bras* 2012; 27(4): 350-356.
- 62. Bui DS, Seguro AC, Shimitzu MH, et al. N-Acetylcysteine protects the peritoneum from the injury induced by hypertonic dialysis solution. *J Nephrol* 2012;25(1):90-95.
- 63. Ceri M, Unverdi S, Dogan M, et al. Effect of sirolimus on the regression of peritoneal sclerosis in an experimental rat model. *Int Urol Nephrol* 2012;44(3):977-982.
- 64. Hur E, Bozkurt D, Timur O, et al. The effects of mycophenolate mofetil on encapsulated peritoneal sclerosis model in rats. *Clin Nephrol* 2012;77(1):1-7.
- 65. Kocak G, Azak A, Astarci HM, et al. Effects of renin-angiotensin-aldosterone system blockade on chlorhexidine gluconate-induced sclerosing encapsulated peritonitis in rats. *Ther Apher Dial* 2012;16(1):75-80.
- 66. Kokubo S, Sakai N, Furuichi K, et al. Activation of p38 mitogen-activated protein kinase promotes peritoneal fibrosis by regulating fibrocytes. *Perit Dial Int* 2012;32(1):10-19.
- 67. Perez-Martinez J, Perez-Martinez FC, Carrion B, et al. Aliskiren prevents the toxic effects of peritoneal dialysis fluids during chronic dialysis in rats. *PLoS One* 2012;7(4):e36268.
- 68. Pletinck A, Van LM, Steppan S, et al. Oral supplementation with sulodexide inhibits neoangiogenesis in a rat model of peritoneal perfusion. *Nephrol Dial Transplant* 2012; 27(2): 548-556.

- 69. Saglam F, Cavdar Z, Sarioglu S, et al. Pioglitazone reduces peritoneal fibrosis via inhibition of TGF-beta, MMP-2, and MMP-9 in a model of encapsulating peritoneal sclerosis. *Ren Fail* 2012;34(1):95-102.
- 70. Serie K, Fukuda N, Nakai S, et al. Pyrrole-imidazole polyamide targeting transforming growth factor beta1 ameliorates encapsulating peritoneal sclerosis. *Perit Dial Int* 2012; 32(4):462-472.
- 71. Hirose M, Nishino T, Obata Y, et al. 22-Oxacalcitriol prevents progression of peritoneal fibrosis in a mouse model. *Perit Dial Int* 2013;33(2):132-142.
- 72. Kinashi H, Ito Y, Mizuno M, et al. TGF-beta1 promotes lymphangiogenesis during peritoneal fibrosis. *J Am Soc Nephrol* 2013;24(10):1627-1642.
- 73. Loureiro J, Sandoval P, del PG, et al. Tamoxifen ameliorates peritoneal membrane damage by blocking mesothelial to mesenchymal transition in peritoneal dialysis. *PLoS One* 2013;8(4):e61165.
- 74. Peng W, Zhou Q, Ao X, et al. Inhibition of Rho-kinase alleviates peritoneal fibrosis and angiogenesis in a rat model of peritoneal dialysis. *Ren Fail* 2013;35(7):958-966.
- 75. Schuinski AF, Baroni G, Pecoits Filho RF, et al. Evaluation of the use of captopril on peritoneal fibrosis induced in rats by the use of glucose solution 4.25%. *J Bras Nefrol* 2013;35(4):273-278.
- 76. Xiao J, Guo J, Liu XX, et al. Soluble Tie2 fusion protein decreases peritoneal angiogenesis in uremic rats. *Mol Med Rep* 2013;8(1):267-271.
- 77. Chang TI, Kang HY, Kim KS, et al. The effect of statin on epithelial-mesenchymal transition in peritoneal mesothelial cells. *PLoS One* 2014;9(10):e109628.
- 78. Dai T, Wang Y, Nayak A, et al. Janus kinase signaling activation mediates peritoneal inflammation and injury in vitro and in vivo in response to dialysate. *Kidney Int* 2014; 86(6):1187-1196.
- 79. Gonzalez-Mateo GT, Fernandez-Millara V, Bellon T, et al. Paricalcitol reduces peritoneal fibrosis in mice through the activation of regulatory T cells and reduction in IL-17 production. *PLoS One* 2014;9(10):e108477.
- 80. Kang SH, Kim SO, Cho KH, et al. Paricalcitol ameliorates epithelial-to-mesenchymal transition in the peritoneal mesothelium. *Nephron Exp Nephrol* 2014;126(1):1-7.
- 81. Kim KH, Ryu HM, Oh SH, et al. Effect of DNA demethylation in experimental encapsulating peritoneal sclerosis. *Ther Apher Dial* 2014;18(6):628-636.
- 82. Lee CJ, Subeq YM, Lee RP, et al. Calcitriol decreases TGF-beta1 and angiotensin II production and protects against chlorhexide digluconate-induced liver peritoneal fibrosis in rats. *Cytokine* 2014;65(1):105-118.
- Li Z, Zhang L, He W, et al. Astragalus membranaceus inhibits peritoneal fibrosis via monocyte chemoattractant protein (MCP)-1 and the transforming growth factor-beta1 (TGF-beta1) pathway in rats submitted to peritoneal dialysis. *Int J Mol Sci* 2014;15(7):12959-12971.
- 84. Rodrigues-Diez R, Aroeira LS, Orejudo M, et al. IL-17A is a novel player in dialysis-induced peritoneal damage. *Kidney Int* 2014;86(2):303-315.
- 85. Xiong C, Liu N, Fang L, et al. Suramin inhibits the development and progression of peritoneal fibrosis. *J Pharmacol Exp Ther* 2014;351(2):373-382.

- 86. Zhang L, Hao JB, Ren LS, et al. The aldosterone receptor antagonist spironolactone prevents peritoneal inflammation and fibrosis. *Lab Invest* 2014;94(8):839-850.
- 87. Ada S, Ersan S, Sifil A, et al. Effect of bevacizumab, a vascular endothelial growth factor inhibitor, on a rat model of peritoneal sclerosis. *Int Urol Nephrol* 2015;47(12):2047-2051.
- 88. Gonzalez-Mateo GT, Aguirre AR, Loureiro J, et al. Rapamycin protects from type-I peritoneal membrane failure inhibiting the angiogenesis, lymphangiogenesis, and endo-MT. *Biomed Res Int* 2015;989560.
- 89. Hu W, Zhang Y, Sigdel KR. The effects of Panax notoginseng saponins on the cytokines and peritoneal function in rats with peritoneal fibrosis. *Ren Fail* 2015;37(9):1507-1513.
- 90. Huddam B, Basaran M, Kocak G, et al. The use of mycophenolate mofetil in experimental encapsulating peritoneal sclerosis. *Int Urol Nephrol* 2015;47(8):1423-1428.
- 91. Io K, Nishino T, Obata Y, et al. SAHA suppresses peritoneal fibrosis in mice. *Perit Dial Int* 2015;35(3):246-258.
- 92. Kitamura M, Nishino T, Obata Y, et al. The kampo medicine Daikenchuto inhibits peritoneal fibrosis in mice. *Biol Pharm Bull* 2015;38(2):193-200.
- 93. Lee YC, Hung SY, Liou HH, et al. Vitamin D can ameliorate chlorhexidine gluconate-induced peritoneal fibrosis and functional deterioration through the inhibition of epithelial-to-mesenchymal transition of mesothelial cells. *Biomed Res Int* 2015;595030.
- 94. Lua I, Li Y, Pappoe LS, et al. Myofibroblastic conversion and regeneration of mesothelial cells in peritoneal and liver fibrosis. *Am J Pathol* 2015;185(12):3258-3273.
- Sagiroglu T, Sayhan MB, Yagci MA, et al. Comparison of sirolimus and colchicine treatment on the development of peritoneal fibrozis in rats having peritoneal dialysis. *Balkan Med J* 2015;32(1):101-106.
- 96. Stavenuiter AW, Farhat K, Vila CM, et al. Protective effects of paricalcitol on peritoneal remodeling during peritoneal dialysis. *Biomed Res Int* 2015;468574.
- Strippoli R, Loureiro J, Moreno V, et al. Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis. *EMBO Mol Med* 2015;7(3):357.
- 98. Wakabayashi K, Hamada C, Kanda R, et al. Oral Astaxanthin Supplementation Prevents Peritoneal Fibrosis in Rats. Perit Dial Int 2015;35(5):506-516.
- 99. Xiao L, Peng X, Liu F, et al. AKT regulation of mesothelial-to-mesenchymal transition in peritoneal dialysis is modulated by Smurf2 and deubiquitinating enzyme USP4. *BMC Cell Biol* 2015;16:7.
- 100. Yoh K, Ojima M, Takahashi S. Th2-biased GATA-3 transgenic mice developed severe experimental peritoneal fibrosis compared with Th1-biased T-bet and Th17-biased RORγt transgenic mice. *Exp Anim* 2015;64(4):353-362.
- 101. Abe S, Obata Y, Oka S, et al. Chondroitin sulfate prevents peritoneal fibrosis in mice by suppressing NF-kappaB activation. *Med Mol Morphol* 2016;49(3):144-153.
- 102. Hirata H, Fumoto S, Miyamoto H, et al. Evaluation for peritoneal injury at an early stage using dual macromolecular markers. *Biol Pharm Bull* 2016;39(10):1581-1587.
- 103. Ju KD, Kim HJ, Tsogbadrakh B, et al. HL156A, a novel AMP-activated protein kinase activator, is protective against peritoneal fibrosis in an in vivo and in vitro model of peritoneal fibrosis. *Am J Physiol Renal Physiol* 2016;310(5):F342-F350.

- 104. Kalble F, Damaske J, Heide D, et al. Selective Blocking of TNF Receptor 1 attenuates peritoneal dialysis fluid induced inflammation of the peritoneum in mice. *PLoS One* 2016; 11(10):e0163314.
- 105. Liappas G, Gonzalez-Mateo G, Aguirre AR, et al. Nebivolol, a beta1-adrenergic blocker, protects from peritoneal membrane damage induced during peritoneal dialysis. *Oncotarget* 2016;7(21):30133-30146.
- 106. Liappas G, Gonzalez-Mateo GT, Sanchez-Diaz R, et al. Immune-regulatory molecule CD69 controls peritoneal fibrosis. J Am Soc Nephrol 2016;27(12):3561-3576.
- 107. Mori Y, Kakuta T, Miyakogawa T, et al. Effect of scavenging circulating reactive carbonyls by oral pyridoxamine in uremic rats on peritoneal dialysis. *Ther Apher Dial* 2016;20(6):645-654.
- 108. Wang L, Balzer MS, Rong S, et al. Protein kinase C alpha inhibition prevents peritoneal damage in a mouse model of chronic peritoneal exposure to high-glucose dialysate. *Kidney Int* 2016;89(6):1253-1267.
- 109. Wang L, Liu N, Xiong C, et al. Inhibition of EGF receptor blocks the development and progression of peritoneal fibrosis. *J Am Soc Nephrol* 2016;27(9):2631-2644.
- 110. Xiang S, Li M, Xie X, et al. Rapamycin inhibits epithelial-to-mesenchymal transition of peritoneal mesothelium cells through regulation of Rho GTPases. *FEBS J* 2016;283(12): 2309-2325.
- 111. Bircan L, Karakose S, Unverdi H, et al. Abatacept as a therapeutic option in the treatment of encapsulated peritoneal sclerosis: an experimental rat model. *Int Urol Nephrol* 2017; 49(5):909-916.
- 112. Costalonga EC, de Freitas LJ, Aragone DDSP, et al. Anti-fibrotic effects of valproic acid in experimental peritoneal fibrosis. *PLoS One* 2017;12(9):e0184302.
- 113. Ji S, Deng H, Jin W, et al. Beta-catenin participates in dialysate-induced peritoneal fibrosis via enhanced peritoneal cell epithelial-to-mesenchymal transition. *FEBS Open Bio*. 2017; 19;7(2):265-273.
- 114. Yang L, Fan Y, Zhang X, et al. Effect of 1,25(OH)2D3 on high glucoseinduced autophagy inhibition in peritoneum. *Mol Med Rep* 2017;16(5):7080-7085.
- 115. Aoki S, Takezawa T, Nagase K, et al. A high-density collagen xerogel thread prevents the progression of peritoneal fibrosis. *Biomater Sci* 2018;7(1):125-138.
- 116. Kariya T, Nishimura H, Mizuno M, et al. TGF-beta1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis. *Am J Physiol Renal Physiol* 2018;314(2):F167-F180.
- 117. Kim JS, Cho KS, Park SH, et al. Itraconazole attenuates peritoneal fibrosis through its effect on the sonic hedgehog signaling pathway in mice. *Am J Nephrol* 2018;48(6):456-464.
- 118. Li Z, Yan H, Yuan J, et al. Pharmacological inhibition of heparin-binding EGF-like growth factor promotes peritoneal angiogenesis in a peritoneal dialysis rat model. *Clin Exp Nephrol* 2018;22(2):257-265.
- 119. Yan P, Tang H, Chen X, et al. Tamoxifen attenuates dialysate-induced peritoneal fibrosis by inhibiting GSK-3beta/beta-catenin axis activation. *Biosci Rep* 2018;20;38(6):BSR20180240.
- 120. Yu M, Shi J, Sheng M, et al. Astragalus inhibits epithelial-to-mesenchymal transition of peritoneal mesothelial cells by down-regulating beta-catenin. *Cell Physiol Biochem* 2018; 51(6):2794-2813.

Suppl. Table 2. The list of operationalized items based on the ARRIVE guidelines and modified to include sub-items relevant to PD.

ARRIVE section	ARRIVE	Sub-items assessed whether reported or not
	1	Not included
	1 2	Not included
	2	Not included
Background	2	Not included
Objectives	5	Not included
	4	Not included
IVIET HODS		E 1 Evalicit statement of approval
F thical		5.1. Explicit statement of approval
ctatamant	5	5.2. Approval body name
statement		5.3. Name of Institutional guidelines followed
		5.4. A permit number
		6.1. The total number of groups consistent between the
		6.2. The humber of groups consistent between the
		6.2 The experimental unit clearly defined (e.g. whether n
		refers to the number of animals or the number of
Study design	6	hionsies analyzed)
		6.4 Blinding of personnel conducting the experiment
		6.5 Blinding of personnel assessing outcome
		(histonathology)
		6.6 Diagram of experimental design
		Models of PD-associated peritoneal fibrosis
		7.1. Peritoneal access defined
		7.2. Composition of peritoneal dialysis fluid (type and
		concentration of osmotic agent and buffer) or a
		solution to induce peritoneal fibrosis
		7.3. Volume of fluid administered
		7.4. Volume of fluid normalized per body weight
		7.5. Frequency of fluid administration
		7.6. Duration of treatment
Experimental	7	<u>Drugs</u>
procedures	/	7.7. Drug defined
		7.8. Dose response experiment or rationale for using a
		single dose
		7.9. Route of administration
		7.10. Frequency of drug administration
		7.11. Placebo use reported
		<u>Euthanasia</u>
		7.12. Euthanasia reported
		7.13. Euthanasia method reported
		7.14. Anesthesia use reported

		8.1. Species
Experimental	0	8.2. Strain
animals	8	8.3. Sex
		8.4. Age
		8.5. Weight
		9.1. Cage companions reported
Housing and	•	9.2. Light/dark cycle
husbandry	9	9.3. Temperature
		9.4. Type of food
		9.5. Access to food
		10.1. Sample-size calculation performed
		10.2. Total number of animals listed
Sample size	10	10.3. Number of animals assigned to particular groups
		listed
		10.4. Technical replicates performed (several samples for
		histopathological evaluation)
Allocating	11	11.1. Randomization performed
animals		11.2. Randomization procedure described
Experimental	12	12.1. The total number of outcomes listed
outcomes	12	12.2. Histopathological analysis as an outcome described
		13.1. Results of histopathological analysis (as an outcome)
		associated with at least one statistical test
Statistical	12	13.2. Normality of data distribution assessed
methods	15	13.3. Parametric vs. non-parametric statistics used
		appropriately
		13.4. Exact p-values given
RESULTS		
		14.1. Sex for each group
Baseline data	14	14.2. Weight for each group
		14.3. Age for each group
Numbers of		15.1. The number of animals in each group included in each
animala	1 Г	analysis
animais	15	15.2. The presence/absence of animals dropped-out from
anaiyzed		analysis
Outcomes and	10	16.1. A measure of precision for the outcome (e.g. standard
estimation	16	deviation, confidence interval, etc.)
	47	17.1. The presence/absence of important adverse events in
Adverse events	17	each experimental group
DISCUSSION		
Scientific	18	Not included
implications		
Generalizability/	10	Not included
Translation	-10	
Disclosures	20	Statement declaring/declining conflict of interest

		6					
	Sex reported						
Species	No	Yes					
		Male Female Male and fe					
Rat (n=394)	38	317	38	1			
Mouse (n=121)	29	49	39	4			
Other (n=52)	22	7	19	4			
All (n=567)	89	373	96	9			
% of Yes (n=478)	-	78	20	2			
% of All (n=567)	16	84					

Suppl. Table 3. Number of studies reporting the sex of animals.

Suppl. Table 4. Number of studies reporting the age and weight of animals.

Spacias	Ago ro	portod	Weight reported			
species	Agere	ported	Yes	No		
$P_{2} = (n - 204)$	Yes	80	60	20		
Kat (11–594)	No	314	294	20		
Mouse (n=121)	Yes	84	30	54		
	No	37	21	16		
Othor $(n - 52)$	Yes	3	2	1		
	No	49	41	8		
$\Delta \parallel (n - E \in Z)$	Yes	167	92	75		
All (n=567)	No	400	356	44		
All (% of All)	Yes	29	16	13		
	No	71	63	8		

Suppl. Table 5. The number of animals per experimental group used throug	hout the
studies.	

Spacias	Number of animals per group							
species	1-10	1-10 11-20		>30	Unclear			
Rat (n=394)	282	87	12	9	4			
Mouse (n=121)	81	24	1	9	6			
Dog (n=11)	9	2	-	-				
Guinea pig (n=1)	1	-	-	-	-			
Rabbit (n=33)	21	9	2	-	1			
Sheep (n=7)	6	1	-	-	-			
% of all (n=567)	71	22	2	3	2			

Suppl. Table 6. Volumes of PD fluids (normalized per body weight) infused to animals.

Spacios	ml/kg				
species	Median	Range			
Rat (n=241)	62	9-300			
Mouse (n=49)	100	32-333			
Dog (n=7)	89	40-100			
Guinea pig (n=1)	69	69			
Rabbit (n=23)	40	9-100			
Sheep (n=7)	50	23-62			

Suppl. Table 7. Interventions tested on animals to prevent peritoneal fibrosis.

Drug	Main mechanism of action	Experimental setting	Was effect significant?	Mean % reduction in peritoneal thickness	Reference
abatacept	CD80/CD86 blocker	CG	yes	-60%	(Bircan et al. 2017)
adenosine	nucleoside	CG	yes	no data	(Nakav et al. 2009)
		PDF	yes	-34%	(Perez-Martinez et al. 2012)
aliskiren	renin inhibitor	CG	no	-1%	(Kocak et al. 2012)
		CG	yes	-63%	(Ke et al. 2010)
		PDF	yes	-67%	(Imai et al. 2003)
amiodipine	calcium channel blocker	PDF	yes	-69%	(Nakamoto et al. 2008)
anti-CD69 antibody	neutralization of CD69	PDF	yes	-50%	(Liappas et al. 2016b)
anti-IL17 antibody (eBioMM17F3)	cytokine inhibitor	PDF	yes	no data	(Rodrigues-Diez et al. 2014)
antisense oligonucleotide against HSP-47	heat shock protein inhibitor	CG	yes	no data	(Nishino et al. 2003)
	angiogenesis inhibitor	CG	yes	-37%	(lo et al. 2004)
anti-VEGF antibody (bevacizumab)		CG	yes	-85%	(Ada et al. 2015)
astaxanthin	antioxidant	CG	yes	-43%	(Wakabayashi et al. 2015)
	herb	PDF	yes	-29%	(Li et al. 2014)
astragalus		PDF	yes	-44%	(Yu et al. 2018)
		PDF	yes	-56%	(Yenicerioglu et al. 2010)
atorvastatin	HMG-CoA reductase inhibitor	PDF	yes	-69%	(Duman et al. 2005b)
azacitidine	cytidine analogue	CG	yes	-39%	(Kim et al. 2014)
azathioprine	immune-suppressant	CG	no	54%	(Bozkurt et al. 2009b)
benfotiamine	vitamin B1 derivative	PDF	yes	-22%	(Kihm et al. 2011)
		CG	yes	-55%	(Hirose et al. 2013)
calcitrioi	vitamin D analogue	CG	yes	-60%	(Lee et al. 2014)
captopril	angiotensin-converting-enzyme inhibitor	PDF	no	-21%	(Schuinski et al. 2013)
aalaaayih	avelaaveganase 2 inhibitar	PDF	yes	-25%	(Aroeira et al. 2009)
celecoxib	cyclooxygenase-2 inhibitor	PDF	yes	-17%	(Fabbrini et al. 2009)

cholocalciforol	vitamin D2	PDF	yes	-50%	(Yang et al. 2017)
Cholecalcherol		CG	yes	-22%	(Lee et al. 2015)
chondroitine sulfate	glycosaminoglycan	CG	yes	-42%	(Abe et al. 2016)
CI-1040	mitogen-activated protein kinase inhibitor	PDF	yes	-63%	(Strippoli et al. 2015)
cilazapril	angiotensin-converting-enzyme inhibitor	PDF	yes	-56%	(Zhang et al. 2014)
clodronate	bisphosphonate	CG	yes	-60%	(Kushiyama et al. 2011)
		CG	yes	-24%	(Bozkurt et al. 2008a)
colchicine	anti-mitotic	PDF	yes	-35%	(Sagiroglu et al. 2015)
		PDF	no	-9%	(Sayarlioglu et al. 2006)
collagen	extracellular matrix protein	CG	yes	-93%	(Aoki et al. 2018)
CRM197	heparin-binding EGF-like growth factor inhibitor	PDF	no	48%	(Li et al. 2018)
cyclosporine	immune suppresent	CG	no	31%	(Bozkurt et al. 2009b)
	ininune-suppressant	PDF	no	no data	(van Westrhenen et al. 2007)
daikenchuto	herb	CG	yes	-71%	(Kitamura et al. 2015)
dexamethasone	corticosteroid	PDF	yes	no data	(Imai et al. 2002)
	angiotensin-converting-enzyme inhibitor	PDF	yes	-51%	(Duman et al. 2001)
		PDF	yes	-42%	(Duman et al. 2004)
enalapril		CG	yes	-58%	(Lee et al. 2011)
		CG	no	-13%	(Bozkurt et al. 2008b),
		CG	yes	-50%	(Tanabe et al. 2007)
endostatin	angiogenesis inhibitor	PDF	yes	no data	(Zhao et al. 2011)
erythropoetin	erythrocyte growth factor	CG	yes	no data	(Mondello et al. 2009a)
ethyl pyruvate	inhibitor of systemic cytokine release	PDF	yes	-17%	(Flessner et al. 2010)
everolimus	mTOR inhibitor	CG	yes	-4%	(Duman et al. 2008)
for an eff		PDF	yes	-57%	(Peng et al. 2013)
		CG	yes	-64%	(Washida et al. 2011)
fondaparinux	factor Xa inhibitor	CG	yes	-94%	(Saito et al. 2009)
FR167653	p38 kinase inhibitor	CG	yes	-55%	(Kokubo et al. 2012)
gefitinib	EGF receptor inhibitor	CG	yes	-24%	(Wang et al. 2016b)

gluthatione	antioxidant	PDF	yes	-21%	(Styszynski et al. 2006)
Go6976	protein kinase A inhibitor	PDF	yes	-79%	(Wang et al. 2016a)
H398 (anti-TNFα receptor I antibody)	TNFα signaling inhibitor	PDF	yes	no data	(Kalble et al. 2016)
hepatocyte growth factor	growth factor	PDF	yes	-52%	(Nakamura and Niwa 2005)
HL156A	AMP-activated protein kinase activator	CG	yes	-71%	(Ju et al. 2016)
ICG-001	beta-catenin inhibitor	PDF	yes	no data	(Ji et al. 2017)
IFN-γ	immune mediator	CG	yes	-41%	(Yoh et al. 2015)
itraconazole	antifungal	CG	yes	-65%	(Kim et al. 2018)
lisinopril	angiotensin-converting-enzyme inhibitor	PDF	yes	-63%	(Duman et al. 2005a)
losartan	angiotensin II receptor blocker	PDF	yes	-48%	(Noh et al. 2006)
LY294002	phosphoinositide 3-kinase inhibitor	PDF	yes	no data	(Xiao et al. 2015)
mizoribine	inosine monophosphate synthase inhibitor	CG	yes	-61%	(Takahashi et al. 2009)
myconhonolato mofatil	immune-suppressant; inosine	CG	yes	-14%	(Hur et al. 2012)
	monophosphate dehydrogenase inhibitor	CG	yes	-68%	(Huddam et al. 2015)
	cysteine prodrug, antioxidant	PDF	yes	-48%	(Noh et al. 2006)
N-acetylcysteine		PDF	yes	-22%	(Bui et al. 2012)
		CG	no	8%	(Bozkurt et al. 2009a)
nadroparin	low molecular weight heparin	PDF	no	-16%	(Schilte et al. 2009)
nebivolol	beta-1 receptor blocker	PDF	yes	-78%	(Liappas et al. 2016a)
		CG	yes	-53%	(Ertilav et al. 2011)
octreotide	somatostatin analogue	PDF	yes	-50%	(Gunal et al. 2001)
		PDF	yes	-60%	(Gunal et al. 2002)
olmosartan	angiotonsin II recentor blocker	PDF	yes	-67%	(Imai et al. 2003),
		PDF	yes	-69%	(Nakamoto et al. 2008)
ONO-4817	matrix metalloproteinase inhibitor	CG	yes	-63%	(Ro et al. 2007)
Panax notoginseng	herb	PDF	yes	-39%	(Hu et al. 2015)
		PDF	yes	-39%	(Gonzalez-Mateo et al. 2014)
paricalcitol	vitamin D analogue	PDF	yes	-60%	(Kang et al. 2014)
		PDF	yes	-27%	(Stavenuiter et al. 2015)
pentoxifylline	phosphodiesterase inhibitor	PDF	yes	-52%	(Hung et al. 2008)

pioglitazone	PPAR-γ agonist	CG	yes	-64%	(Saglam et al. 2012)
pyrrole-imidazole polyamide	gene silencer, targeted to the TGF-β1 promoter	CG	yes	-64%	(Serie et al. 2012)
nradnisalana	continectoroid	CG	no	26%	(Bozkurt et al. 2009b)
prednisolone	conticosteroid	CG	no	no data	(Imai et al. 2000)
probucol	antioxidant	PDF	yes	-61%	(Duan et al. 2011)
		PDF	yes	no data	(Kakuta et al. 2005)
nyridovamine	vitamin R6 analogue	PDF	no	15%	(Mori et al. 2016)
pyndoxamme		PDF	yes	-17%	(Flessner et al. 2010)
		PDF	yes	-52%	(Nakamura and Niwa 2005)
quinonsil	angiotongin converting any mainhibitor	CG	yes	-52%	(Sawada et al. 2002)
quinaprii	angiotensin-converting-enzyme inhibitor	CG	yes	no data	(Sawada et al. 2009)
recombinant human bone morphogenic protein-7 (rhBMP-7)	TGFβ-signalling inhibitor	PDF	yes	-32%	(Loureiro et al. 2010)
	PPAR-γ agonist	PDF	yes	-49%	(Yao et al. 2006)
rosiglitazone		PDF	yes	-55%	(Sandoval et al. 2010)
		CG	yes	-24%	(Bozkurt et al. 2008c)
ruxolitinib	Janus kinase inhibitor	PDF	yes	-69%	(Dai et al. 2014)
simuastatin	HMG-CoA reductase inhibitor	PDF	yes	no data	(Chang et al. 2014)
Sinivastatin		PDF	no	-11%	(Baroni et al. 2012)
		PDF	yes	-61%	(Sagiroglu et al. 2015)
sizelimus	mTOD inhibitor	PDF	yes	-49%	(Gonzalez-Mateo et al. 2015)
sironnus		PDF	yes	-80%	(Xiang et al. 2016)
		CG	yes	-53%	(Ceri et al. 2012)
sodium cromoglycate	mast cel stabilizer	PDF	yes	-10%	(Zareie et al. 2006)
soluble Tie2 fusion protein	angiogenesis inhibitor	PDF	yes	no data	(Xiao et al. 2013)
spironolactone	aldosterone antagonist	PDF	yes	-56%	(Zhang et al. 2014)
suberoylanilide hydroxamic acid	histone deacetylase inhibitor	CG	yes	-43%	(lo et al. 2015)
sulodexide	glycosaminoglycan	PDF	yes	-22%	(Pletinck et al. 2012)

sunitinib	receptor tyrosine kinases inhibitor	CG	yes	-28%	(Bozkurt et al. 2011)
suramin	cell energy metabolism inhibitor	CG	yes	-91%	(Xiong et al. 2014)
T-686	plasminogen activator inhibitor-1 inhibitor	PDF	yes	-45%	(Higuchi et al. 2005)
		PDF	yes	-42%	(Loureiro et al. 2013)
tamoxifen	selective estrogen receptor modulator	PDF	yes	-67%	(Yan et al. 2018)
		CG	yes	-53%	(Lua et al. 2015)
Tanshinone IIA	herb	PDF	yes	-75%	(Chunming et al. 2011)
tetramethylpyrazine	anti-inflammatory	PDF	yes	no data	(Zhu et al. 2002)
TCF0D Linhibitor	TCE 0 signaling inhibitor	CG	yes	-40%	(Kinashi et al. 2013)
IGFBR-I Innibitor	rGF-p-signaling inhibitor	CG	yes	-44%	(Kariya et al. 2018)
		CG	yes	-25%	(Arai et al. 2011)
thalidomide	immunomodulator	CG	yes	no data	(Hirata et al. 2016)
		CG	yes	no data	(Mondello et al. 2009b)
TNP-470	angiogenesis inhibitor	CG	yes	-50%	(Yoshio et al. 2004)
trimetazidine	fatty acid β -oxidation inhibitor	PDF	yes	-39%	(Gunal et al. 2003)
unfractionated heparin	anticoagulant	PDF	no	-16%	(Schilte et al. 2009)
valproic acid	probably multiple	CG	yes	-69%	(Costalonga et al. 2017)
		CG	yes	-60%	(Kocak et al. 2012)
valcartan	angietonsin II recenter blockers	PDF	yes	-63%	(Duman et al. 2005a)
	angiotensin II receptor blockers	CG	no	-12%	(Bozkurt et al. 2008b)
		CG	yes	-58%	(Subeq et al. 2011)
zopolrestat	aldose reductase inhibitor	PDF	yes	no data	(van Westrhenen et al. 2005)

Suppl. Fig. 1.

Β.

Experimental model	CG+Drug											CG+Drug																																					
Arrive	Pre-ARRIVE													Post-ARRIVE																																			
Ethical statement									#						#		#	1	7			#		#			#			#		#				#	t #				#	#		#		#	# 1	#	
Study design	\square	#	#	#	# 3	# 7	# #	#	#	#	#		#		#			7	7		#				#	#	#	#	#	: #	#			#		#	t #		#	#	#		#			#		4 1	
Experimental procedures	# #	# #	#	#	#	# 1	# #	#	#	#	#	#	#	#	#	# :	#	# 1	# #	#	#	#	#	#	#	#	#	#	# #	#	#	#	#	# 7	# #	t †	t #	#	#	#	#	#	#	#	#	#	#	# 1	+ #
Experimental animals	#	#		#	#	7	# #	#	#	#	#	#	#	#		#	#	# 4	# #	#			#	#	#	#	#		# #	#		#	#	#	+	# #	£.	#	#		#		#	#	#	#	#		
Housing and husbandry		#		#		4	# #	#	#	#	#	#	#	#			#	# #	# #	#	#	#	#	#	#	#	#		4	#	#	#		# 3	# #	ŧ ‡	4			#	#	#	#	#		#	#	# 1	# #
Sample size			#								#			#			#	#	#	#				#	#	#	#		#				#	# 7	¥	#	£.	#		#						#	#		
Allocating animals																																																	
Experimental outcomes																																																	
Statistical methods																																																	
Baseline data	# 4	# #	#	#	#	4	# #	#	#	#	#				#			# #	# #	#	#	#	#	#	#	#		#	# #	#	#	#	#	# 3	# #	t 4	#	#						#	#	#	#	4	#
Numbers analyzed																																																	
Outcomes and estimation																																																	
Adverse events																																																	
Conflict of interest																																																	

Original studies on 6 animal species

