Voting Behavior under Proportional Representation Supplemental Appendix

Peter Buisseret* Carlo Prato ${ }^{\dagger}$

Bounds on vote shares

Let $v_{A}(\Delta, \xi)$ be defined as the vote share of party A as a function of the payoff difference Δ and the aggregate shock ξ :

$$
v_{A}(\Delta, \xi)=\frac{1}{2}+\phi(\Delta-\xi)
$$

where we recall $\Delta\left(l_{A}, l_{B}\right) \equiv V_{A}\left(l_{A}, l_{B}\right)-V_{B}\left(l_{A}, l_{B}\right)$. We assume that the density of the idiosyncratic shock is small enough so that $v_{A}(\Delta, \xi)$ is always interior: $v_{A}(\Delta, \xi) \in(0,1)$ for all $(\Delta, \xi) \in[-1,1] \times\left[-\frac{1}{2 \psi}, \frac{1}{2 \psi}\right]$. In addition, we assume that both parties have always a chance of securing two seats, which is equivalent to imposing that $\left[1-\pi^{*}, \pi^{*}\right] \subset \operatorname{supp}\left(v_{A}(\Delta, \xi)\right)$ for all $\Delta \in[-1,1]$.

Recall that $\tilde{\pi} \equiv \phi^{-1}\left(\pi^{*}-.5\right)$. After rearranging, these two assumptions are equivalent to imposing

Assumption 1. ϕ and $\tilde{\pi}$ are such that

$$
\begin{aligned}
\frac{1}{2 \phi} & \geq \frac{1}{2 \psi}+1 \\
\tilde{\pi} & \leq \frac{1}{2 \psi}-1
\end{aligned}
$$

Notice that this assumption implies that $2 \psi>1$.

[^0]
Proof of Proposition 1

For any voter, the probability of being decisive for the assignment of party A^{\prime} 's first seat, conditional on being pivotal, and given other voters' computed $\Delta\left(l_{A}, l_{B}\right) \equiv V_{A}\left(l_{A}, l_{B}\right)-V_{B}\left(l_{A}, l_{B}\right)$ is given by Equation 15. Substituting (13) into (15), we obtain that $\Delta\left(l_{A}, l_{B}\right)$ must be a root of the mapping $\mathcal{V}:[-1,1] \rightarrow[-1,1]$, where

$$
\mathcal{V}(\Delta) \equiv \frac{l_{A}(2)-l_{B}(1)}{2}+\frac{l_{A}(1)+l_{B}(1)-l_{A}(2)-l_{B}(2)}{2} \frac{\psi(1-\theta)+\theta \tilde{f}(\Delta+\tilde{\pi})}{2 \psi(1-\theta)+\theta \tilde{f}(\Delta+\tilde{\pi})+\theta \tilde{f}(\Delta-\tilde{\pi})}-\Delta .
$$

We argue that when θ is small enough, this mapping has a unique root. To see this, notice that we have have four possible cases:

I: $l_{A}(1)=l_{B}(1)=2$, in which case

$$
\mathcal{V}(\Delta)=\mathcal{V}_{I}(\Delta) \equiv-\frac{1}{2}+\frac{\psi(1-\theta)+\theta \tilde{f}(\Delta+\tilde{\pi})}{2 \psi(1-\theta)+\theta \tilde{f}(\Delta+\tilde{\pi})+\theta \tilde{f}(\Delta-\tilde{\pi})}-\Delta
$$

II: $l_{A}(1)=l_{B}(1)=1$, in which case

$$
\mathcal{V}(\Delta)=\mathcal{V}_{I I}(\Delta) \equiv \frac{1}{2}-\frac{\psi(1-\theta)+\theta \tilde{f}(\Delta+\tilde{\pi})}{2 \psi(1-\theta)+\theta \tilde{f}(\Delta+\tilde{\pi})+\theta \tilde{f}(\Delta-\tilde{\pi})}-\Delta
$$

III: $l_{A}(1)=l_{B}(2)=2$, in which case $\mathcal{V}(\Delta)=-\Delta$, which implies $\Delta\left(l_{A}, l_{B}\right)=0$.
IV: $l_{A}(2)=l_{B}(1)=2$, in which case $\mathcal{V}(\Delta)=-\Delta$, which implies $\Delta\left(l_{A}, l_{B}\right)=0$.

It is immediate that in cases III and IV there is a unique root. Let's consider case I (case II is analogous). We have that

$$
\frac{d \mathcal{V}}{d \Delta}=\theta \frac{(1-\theta) \psi\left[\tilde{f}^{\prime}(\Delta+\tilde{\pi})-\tilde{f}^{\prime}(\Delta-\tilde{\pi})\right]+\theta\left[\tilde{f}^{\prime}(\Delta+\tilde{\pi}) \tilde{f}(\Delta-\tilde{\pi})-\tilde{f}^{\prime}(\Delta-\tilde{\pi}) \tilde{f}(\Delta+\tilde{\pi})\right]}{[2 \psi(1-\theta)+\theta \tilde{f}(\Delta+\tilde{\pi})+\theta \tilde{f}(\Delta-\tilde{\pi})]^{2}}
$$

Since \tilde{f}^{\prime} is finite, $\lim _{\theta \rightarrow 0} \frac{d \mathcal{V}}{d \Delta}=0$, there exists $\theta^{*} \in(0,1]$ such that $\forall \theta \leq \theta^{*}, \frac{d \mathcal{V}}{d \Delta}<1$. Finally, we show that $\tau^{C L}\left(\Delta\left(l_{A}, l_{B}\right)\right)>\frac{1}{2}$, where

$$
\tau^{C L}(\Delta)=\frac{\psi(1-\theta)+\theta \tilde{f}(\Delta+\tilde{\pi})}{2 \psi(1-\theta)+\theta \tilde{f}(\Delta+\tilde{\pi})+\theta \tilde{f}(\Delta-\tilde{\pi})}
$$

Suppose, to the contrary, $\tau^{C L} \leq \frac{1}{2}$. Then we must have $\tilde{f}(\tilde{\pi}+\Delta) \leq \tilde{f}(-\tilde{\pi}+\Delta)$. Since \tilde{f} is single peaked and symmetrically distributed around $\bar{\xi}>0$, it must be that $\Delta\left(l_{A}, l_{B}\right) \geq \bar{\xi}$.
First, notice that under cases III and IV, we obtain $\Delta\left(l_{A}, l_{B}\right)=0<\bar{\xi}$, a contradiction.
Second, consider case I. In this case, $\Delta\left(l_{A}, l_{B}\right)$ is the unique root of $\mathcal{V}_{I}=\tau^{C L}(\Delta)-\frac{1}{2}-\Delta$. Since we must have $\tau^{C L}(\Delta)-\frac{1}{2} \leq 0$, we obtain $\Delta \leq 0<\bar{\xi}$, a contradiction.
Finally, consider case II. In this case, $\Delta\left(l_{A}, l_{B}\right)$ is the unique root of $\mathcal{V}_{I I}=\frac{1}{2}-\tau^{C L}(\Delta)-\Delta$. Notice that $\mathcal{V}_{I I}(\Delta)$ is continuous. Moreover, we have $\mathcal{V}_{I I}(-1)=\frac{3}{2}-\tau^{C L}(-1)>\frac{1}{2}>0$ and $\mathcal{V}_{I I}(0)=\frac{1}{2}-\tau^{C L}(0)<0$-by symmetry of \tilde{f} and $\bar{\xi}>0$. By the intermediate value theorem, it must be that the unique root of $\mathcal{V}_{I I}$ is in $(-1,0)$, which again contradicts that $\Delta\left(l_{A}, l_{B}\right) \geq \bar{\xi}>0$. This completes the proof.

Proof of Observation 2

Applying the implicit function theorem to $\mathcal{V}=0$, we obtain

$$
\frac{\partial \Delta\left(l_{A}, l_{B}\right)}{\partial l_{A}(1)} / \frac{\partial\left(-\Delta\left(l_{A}, l_{B}\right)\right)}{\partial l_{B}(1)}=-\frac{\frac{\partial \mathcal{V}}{\partial l_{A}(1)}}{\frac{\partial \mathcal{V}}{\partial \Delta}} /-\frac{\frac{\partial \mathcal{V}}{\partial l_{B}(1)}}{\frac{\partial \mathcal{V}}{\partial(-\Delta)}}=\frac{\partial \mathcal{V}}{\partial l_{A}(1)} / \frac{\partial(-\mathcal{V})}{\partial l_{B}(1)}=\frac{\tau^{C L}}{1-\tau^{C L}}>1
$$

A Model of Open List PR

To model open list PR in the simplest possible way, we assume that each party has a mass λ of loyal voters who cast a ballot for the lower-appeal candidate within their party with probability one. The rest of the electorate (share $1-2 \lambda$) is made up by independent voters, whose behavior and and preferences over candidate appeal is the same as the voters in our baseline model: we denote by V_{J} the value of voting for one's preferred candidate form party J. An independent voter i votes for party B iff

$$
V_{B}+\xi+\sigma_{i} \geq V_{A}
$$

Independent voters' within party preferences are entirely driven by appeal: with probability one, they vote for the higher-appeal candidate.

These assumptions require a more precise restatement of the notion of appeal q as a candidate's general ability to advance local issues; this is consistent with the idea that some politicians specialize in pursuing a party's programmatic policy goals, while others are more appealing owing to broader personal vote-earning attributes Åsa von Schoultz and Shugart (2018). As a result, we can interpret loyalists as programmatic-oriented voters and independents as less programmatic-oriented voters.

Let v_{A} the total vote share of party A. We have that

$$
v_{A}=\lambda+(1-2 \lambda)\left(\frac{1}{2}+\phi\left(V_{A}-V_{B}-\xi\right)\right)
$$

We also assume that when independent voters equally divide their vote across parties, both high-quality candidates get elected: for all $\Delta \in[-1,1]$

$$
\lambda<(1-2 \lambda)\left(\frac{1}{2}+\phi \Delta\right) .
$$

This assumption also implies that when a party wins both seats, the high-appeal candidates must obtain more preference votes (i.e. $\lambda<1 / 4$). We also assume that λ is large enough so that loyal voters can determine the intra-party allocation of seats: for all $\Delta \in[-1,1]$

$$
\lambda>(1-2 \lambda)\left(\frac{1}{2}+\phi \Delta-\frac{\phi}{2 \psi}\right) .
$$

As before, there are two realizations of the aggregate shock $\xi_{1}^{O L}$ and $\xi_{2}^{O L}$ where a voter's vote is pivotal for the allocation of party A 's first and second seat. However, there are two additional thresholds $\xi_{A}^{O L}$ and $\xi_{B}^{O L}$ so that when $\xi=\xi_{J}^{O L}$, a voter is pivotal for allocation of the seat between the higher-appeal candidate $(q=2)$ and the lower-appeal candidate ($q=1$) .

Under the assumptions, we have that $\xi_{2}^{O L}<\xi_{B}^{O L}<\xi_{A}^{O L}<\xi_{1}^{O L}$. As before, we assume that an independent voter's payoff is the average appeal among elected representatives, and that a high-appeal politician yields a payoff of 2 while a low-appeal politicians yields a payoff of 1.

We now proceed to derive the values $V_{A}\left(l_{A}, l_{B}\right)$ and $V_{B}\left(l_{A}, l_{B}\right)$. Let $\operatorname{Pr}($ pivot $)=\operatorname{Pr}(\xi \in$ $\left.\left\{\xi_{2}^{O L}, \xi_{B}^{O L}, \xi_{A}^{O L}, \xi_{1}^{O L}\right\}\right)$

$$
V_{A}=\frac{\operatorname{Pr}\left(\xi=\xi_{2}^{O L}\right)}{\operatorname{Pr}(\text { pivot })} \frac{3}{2}+\frac{\operatorname{Pr}\left(\xi=\xi_{B}^{O L}\right)}{\operatorname{Pr}(\text { pivot })} \frac{3}{2}+\frac{\operatorname{Pr}\left(\xi=\xi_{A}^{O L}\right)}{\operatorname{Pr}(\text { pivot })} \frac{4}{2}+\frac{\operatorname{Pr}\left(\xi=\xi_{1}^{O L}\right)}{\operatorname{Pr}(\text { pivot })} \frac{3}{2}
$$

In words: voting for A affects the quality of representation only when (i) party B gets more votes than A, but (ii) enough independent preference votes are cast so that voting for the high-appeal candidate of party A is decisive for the outcome of the intra-party contest for the single seat obtained by party A.

Similarly, we have

$$
V_{B}=\frac{\operatorname{Pr}\left(\xi=\xi_{2}^{O L}\right)}{\operatorname{Pr}(\text { pivot })} \frac{3}{2}+\frac{\operatorname{Pr}\left(\xi=\xi_{B}^{O L}\right)}{\operatorname{Pr}(\text { pivot })} \frac{4}{2}+\frac{\operatorname{Pr}\left(\xi=\xi_{A}^{O L}\right)}{\operatorname{Pr}(\text { pivot })} \frac{3}{2}+\frac{\operatorname{Pr}\left(\xi=\xi_{1}^{O L}\right)}{\operatorname{Pr}(\text { pivot })} \frac{3}{2} .
$$

We then obtain

$$
\begin{aligned}
\Delta & \equiv V_{A}-V_{B}=-\frac{\operatorname{Pr}\left(\xi=\xi_{B}^{O L}\right)}{\operatorname{Pr}(\text { pivot })} \frac{1}{2}+\frac{\operatorname{Pr}\left(\xi=\xi_{A}^{O L}\right)}{\operatorname{Pr}(\text { pivot })} \frac{1}{2} \\
& =\frac{\theta \tilde{f}(\Delta+\tilde{\lambda})-\theta \tilde{f}(\Delta-\tilde{\lambda})}{4 \psi(1-\theta)+\theta[\tilde{f}(\Delta-\tilde{\pi})+\tilde{f}(\Delta-\tilde{\lambda})+\tilde{f}(\Delta+\tilde{\lambda}) \tilde{f}(\Delta+\tilde{\pi})]}
\end{aligned}
$$

where:

$$
\begin{aligned}
& \xi_{2}^{O L} \equiv \Delta-\frac{\pi^{*}-\frac{1}{2}}{\phi(1-2 \lambda)} \equiv \Delta-\tilde{\pi} \\
& \xi_{B}^{O L} \equiv \Delta-\frac{\frac{\lambda}{1-2 \lambda}-\frac{1}{2}}{\phi} \equiv \Delta-\tilde{\lambda} \\
& \xi_{A}^{O L} \equiv \Delta+\frac{\frac{\lambda}{1-2 \lambda}-\frac{1}{2}}{\phi} \equiv \Delta+\tilde{\lambda} \\
& \xi_{1}^{O L} \equiv \Delta+\frac{\pi^{*}-\frac{1}{2}}{\phi(1-2 \lambda)} \equiv \Delta+\tilde{\pi} .
\end{aligned}
$$

This implies that $\Delta \in(0, \bar{\xi})$ (that $\Delta \leq \bar{\xi}$ has to be true, because otherwise $\Delta>\bar{\xi} \Rightarrow \Delta<0)$ and voters pay relatively more attention to the situation in which they are pivotal for the election of the lower-appeal candidate ($q=1$) of party A than the lower-appeal candidate of party B.

References

Åsa von Schoultz and Matthew S. Shugart. 2018. "Modeling intraparty competition under OLPR: Contextualizing the personal vote." unpublished.

[^0]: *Harris School of Public Policy, University of Chicago, Email: pbuisseret@uchicago . edu
 ${ }^{\dagger}$ Department of Political Science, Columbia University, Email: cp2928@columbia. edu

