Supporting Information

Dihydrochalcone glycosides from Balanophora harlandii

Indra Prakash^{a,i*}, Bin Wang^a, Gil Ma^a, Juvanel Higiro^a, Goran B Petrovic^a Yong Qian^{b,i}, Zhenqiang Xin^b, Zhou Yang^b, Wenshuai Tian^b, Tianpei Xie^b

^a The Coca-Cola Company, Atlanta, GA 30313, USA

^b Shanghai Standard Technology Co., Ltd. Shanghai, 201203, China

ⁱ the two authors have the same contributions

*Correspondence: iprakash@coca-cola.com

List of Tables

Table S1 LC-MS condition for reference compounds and e	extract
--	---------

List of Figures

Figure S1 HRMS spectrum of compound 1	5
Figure S2 ¹ H NMR spectrum of compound 1	5
Figure S3 ¹³ C NMR spectrum of compound 1	6
Figure S4 HSQC NMR spectrum of compound 1	6
Figure S5 HMBC NMR spectrum of compound 1	7
Figure S6 ¹ H- ¹ H COSY NMR spectrum of compound 1	7
Figure S7 ROESY NMR spectrum of compound 1	8
Figure S8 HRMS spectrum of compound 2	8
Figure S9 ¹ H NMR spectrum of compound 2	9
Figure S10 ¹³ C NMR spectrum of compound 2	9
Figure S11 HSQC NMR spectrum of compound 2	0
Figure S12 HMBC NMR spectrum of compound 2	0
Figure S13 ¹ H- ¹ H COSY NMR spectrum of compound 2	1
Figure S14 ROESY NMR spectrum of compound 21	1
Figure S15 HRMS spectrum of compound 31	2
Figure S16 ¹ H NMR spectrum of compound 3	2
Figure S17 ¹³ C NMR spectrum of compound 3	3
Figure S18 HSQC NMR spectrum of compound 3 1	3
Figure S19 HMBC NMR spectrum of compound 3	4
Figure S20 ¹ H- ¹ H COSY NMR spectrum of compound 3	4
Figure S21 ROESY NMR spectrum of compound 3 1	5
Figure S22 Key HMBC and ROESY correlations of compound 3	5
Figure S23 HRMS spectrum of compound 41	6
Figure S24 ¹ H NMR spectrum of compound 4	6
Figure S25 ¹³ C NMR spectrum of compound 4	7
Figure S26 HSQC NMR spectrum of compound 4 1	7
Figure S27 HMBC NMR spectrum of compound 41	8

Figure S28 ¹ H- ¹ H COSY NMR spectrum of compound 4	
Figure S29 ROESY NMR spectrum of compound 4	19
Figure S30 Key HMBC and ROESY correlations of compound 4	19
Figure S31 ¹ H NMR spectrum of compound 5	
Figure S32 ¹³ C NMR spectrum of compound 5	
Figure S33 ¹ H NMR spectrum of compound 6	
Figure S34 ¹³ C NMR spectrum of compound 6	
Figure S35 ¹ H NMR spectrum of compound 7	
Figure S36 ¹³ C NMR spectrum of compound 7	
Figure S37 ¹ H NMR spectrum of compound 8	
Figure S38 ¹³ C NMR spectrum of compound 8	
Figure S39 Pictures of Balanophora harlandii (A: mal plant; B: female plant)	
Figure S40 (A) TIC chromatogram of Fr.1; (B) Corresponding XIC chromatogram	
Figure S41 (A) TIC chromatogram of Fr.2; (B) Corresponding XIC chromatogram	
Figure S42 (A) TIC chromatogram of Fr.3; (B) Corresponding XIC chromatogram	
Figure S43 (A) TIC chromatogram of Fr.4; (B) Corresponding XIC chromatogram	
Figure S44 (A) TIC chromatogram of Fr.5; (B) Corresponding XIC chromatogram	

Table S1 LC-MS condition for reference compounds and extract

Liquid Chromatograph		1
Instrument	Agilent 1290 with UV detector	
Column	Agilent Eclipse plus C ₁₈ ; 1.8 μ m; 2.1 \times 50 mm (P/N 959757-902)	
Temperature	25 °C	
Injection	1 μL	
Wavelength	200-400nm	
Gradient	Solvent A	0.1% formic acid in water
	Solvent B	0.1% formic acid in acetonitrile

Time (min)	Flow Rate (mL/min)	%B
0.00	0.400	10.0
8.00	0.400	40.0
15.00	0.400	95.0
20.00	0.400	95.0
21.00	0.400	10.0
25.00	0.400	10.0

Mass Spectrometer

Instrument Polarity

Sciex TripleTOF 4600 LC/MS Negative ion mode

HESI Source

Gas 1 Flow Rate	50
Gas 2 Flow Rate	50
Curtain Gas Flow Rate	35
IonSpray Voltage Floating(kV)	-4500
Ion Source Temperature (°C)	500
TOF mass range	100~1500
Declustering Potential	100
Collision Energy	-10
ddMS ²	
Declustering Potential	100
Collision Energy	-40
Collision Energy Spread	20
Ion Release Delay	30
Ion Release Width	15

Figure S2 ¹H NMR spectrum of compound 1

Figure S5 HMBC NMR spectrum of compound 1

Figure S6 ¹H-¹H COSY NMR spectrum of compound 1

Figure S7 ROESY NMR spectrum of compound 1

Spectrum from 20180503-LF279-neg.... - 1500) from 5.445 to 6.756 min)

Figure S8 HRMS spectrum of compound 2

Figure S9¹H NMR spectrum of compound 2

Figure S12 HMBC NMR spectrum of compound ${\bf 2}$

Spectrum from 20180810_新化合物-DT0... 1500) from 3.324 to 3.467 min)

Figure S16¹H NMR spectrum of compound 3

fl (ppm)

Figure S19 HMBC NMR spectrum of compound 3

Figure S20¹H-¹H COSY NMR spectrum of compound 3

Figure S21 ROESY NMR spectrum of compound 3

Figure S22 Key HMBC and ROESY correlations of compound 3

Spectrum from 20180810_新化合物-DT06_....626 to 2.948 min), Recalibrated

Figure S24 ¹H NMR spectrum of compound 4

Figure S27 HMBC NMR spectrum of compound 4

Figure S28 ¹H-¹H COSY NMR spectrum of compound 4

Figure S29 ROESY NMR spectrum of compound 4

Figure S30 Key HMBC and ROESY correlations of compound ${\bf 4}$

Figure S34¹³C NMR spectrum of compound 6

Figure S36 ¹³C NMR spectrum of compound 7

B. Female plant

Figure S40 (A) TIC chromatogram of Fr.1; (B) Corresponding XIC chromatogram

Figure S41 (A) TIC chromatogram of Fr.2; (B) Corresponding XIC chromatogram

Figure S42 (A) TIC chromatogram of Fr.3; (B) Corresponding XIC chromatogram

Figure S43 (A) TIC chromatogram of Fr.4; (B) Corresponding XIC chromatogram

Figure S44 (A) TIC chromatogram of Fr.5; (B) Corresponding XIC chromatogram