Appendix A

Property of arcsin transformation

It is known ${ }^{1}$ that for any numbers x and y,
$\arcsin (x)+\arcsin (y)=\arcsin \left(x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right)$.

Using this identity we have
$\arcsin (\sqrt{y})+\arcsin (\sqrt{1-y})=\arcsin (\sqrt{y} \cdot \sqrt{y}+\sqrt{1-y} \cdot \sqrt{1-y})=\arcsin (1)=\pi$.

References

1. Abramowitz M, Stegun IA, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications; 1972.
