Supplementary Information

Horseradish Peroxidase-Catalyzed Hydrogelation of Fish Gelatin with Tunable Mechanical Properties and Biocompatibility

Cytocompatibility test

FGH polymer was dissolved in DMEM with different concentrations (5; 7.5 and 10 wt%) and filtered using a syringe filter (pore size of 0.2 µm). The cytotoxicity of polymer solutions was evaluated by the cell proliferation assay kit (WST-1 assay) as previously reported.[1-3] Briefly, hDFBs were seeded in a 24 well-plate with the density of 3 x 10⁴ cells/well and incubated with 1 mL of culture media (DMEM supplemented with 10% FBS and 1% PS) for 24 h. Afterward, the media were removed and cells were incubated with 1 mL of polymer soultions for further 24 h. Then, the media were replaced with 1 mL of DMEM containing 10% WST-1 solution and incubated for 1 h. Subsequently, 100 µL of the solution was transferred to a 96 well-plate and the the optical density was measured at 450 nm using a microplate reader (VersaMax Tunable Microplate reader, Molecular Devices, USA). The cell viability was expressed as a ratio of control cells (TCPS, cells treated with only DMEM and defined as 100% viable). The cell viability was also determined by a live/dead assay kit (Invitrogen, USA). Briefly, cells in each well were incubated with 500 µL of mixture consisting of 2 mM of acetomethoxy derivate of calcein (calcein AM) and 4 mM of ethidium homodimer-1(EthD-1) at 37 °C for 30 min. Then, cell morphologies were observed by a fluorescence microscope (TE2000, Nikon, Japan), in which live cells were stained green and dead cells were stained red.

Figure S1. The cytocompatibility of FGH polymer solutions: (A) Live/Dead staining of hDFBs cultured with different FGH polymer concentrations for 24 h (scale bars represent 100 μ m) and (B) Quantitative analysis of hDFBs viability by the WST-1 assay. There was no significant difference in cell viability between the FGH groups and the control group (TCPS) (P > 0.05), indicating the excellent biocompatibility of FGH polymer.

H₂O₂ measurement

The amount of residual H_2O_2 released from FGH hydrogels was determined by Pierce quantitative peroxide assay kits (Thermo Scientific Pierce, Rockford, IL, USA).[1, 4] In brief, 100 μ L hydrogels formed by different FGH concentrations were prepared in a 48-well plate and incubated with 1 mL of PBS solution at 37 °C. After 30 min of incubation, 10 μ L of solution was transferred to a 96 well-plate and mixed with 100 μ L of premixed working reagent solution, according to the supplier's protocol. The mixture was incubated at room temperature for 15 min, then the light absorbance was measured at 595 nm using a microplate reader (VersaMax Tunable Microplate reader, Molecular Devices, USA). The released H₂O₂ concentration was calculated from a calibration curve of known H₂O₂ concentrations (0-100 μ M).

Table S1. H_2O_2 release from the FGH hydrogel matrices after incubating with PBS for 30 min

Hydrogel	H ₂ O ₂ concentration (µM)
FGH5	5.6 ± 2.4
FGH7.5	2.9 ± 1.5
FGH10	No detect

Table S2. Sequences of PCR primers for RT-PCR analysis

Gene	Primer sequence
Col I	Forward: CCAGAAGAACTGGTACATCA
	Reverse: CCGCCATACTCGAACTGGAA
Col III	Forward: AGGGGAGCTGGCTACTTCTC
	Reverse: CGGATCCTGAGTCACAGACA
FN	Forward: ATGATGAGGTGCACGTGTGT
	Reverse: CTCTTCATGACGCTTGTGGA
GAPDH	Forward: ATGACTCCACTCACGGCAAA
	Reverse: ATGATGACCCTTTTGGCTCC

References

[1] Kim BY, Lee Y, Son JY, Park KM and Park KD. Dual Enzyme-Triggered In Situ Crosslinkable Gelatin Hydrogels for Artificial Cellular Microenvironments. *Macromolecular bioscience*. 2016; 16: 1570-1576.

[2] Lee Y, Bae JW, Oh DH, Park KM, Chun YW, Sung HJ and Park KD. In Situ Forming Gelatin-Based Tissue Adhesives and Their Phenolic Content-Driven Properties. *Journal of Materials Chemistry B*. 2013; 1: 2407.

[3] Hoang Thi TT, Lee JS, Lee Y, Park KM and Park KD. Enhanced Cellular Activity in Gelatin-Poly(Ethylene Glycol) Hydrogels without Compromising Gel Stiffness. *Macromolecular bioscience*. 2016; 16: 334-340.

[4] Lee Y, Choi KH, Park KM, Lee JM, Park BJ and Park KD. In Situ Forming and H₂O₂-Releasing Hydrogels for Treatment of Drug-Resistant Bacterial Infections. *ACS applied materials & interfaces*. 2017; 9: 16890-16899.