Online Data Supplement

The peripheral blood transcriptome and post-septic cognitive impairment: the <u>C</u>ognition <u>A</u>fter <u>S</u>epsi<u>S</u> (CASS) observational pilot study

Samuel M. Brown, MD MS^{1,2,3}, Sarah J. Beesley, MD^{1,2,3}, Chris Stubben, PhD,⁴ Emily L. Wilson, MStat^{1,2}, Angela P. Presson, PhD⁵, Colin Grissom, MD^{2,3}, Colin Maguire, PhD⁷, Matthew T. Rondina, MD^{7,8}, Ramona O. Hopkins, PhD^{1,2,9}

¹Center for Humanizing Critical Care, Intermountain Healthcare, Murray, UT

²Department of Medicine, Pulmonary and Critical Care Division, Intermountain Medical Center, Murray, UT

³Department of Medicine, Pulmonary and Critical Care Division, University of Utah School of Medicine, Salt Lake City, UT

⁴Bioinformatics Shared Resource, Huntsman Cancer Hospital and University of Utah, Salt Lake City, UT USA

⁵Study Design and Biostatistics Center and Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT

⁶Physical Medicine and Rehabilitation, Intermountain Medical Center, Murray, UT

⁷University of Utah Molecular Medicine Program, and the Departments of Internal Medicine and Pathology, University of Utah, Salt Lake City, UT USA

⁸Department of Internal Medicine and the GRECC, George E. Wahlen VAMC, Salt Lake City, UT

⁹Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT

SUPPLEMENTAL METHODS	3
Weighted Network Analysis	3
Secondary Weighted Network Analysis	3
SUPPLEMENTAL RESULTS	5
Primary Weighted Network Analysis Results	5
Secondary Weighted Network Analysis Results	5
eFigure 1. Gene dendrogram for primary Weighted Network Analysis	6
eFigure 2. Gene dendrogram for secondary Weighted Network Analysis	7

eTable 1. Comparison of the enrolled cohort with the analytic cohort	8
eTable 2. Gene Ontology terms within primary WNA modules	10
eTable 3. Module eigengene summary by cognitive impairment status Error! Bookmark defined.	: not
eTable 4. Weighted Network Analysis (WNA) module membership for genes identified	by
the differential expression analysis	24
eTable 5. Potentially enriched pathways for normal vs. abnormal cognitive function fro	ст
the primary Weighted Network Analysis	31
eTable 6. Module eigengene summary by cognitive status for secondary WNA	32
eTable 7. Gene ontology categories differentially expressed in the two most significan	ıt
modules from the secondary Weighted Network Analysis	34
eTable 8. Genes in the GO oxidoreductase activity molecular function category with	
differential expression on the secondary Weighted Network Analysis (WNA)	36
REFERENCES	37

CASS

Supplemental Methods

Weighted Network Analysis

WNA is a robust, mature analytic technology(1-6) for this application. In the first phase of WNA, we construct the correlation matrix corresponding to a weighted network formed from the results of deep sequencing. Next, we used average linkage hierarchical clustering with agglomerative partitioning to cluster patients according to their correlation profiles within the network. This approach operated by converting the correlation profiles into distance metrics and successively merging similar pairs of subjects.(7) The result was a *dendrogram* or cluster tree where patients are grouped into clusters with similar correlation profiles across the deep sequencing results. We then "pruned" the dendrogram in a semi-supervised manner using the dynamic tree-cut procedure to identify the relevant network modules. Modules represent clusters of genes whose expression profiles are correlated; they are expected to approximate biological pathways.

Network modules are typically simplified through principal components analysis, where the first principal component of the module, dubbed the "module eigengene," summarizes the entire module. In this research, we were interested in the "eigengenes" of two network modules. First, our primary, pre-specified analysis evaluated the association between the first principal component of the network module containing APOE and the 6-month Hayling test. Second, in an exploratory analysis, we sought to identify the network module that was most significantly associated with the 6-month Hayling test.

Secondary Weighted Network Analysis

Because the primary WNA showed a large cluster of low-expression genes, we performed a post hoc analysis using WNA after more strict exclusion of low-expression transcripts (an analysis which excluded APOE). For this analysis, after plotting baseMean transcript counts against log2Foldchange, we identified a group of sparsely expressed genes

4

which were excluded before re-running the WNA. This process excluded 3500 additional genes with low expression. We then performed standard WNA as outlined above.

Supplemental Results

Primary Weighted Network Analysis Results

Within WNA, a soft-thresholding power of 6 was chosen based on the empirical appearance of the scale independence figure. Clustering returned 19 discrete modules (eFigure 1). APOE was in the largest cluster (marked as turquoise in eFigure 1). The eigengene of that cluster was not significantly associated with Hayling scores at 6 months. Nor were the eigengenes of the other clusters (eTable 3). We evaluated Gene Ontology enrichment within the modules. eTable 2 lists the top 10 Gene Ontology terms for each of the modules identified within WNA. We employed the Biological Process ontology for the analysis presented in eTable 2.

Secondary Weighted Network Analysis Results

A soft-thresholding power of 12 was chosen based on the empirical appearance of the scale independence figure. Clustering returned 40 discrete modules (eFigure 2). After adjustment for multiple comparisons, no module eigengenes were associated with the primary endpoint (eTable 6). On enrichment analysis, three modules were enriched with significant genes (with p values based on Fisher exact comparison for proportion of significant genes against the background universe of genes): turquoise ($p<10^{-31}$), green ($p<10^{-27}$), and lightyellow (p=0.01). Gene ontology categories that were differentially expressed in the two most significant modules are displayed in eTable 7. The primary findings were of an association between oxidoreductase activity and cognitive outcomes in the turquoise module and hormone activity and cognitive outcomes in the turquoise module and hormone activity and cognitive category are displayed in eTable 8. The large majority had lower expression among patients with cognitive impairment. The gene with the lowest p value and largest log2-fold change was CYP1B1, a cytochrome P450 enzyme implicated in

suppression of oxidative stress.(8, 9) This may suggest that, consistent with other evidence outside transcriptomics(10-12), higher oxidation activity overall is associated with worse cognitive outcomes.

eFigure 1. Gene dendrogram for primary Weighted Network Analysis

CASS

eFigure 2. Gene dendrogram for secondary Weighted Network Analysis

Gene dendrogram and module colors

eTable 1. Comparison of the enrolled cohort with the analytic cohort

Variable	Enrolled cohort (N=39)	Analytic cohort (N=30)
Demographics		
Age	57 (47 - 67)	56 (47 - 69)
Race		
American Indian or Alaskan Native	0 (0%)	0 (0%)
Asian		
Black		
White	1 (3%) 37 (05%)	(3%) 28 (03%)
Female sex	21 (54%)	17 (57%)
Peak educational attainment	21 (3470)	17 (3778)
Less than high school	5 (13%)	3 (10%)
High school completed	8 (21%)	7 (23%)
Some college	11 (28%)	10 (33%)
Associate's degree	4 (10%)	2 (7%)
Bachelor's degree	7 (18%)	5 (17%)
Master's, Doctorate or other professional	4 (10%)	3 (10%)
degrees		
Median annual income for census block	69667 (52947 -	74000 (55000 00000)
	86126)	/1390 (55038 - 90932)
	26 (0.2%)	27 (00%)
Hospital ward	1 (3%)	(90%)
Skilled nursing facility	1 (3%)	1 (3%)
Rehabilitation facility	1 (3%)	1 (3%)
Assisted living facility	0 (0%)	0 (0%)
Baseline employment status		
Working full time (at least 32 hours/week)	13 (33%)	11 (37%)
Working part time	2 (5%)	2 (7%)
Unemployed and looking for work	3 (8%)	2 (7%)
Homemaker		
Retired	12 (31%)	9(30%)
Other	2 (5%)	1 (3%)
Comorbidities and risk factors		1 (070)
Comorbidities		
Congestive heart failure	4 (10%)	3 (10%)
Depression requiring treatment	7 (18%)	6 (20%)
Anxiety requiring treatment	8 (21%)	7 (23%)
Chronic kidney failure requiring dialysis	A (10%)	2 (7%)
Diabetes mellitus	10 (26%)	2 (170) 8 (27%)
Ever drink alcohol		
Current smoker		
ourront onlocor	10 (20%)	0 (20%)

Brown et al.

Anti-depressant medications	9 (23%)	7 (23%)
Narcotic pain relievers	12 (31%)	9 (30%)
Mood stabilizers	2 (5%)	2 (7%)
Acute illness attributes	· · ·	
Admission APACHE II	20 (15 - 26)	18 (13 - 24)
Admission SOFA score	8 (6 - 12)	8 (5 - 11)
Days of delirium	0 (0 – 1)	0 (0 – 0)
Ever delirious	10 (26%)	7 (23%)
Ever mechanically ventilated	11 (28%)	7 (23%)
Ever on vasopressor agents	17 (44%)	10 (33%)
Sepsis etiology		
Pneumonia	13 (33%)	11 (37%)
Urosepsis	8 (21%)	7 (23%)
Central Nervous System	0 (0%)	0 (0%)
Unknown	4 (10%)	3 (10%)
Catheter related	1 (3%)	0 (0%)
Abdominal	6 (15%)	4 (13%)
Skin and soft tissue	7 (18%)	5 (17%)
Endocarditis/bacteremia	0 (0%)	0 (0%)
ICU-free days to day 28	24 (23 - 26)	25 (23 - 26)
ICU length of stay	3.0 (1.9 - 4.1)	3.0 (1.6 - 4.0)
Hospital length of stay	5.7 (4.1 – 9.5)	5.6 (3.9 - 8.9)
Discharge destination	· · · · · ·	
Home	28 (72%)	24 (80%)
Death	2 (5%)	0 (0%)
Nursing home	5 (13%)	5 (Ì7%́)
Rehabilitation facility	2`(5%)	1 (3%)
Hospice	1 (3%)	0 (0%)
Missing	1 (3%)	0 (0%)
Hayling at 6 months	6 (6 - 6)	6 (6 - 6)

eTable 2. Gene Ontology terms within primary WNA modules

				Modul	Term	Enrichme	Bonfero ni P
Term ID	Term Name leukocyte	module	n	e Size	Size	nt P value	value
	involved in			362			
GO:00023	immune			(12.4	614		
66 BP	response	black	45	ì %)	(7.3%)	1.3E-09	2E-05
	cell activation			,	(<i>,</i>		
	involved in			362			
GO:00022	immune			(12.4	617		
63 BP	response	black	45	%)	(7.3%)	1.6E-09	2E-05
GO:00450	regulated			362	677		
55 BP	exocytosis	black	47	(13%)	(6.9%)	3.2E-09	4E-05
GO:00432	leukocyte			362	478	o (= oo	
99 BP	degranulation	black	36	(9.9%) 362	(7.5%)	3.4E-08	0.0004
GO:00453	leukocvte			(16.3	1030		
21 BP	activation	black	59	%)	(5.7%)	3.6E-08	0.0004
	leukocyte			362	()		
GO:00024	mediated			(12.2	664		
43 BP	immunity	black	44	%)	(6.6%)	4.3E-08	0.0005
GO:00068				362	757		
87 BP	exocytosis	black	47	(13%)	(6.2%)	1E-07	0.0012
	myeloid			362			
GO:00022	leukocyte		00	(10.8	572		0.0045
74 BP	activation	black	39	%)	(6.8%)	1.3E-07	0.0015
CO:00017				30Z (17 1	1150		
75 BD	cell activation	black	62	(17.1 %)	(5.4%)	1 4E-07	0.0016
15 01		DIACK	02	362	(0.470)	1.42-07	0.0010
GO [.] 00023	immune system			(28.5	2334		
76 BP	process	black	103	%)	(4.4%)	1.6E-07	0.002
	•			,	95 ´		
GO:00094				1548	(31.6%		
51 BP	RNA modification	blue	30	(1.9%))	1.9E-07	0.0022
					40		
GO:00450	-		47	1548	(42.5%		
58 BP	I cell selection	blue	17	(1.1%))	8.1E-07	0.0097
CO:00067	biotin metabolic			15/8	9 (77 8%		
68 BP		blue	7	1040 (0.5%)	(77.070	8 55-06	0 1017
00 D1	heterocycle	blue	'	(0.070)) 4527	0.02-00	0.1017
GO [.] 00464	metabolic			1548	(13.3%		
83 BP	process	blue	603	(39%))	1.5E-05	0.175
-	•			(/	, 288		••••
GO:00300	lymphocyte			1548	(19.8%		
98 BP	differentiation	blue	57	(3.7%))	4E-05	0.4786

GO:00104				1548 (35.1	4067 (13.4%		
67 BP	gene expression cellular nitrogen	blue	543	%))	4.3E-05	0.5174
GO:00346 41 BP	compound metabolic process cellular	blue	648	1548 (41.9 %)	4944 (13.1%)	4.8E-05	0.5698
GO:00346 45 BP	macromolecule biosynthetic process	blue	497	1548 (32.1 %)	3707 (13.4%) 204	7.5E-05	0.8937
GO:00302 17 BP	T cell differentiation	blue	43	1548 (2.8%)	(21.1%) 91	7.8E-05	0.9341
GO:00080 33 BP	tRNA processing protein modification by	blue	24	1548 (1.6%)	(26.4%)	8.6E-05	1
GO:00324 46 BP	small protein conjugation	brown	116	1167 (9.9%)	773 (15%) 701	4.6E-09	5E-05
GO:00165 67 BP GO:00063	protein ubiquitination mRNA	brown	107	1167 (9.2%) 1167	(15.3%) 373	7.5E-09	9E-05
97 BP	processing	brown	67	(5.7%)	(18%) 657	1.1E-08	0.0001
GO:00160 71 BP	mRNA metabolic process proteolysis	brown	100	1167 (8.6%)	(15.2%)	2.8E-08	0.0003
GO:00516 03 BP	involved in cellular protein catabolic process	brown	82	1167 (7%)	525 (15.6%) 328	1.7E-07	0.0021
GO:00083 80 BP	RNA splicing	brown	58	1167 (5%)	(17.7%)	1.9E-07	0.0022
GO:00450 88 BP	innate immune response positive	brown	63	1167 (5.4%)	371 (17%)	2.5E-07	0.003
GO:00450 89 BP	regulation of innate immune response regulation of DNA-templated	brown	56	1167 (4.8%)	315 (17.8%)	2.5E-07	0.003
GO:00436 20 BP	transcription in response to stress activation of	brown	27	1167 (2.3%)	106 (25.5%) 271	3.1E-07	0.0037
GO:00022 18 BP	innate immune response	brown	50	1167 (4.3%)	(18.5%)	3.5E-07	0.0042

mitochondrial electron transport, NADH			269	46 (32.6%		
to ubiquinone	cyan	15	(5.6%)) 106	8E-15	1E-10
oxidative phosphorylation mitochondrial respiratory chain	cyan	19	269 (7.1%)	(17.9%) 48	3.4E-13	4E-09
complex I assembly mitochondrial ATP synthesis	cyan	14	269 (5.2%)	(29.2%) 70	3.7E-13	4E-09
coupled electron transport respiratory	cyan	16	269 (5.9%)	(22.9%) 85	4.9E-13	6E-09
electron transport chain mitochondrial respiratory chain	cyan	16	269 (5.9%)	(18.8%)	1.2E-11	1E-07
complex assembly	cyan	14	269 (5.2%)	61 (23%) 147	1.4E-11	2E-07
cellular respiration ATP metabolic	cyan	20	269 (7.4%) 269	(13.6%) 241	1.6E-11	2E-07
process	cyan	23	(8.6%) 269	(9.5%)	7.1E-10	8E-06
mitochondrion organization energy derivation by oxidation of	cyan	28	(10.4 %)	362 (7.7%)	1.2E-09	1E-05
organic compounds	cyan	21	269 (7.8%) 1038	216 (9.7%) 1575	2.9E-09	3E-05
vesicle-mediated transport positive	green	191	(18.4 %)	(12.1%)	1.2E-10	1E-06
regulation of metabolic process positive	green	284	1038 (27.4 %)	2620 (10.8%)	4.3E-10	5E-06
regulation of cellular metabolic process transcription by	green	260	1038 (25%) 1038	2398 (10.8%) 2090	3.3E-09	4E-05
RNA polymerase II positive	green	232	(22.4 %)	(11.1%) 1169	4E-09	5E-05
regulation of nucleic acid-	green	145	1038 (14%)	(12.4%)	7.4E-09	9E-05
	mitochondrial electron transport, NADH to ubiquinone oxidative phosphorylation mitochondrial respiratory chain complex I assembly mitochondrial ATP synthesis coupled electron transport respiratory electron transport chain mitochondrial respiratory chain complex assembly cellular respiratory chain complex assembly cellular respiration ATP metabolic process mitochondrion organization energy derivation by oxidation of organic compounds vesicle-mediated transport positive regulation of cellular metabolic process positive regulation of cellular metabolic process transcription by RNA polymerase I positive regulation of nucleic acid-	mitochondrial electron transport, NADH to ubiquinonecyanoxidative phosphorylation mitochondrial respiratory chain complex I assemblycyanoxidative phosphorylation mitochondrial ATP synthesis coupled electron transport respiratory chain complex assemblycyanorellular respiratory chain complex assemblycyancellular respiratory chain complex assemblycyancellular respiratory chain complex assemblycyancellular respiratory chain complex assemblycyancellular respiratory chain complex assemblycyanvesicle-mediated transport processcyanvesicle-mediated transport processgreenvesicle-mediated processgreenregulation of organic compoundsgreen	mitochondrial electron transport, NADH to ubiquinonecyan15oxidative phosphorylation mitochondrial respiratory chain complex I assembly assemblycyan19assembly respiratory chain coupled electron transport transportcyan14ATP synthesis coupled electron transport complex assemblycyan16respiratory electron transport complex assemblycyan16respiratory electron transport complex assemblycyan14cellular respiratory chain complex assemblycyan20ATP metabolic processcyan20ATP metabolic processcyan21vesicle-mediated transport compoundscyan21vesicle-mediated transport processgreen284positive regulation of organic compoundsgreen284positive regulation of processgreen284positive regulation of cellular metabolic processgreen284positive regulation of regulation of cellular metabolic processgreen284positive regulation of nucleic acid-green145	mitochondrial electron transport, NADH to ubiquinonecyan15269 (5.6%)oxidative phosphorylation mitochondrial respiratory chain complex I assemblycyan19269 (7.1%)mitochondrial ATP synthesis coupled electron transportcyan14269 (5.2%)assemblycyan16269 (5.9%)assemblycyan16269 (5.9%)respiratory electron transport chain complex assemblycyan16269 (5.9%)coupled electron transport respiratory electron transport couplex assemblycyan269 (5.9%)couplex assemblycyan14269 (5.9%)couplex assemblycyan20(7.4%) 269processcyan20(7.4%) 269mitochondrial respiration complex assemblycyan20(10.4 269processcyan28%) (10.4organization energy derivation by oxidation of organic compoundscyan21269 (7.4%) 269wesicle-mediated transport positive regulation of cellular metabolic processgreen211038 (27.4 (7.8%) 1038 (27.4positive regulation of cellular metabolic processgreen284 (3038 (27.4) 1038 (22.4)1038 (22.4)mitochondring positive regulation of respiration positive regulation of respirator1038 (22.4)1038 (22.4)mitochondring positive regulation of respiration <td>mitochondrial electron - 46 transport, NADH to ubiquinone cyan 15 (5.6%)) oxidative phosphorylation mitochondrial cyan 19 (7.1%)) respiratory chain cyan 19 (7.1%)) respiratory chain 269 (29.2%) assembly cyan 14 (5.2%)) mitochondrial 70 269 (22.9%) ATP synthesis 70 269 (18.8%) coupled electron 269 (18.8%)) ransport cyan 16 (5.9%)) respiratory chain cyan 16 (5.9%)) respiratory chain cyan 16 (5.9%)) respiratory chain cyan 14 (5.2%) (23%) respiratory chain cyan 269 61 (18.8%) chain cyan 269 147 (5.2%) (23%) respiratory chain cyan</td> <td>mitochondrial electron value <thvalue< th=""> value value<</thvalue<></td>	mitochondrial electron - 46 transport, NADH to ubiquinone cyan 15 (5.6%)) oxidative phosphorylation mitochondrial cyan 19 (7.1%)) respiratory chain cyan 19 (7.1%)) respiratory chain 269 (29.2%) assembly cyan 14 (5.2%)) mitochondrial 70 269 (22.9%) ATP synthesis 70 269 (18.8%) coupled electron 269 (18.8%)) ransport cyan 16 (5.9%)) respiratory chain cyan 16 (5.9%)) respiratory chain cyan 16 (5.9%)) respiratory chain cyan 14 (5.2%) (23%) respiratory chain cyan 269 61 (18.8%) chain cyan 269 147 (5.2%) (23%) respiratory chain cyan	mitochondrial electron value value <thvalue< th=""> value value<</thvalue<>

templated transcription positive				4.470		
regulation of			4000	1170		
process cellular protein	green	145	(14%)	(12.4%)) 3148	7.9E-09	9E-05
modification			1038	(10.2%		
process protein	green	322	(31%)) 3148	1.4E-08	0.0002
modification			1038	(10.2%		
process	green	322	(31%) 1038) 2758	1.4E-08	0.0002
transcription,			(27.7	(10.4%		
DNA-templated	green	288	%))	1.7E-08	0.0002
DNIA bis synthestic			1038	2809		
RNA DIOSYNINELIC	areen	202	(28.1 %)	(10.4%)	2E-08	0 0002
neutrophil	green	292	313)	22-00	0.0002
mediated	greenyello		(11.8	452		
immunity	w	37) 313	(8.2%)	3.6E-11	4E-07
leukocyte	greenyello		(12.1	478		
degranulation	W	38	%) 313	(7.9%)	4.6E-11	6E-07
neutrophil	greenyello		(11.5	442		
degranulation neutrophil	W	36	%)	(8.1%)	7.9E-11	9E-07
activation			040			
involved in	greenvello		313	111		
response	w	36	(11.5 %)	444 (8.1%)	9F-11	1E-06
response	v	00	313	(0.170)	02 11	12 00
neutrophil	greenyello		(11.5	452		
activation	W	36	%) 313	(8%)	1.5E-10	2E-06
vesicle-mediated	greenyello		(24.3	1575		
transport	W	76	%)	(4.8%)	5.3E-10	6E-06
leukocyte						
activation			212			
immune	areenvello		(13.1	614		
response	W	41	%)	(6.7%)	1.6E-09	2E-05
cell activation			,			
involved in			313			
immune	greenyello		(13.1	617		~ ~ ~ ~
response	W	41	%) 312	(6.6%)	1.8E-09	2E-05
leukocyte	areenvello		(12.5	572		
activation	W	39	%)	(6.8%)	2.3E-09	3E-05
	templated transcription positive regulation of RNA biosynthetic process cellular protein modification process protein modification process transcription, DNA-templated RNA biosynthetic process neutrophil mediated immunity leukocyte degranulation neutrophil degranulation neutrophil activation involved in immune response neutrophil activation involved in immune response cell activation involved in immune response cell activation involved in immune response cell activation involved in immune response cell activation involved in immune response cell activation	templated transcription positive regulation of RNA biosynthetic process cellular protein modification process protein modification process modification process green transcription, DNA-templated process neutrophil mediated immunity leukocyte degranulation neutrophil activation involved in immune response vesicle-mediated transport leukocyte activation involved in immune response cell activation involved in immune greenyello w secenyello w greenyello w greenyello w greenyello w greenyello w greenyello w greenyello w greenyello w greenyello w greenyello w greenyello w greenyello w greenyello w greenyello w greenyello w greenyello w	templated transcription positive regulation of RNA biosynthetic process green 145 cellular protein modification process green 322 protein modification process green 322 transcription, DNA-templated green 288 RNA biosynthetic process green 292 neutrophil mediated greenyello immunity w 37 leukocyte greenyello degranulation w 38 neutrophil activation involved in immune greenyello response w 36 neutrophil activation involved in immune greenyello vesicle-mediated transport leukocyte activation involved in immune greenyello w 36	templated transcription positive regulation of RNA biosynthetic process process process process process process process process process process green activation transcription, process green activation response process green activation process green activation process green activation process green activation process green activation process green activation process green activation process green activation process green activation process green activation process green activation process green activation process green activation process green activation process green activation process green activation process green activation process greenyello greenyello greenyello greenyello greenyello greenyello greenyello greenyello greenyello greenyello (11.5 activation proces greenyello (13.1 proces) greenyello (13.1 proces) greenyello (13.1 proces) greenyello (12.5 activation (13.1 proces) greenyello (13.1 proces) greenyello (13.1 proces) greenyello (13.1 proces) greenyello (13.1 proces) (12.5 activation (12.5 activation (12.5 activation (12.5 activation (12.5 activation (12.5 (12.	templated transcription positive 1170 RNA biosynthetic 1038 (12.4% process green 145 (14%)) cellular protein 1038 (10.2% process green 322 (31%)) protein 1038 (10.2%) process green 322 (31%)) process green 322 (31%)) process green 322 (31%)) process green 222 (31%)) process green 288 %)) process green 292 %)) neutrophil greenyello (11.8 452 immunity w 37 %) (8.2%) attastion w 38 %) (7.9%) neutrophil greenyello (11.5 442 degranulation w	templated transcription positive regulation of RNA biosynthetic process green 145 (14%) process green 322 protein modification process green 322 (31%)) process green 322 modification 1038 process green 3148 modification 1038 process green 313 1.4E-08 process green 283 %) DNA-templated green green 282 %)) neutrophil greenyello immunity w 313 313 mediated greenyello (11.5 442 degranulation w w 36 %) (8.1%) neutrophil greenyell

	leukocyte			313			
GO:00024	mediated	greenyello		(13.4	664		
43 BP	immunity	W	42	%)	(6.3%)	4.8E-09	6E-05
	regulation of			144			
GO:00192	metabolic			(54.9	4943		
22 BP	process	grey60	79	%)	(1.6%)	1.2E-05	0.1467
	regulation of						
	nitrogen						
	compound			144	1000		
GO:00511	metabolic		- 4	(49.3	4329	0.05.05	0 0740
71 BP	process	grey60	71	%)	(1.6%)	2.3E-05	0.2748
	nucleopase-						
	containing						
CO.00061	compound			111	111E		
GO:00001	metabolic	arov60	70	144 (50%)	4410	2 2 5 0 5	0 2770
39 DP	process	greyou	12	(50%)	(1.0%)	2.3E-05	0.2779
	protein modification by			111			
$GO \cdot 00324$	small protein			(15.3	773		
46 RP	conjugation	arev60	22	%)	(2.8%)	3E-05	0.3582
GO:00104	regulation of	groyoo	~~~	144	3375	02 00	0.0002
68 BP	dene expression	arev60	59	(41%)	(17%)	3 1E-05	0 3649
	9	9.0900		144	(,)	0	
GO:00160	RNA metabolic			(41.7	3481		
70 BP	process	grey60	60	ì %)	(1.7%)	3.9E-05	0.4632
	immune	0 7		,	、		
	response-						
	regulating			144			
GO:00027	signaling			(11.1	468		
64 BP	pathway	grey60	16	%)	(3.4%)	4.9E-05	0.5804
	heterocycle						
GO:00464	metabolic			144	4527		
83 BP	process	grey60	72	(50%)	(1.6%)	5.9E-05	0.7053
00 00405				144	704		
GO:00165	protein	00	00	(13.9	701		0 0077
67 BP		greybu	20	%)	(2.9%)	6.9E-05	0.8277
CO-00067	motobolic			111	4560		
25 BD	nrocess	arev60	72	144 (50%)	4300	7 7E 05	0 0183
25 DF	process	greyou	12	101	905	7.7 L- 05	0.9105
GO·00512	chromosome			(49.2	(10.4%		
76 BP	organization	lightevan	94	(4 0.2 %))	94E-59	1E-54
10 Di	organization	ngritoyari	01	191	, 153	0.12 00	
GO:00063				(26.2	(32.7%		
23 BP	DNA packaging	lightcvan	50	%))	1.8E-55	2E-51
	DNA			191	, 231		•
GO:00711	conformation			(29.3	(24.2%		
03 BP	change	lightcyan	56	»́))	4.1E-54	5E-50
GO:00063	nucleosome	- •		191	104		
34 BP	assembly	lightcyan	42	(22%)	(40.4%	4.4E-51	5E-47

)		
GO:00314 97 BP	chromatin assembly	lightcyan	42	191 (22%) 191	121 (34.7%) 763	1E-47	1E-43
GO:00002 78 BP	mitotic cell cycle protein-DNA	lightcyan	78	(40.8 %) 191	(10.2%) 173	7.6E-47	9E-43
GO:00650 04 BP	complex assembly	lightcyan	46	(24.1 %)	(26.6%) 133	3.3E-46	4E-42
GO:00347 28 BP	nucleosome organization	lightcyan	42	191 (22%) 191	(31.6%)	1.1E-45	1E-41
GO:00070 49 BP	cell cycle	lightcyan	97	(50.8 %)	1381 (7%)	2.9E-45	3E-41
GO:00063 33 BP	assembly or disassembly	lightcyan	42	191 (22%) 110	145 (29%)	6.9E-44	8E-40
GO:00069 52 BP	defense response	lightgreen	59	(53.6 %) 110	1204 (4.9%)	7.1E-33	9E-29
GO:00450 87 BP	innate immune response	lightgreen	47	(42.7 %) 110	699 (6.7%) 186	2.6E-31	3E-27
GO:00516 07 BP	defense response to virus	lightgreen	30	(27.3 %)	(16.1%) 260	7.5E-31	9E-27
GO:00096 15 BP	response to virus	lightgreen	33	110 (30%) 110	(12.7%)	1.9E-30	2E-26
GO:00517 07 BP	response to other organism	lightgreen	43	(39.1 %) 110	668 (6.4%)	1.3E-27	2E-23
GO:00432 07 BP	external biotic stimulus	lightgreen	43	(39.1 %) 110	669 (6.4%)	1.4E-27	2E-23
GO:00343 40 BP	response to type I interferon	lightgreen	20	(18.2 %) 110	74 (27%) 70	1.6E-25	2E-21
GO:00603 37 BP	signaling pathway	lightgreen	19	(17.3 %) 110	(27.1%) 70	2.5E-24	3E-20
GO:00713 57 BP	to type I interferon	lightgreen	19	(17.3 %)	(27.1%)	2.5E-24	3E-20
GO:00023 76 BP	immune system process	lightgreen	64	(58.2 %)	2334 (2.7%)	1.1E-21	1E-17
GO:00025	platelet	lightyellow	11	102	104	4E-10	5E-06

76 BP	degranulation			(10.8 %) 102	(10.6%)		
GO:00420 60 BP	wound healing	lightyellow	18	102 (17.6 %) 102	414 (4.3%)	2.3E-09	3E-05
GO:00096 11 BP	response to wounding	lightyellow	19	(18.6 %) 102	498 (3.8%)	6.6E-09	8E-05
GO:00075 96 BP	blood coagulation	lightyellow	14	(13.7 %) 102	259 (5.4%)	1.1E-08	0.0001
GO:00508 17 BP	coagulation	lightyellow	14	(13.7 %) 102	261 (5.4%)	1.2E-08	0.0001
GO:00075 99 BP GO:00301	hemostasis	lightyellow	14	(13.7 %) 102	263 (5.3%) 125	1.3E-08	0.0002
68 BP	platelet activation	lightyellow	10	(9.8%) 102	(8%)	4E-08	0.0005
GO:00508 78 BP GO:00610	regulation of body fluid levels regulation of	lightyellow	15	(14.7 %) 102	384 (3.9%) 104	2.3E-07	0.0027
41 BP	wound healing	lightyellow	7	(6.9%) 102	(6.7%)	1.5E-05	0.179
GO:00071 55 BP GO:00063	cell adhesion chromatin	lightyellow	21	(20.6 %) 344	1049 (2%) 592	4E-05	0.4769
25 BP	organization regulation of	magenta	33	(9.6%)	(5.6%) 115	2.9E-05	0.3519
GO:00310 56 BP	histone modification release of	magenta	12	344 (3.5%)	(10.4%)	4.3E-05	0.5161
GO:00018 36 BP	from frochondria	magenta	8	344 (2.3%) 344	53 (15.1%)	6.1E-05	0.7252
GO:00023 76 BP	immune system process regulation of	magenta	89	(25.9 %)	2334 (3.8%)	6.5E-05	0.782
GO:19022 75 BP	chromatin organization regulation of	magenta	13	344 (3.8%)	139 (9.4%)	6.6E-05	0.7915
GO:20012 42 BP	signaling pathway intracellular	magenta	13	344 (3.8%) 344	139 (9.4%)	6.6E-05	0.7915
GO:00355 56 BP GO:00096	signal transduction response to	magenta	81	(23.5 %) 344	2086 (3.9%) 498	8.4E-05	1
11 BP	wounding	magenta	28	(8.1%)	(5.6%)	0.0001	1

GO:00400				344	1283		
11 BP	locomotion small GTPase	magenta	55	(16%)	(4.3%)	0.00013	1
GO:00072	mediated signal			344	402		
64 BP	transduction nucleobase- containing	magenta	24	(7%)	(6%)	0.00013	1
00.00004	compound			196			
GO:00061 39 BP	metabolic process heterocycle	ue	105	(53.6 %) 196	4415 (2.4%)	3.3E-09	4E-05
GO:00464	metabolic	midnightbl		(54.1	4527		
83 BP	process cellular aromatic	ue	106	%)	(2.3%)	6.5E-09	8E-05
GO-00067	compound	midnighthl		190	4560		
25 BP	process cellular nitrogen	ue	106	(04.1 %)	(2.3%)	1E-08	0.0001
	compound			196			
GO:00346	metabolic	midnightbl	444	(56.6	4944	0.45.00	0 0000
41 BP	process cellular response	ue	111	%) 106	(2.2%)	2.4E-08	0.0003
GO.00069	to DNA damage	midnightbl		(15.3	677		
74 BP	stimulus	ue	30	%) 196	(4.4%)	6.4E-08	0.0008
GO:00062		midnightbl		(11.2	429		
81 BP	DNA repair SRP-dependent	ue	22	%)	(5.1%)	3.8E-07	0.0045
GO:00066	protein targeting	midnightbl	40	196	91		0.0400
14 BP	to membrane protein	ue	10	(5.1%)	(11%)	9E-07	0.0108
GO:00709	endoplasmic	midnightbl		196	115		
72 BP	reticulum cotranslational	ue	11	(5.6%)	(9.6%) 94	1E-06	0.0124
GO:00066	protein targeting	midnightbl		196	(10.6%		
13 BP	to membrane	ue	10	(5.1%)) 96	1.2E-06	0.0146
GO:00450	protein targeting	midnightbl		196	(10.4%		
47 BP	to ER cholesterol	ue	10	(5.1%))	1.5E-06	0.0178
GO:00082	metabolic			347	109		
03 BP	process acetvI-CoA	pink	10	(2.9%)	(9.2%) 27	0.00057	1
GO:00060	metabolic			347	(18.5%		
84 BP	process cobalamin	pink	5	(1.4%))	0.0006	1
GO:00092	metabolic			347	16		
35 BP	process	pink	4	(1.2%)	(25%)	0.00065	1

GO:00161 25 BP	sterol metabolic process RNA polvmerase	pink	10	347 (2.9%)	119 (8.4%)	0.00113	1
	I preinitiation			- <i>i</i> -	9		
GO:00011 88 BP	complex assembly positive regulation of	pink	3	347 (0.9%)	(33.3%)	0.00133	1
	mediated				3		
GO:19026 61 BP	signaling pathway	pink	2	347 (0.6%)	(66.7%) 122	0.00201	1
38 BP	remodeling negative regulation of	pink	10	(2.9%)	132 (7.6%)	0.00246	1
	androgen receptor				11		
GO:00607	signaling		0	347	(27.3%	0.00054	4
00 BP	patnway	ріпк	3	(0.9%) 347)	0.00251	1
GO:00063 51 BP GO:00311	transcription, DNA-templated mRNA 3'-end	pink	94	(27.1 %) 347	2758 (3.4%) 73	0.00273	1
24 BP	processing porphyrin- containing	pink	7	(2%)	(9.6%)	0.00294	1
GO:00067 78 BP	compound metabolic process porphyrin- containing	purple	11	326 (3.4%)	31 (35.5%)	9.2E-11	1E-06
GO:00067 79 BP	biosynthetic process	purple	9	326 (2.8%)	25 (36%) 26	4.3E-09	5E-05
GO:00421 68 BP	heme metabolic process	purple	9	326 (2.8%)	(34.6%) 9	6.4E-09	8E-05
GO:00156 71 BP	oxygen transport	purple	6	326 (1.8%)	(66.7%) 21	1.7E-08	0.0002
GO:00067 83 BP	biosynthetic process	purple	8	326 (2.5%)	(38.1%)	1.9E-08	0.0002
GO:00465 01 BP	en IX metabolic process	purple	6	326 (1.8%)	10 (60%)	4.1E-08	0.0005
GO:00302 18 BP	erythrocyte differentiation	purple	14	326 (4.3%)	99 (14.1%)	1.3E-07	0.0015

					27		
GO:00488 21 BP	erythrocyte development	purple	8	326 (2.5%)		1.8E-07	0.0022
GO:00158 93 BP	drug transport	purple	16	326 (4.9%)	(11.8%) 107	2.2E-07	0.0027
GO:00341 01 BP	erythrocyte homeostasis	purple	14	326 (4.3%)	(13.1%) 175	3.5E-07	0.0041
GO:00422 54 BP	ribosome biogenesis	red	53	819 (6.5%)	(30.3%)	3.3E-23	4E-19
GO:00226 13 BP	complex biogenesis	red	68	819 (8.3%)	289 (23.5%)	1.8E-22	2E-18
GO:00063 64 BP	rRNA processing	red	43	819 (5.3%)	134 (32.1%)	3.9E-20	5E-16
GO:00160 72 BP	rRNA metabolic process peptide	red	47	819 (5.7%) 819	168 (28%) 528	4E-19	5E-15
GO:00430 43 BP	biosynthetic process	red	89	(10.9 %) 819	(16.9%) 510	1.3E-18	2E-14
GO:00064 12 BP	translation	red	86	(10.5 %)	(16.9%) 638	5.2E-18	6E-14
GO:00436 04 BP	biosynthetic process peptide	red	98	819 (12%) 819	(15.4%) 621	1.5E-17	2E-13
GO:00065 18 BP	metabolic process cellular nitrogen	red	96	(11.7 %)	(15.5%)	2.2E-17	3E-13
GO:00346 41 BP	compound metabolic process	red	418	819 (51%)	4944 (8.5%)	9.7E-17	1E-12
GO:00063 96 BP	RNA processing	red	98	819 (12%)	661 (14.8%)	1.7E-16	2E-12
GO:00061 19 BP	oxidative phosphorylation cellular nitrogen	salmon	18	270 (6.7%)	106 (17%)	4E-12	5E-08
GO:00346 41 BP	compound metabolic process mitochondrial	salmon	155	270 (57.4 %)	4944 (3.1%)	1E-11	1E-07
GO:00427 75 BP GO:00229	coupled electron transport	salmon	14	270 (5.2%) 270	70 (20%) 85	1.1E-10	1E-06
04 BP	electron transport	salmon	15	(5.6%)	(17.6%	1.5E-10	2E-06

	chain)		
GO:00229 00 BP	electron transport chain nucleobase-	salmon	18	270 (6.7%)	141 (12.8%)	5.4E-10	6E-06
GO:00061 39 BP	compound metabolic process cellular aromatic	salmon	136	270 (50.4 %)	4415 (3.1%)	3.7E-09	4E-05
GO:00067 25 BP	compound metabolic process	salmon	138	270 (51.1 %)	4560 (3%)	8.9E-09	0.0001
GO:00464 83 BP	heterocycle metabolic process	salmon	137	270 (50.7 %)	4527 (3%)	1.1E-08	0.0001
GO:00068	nitrogen compound metabolic			, 270 (71.1	7443		
07 BP	process	salmon	192	») 270	(2.6%) 147 (10.2%	2.3E-07	0.0027
33 BP	respiration	salmon	15	(5.6%) 267 (27.7) 510 (14.5%	3.1E-07	0.0037
12 BP	translation peptide biosynthetic	tan	74	(27.7 %) 267 (28.1	(14.0%) 528 (14.2%)	2.2E-43	3E-39
43 BP	process peptide	tan	75	(20.1 %) 267	(14.2 %) 621 (12.6%	2.5E-43	3E-39
18 BP	process amide	tan	78	(29.2 %) 267 (28.1	(12.0%)) 638 (11.8%)	3.6E-41	4E-37
04 BP	process cellular amide	tan	75	(20.1 %) 267	(11.0%)	1.9E-37	2E-33
03 BP	process SRP-dependent	tan	79	(29.6 %)	820 (9.6%)	2.5E-33	3E-29
GO:00066 14 BP	protein targeting to membrane	tan	32	267 (12%)	(35.2%) 172	1.1E-31	1E-27
GO:00064 13 BP	translational initiation cotranslational	tan	40	267 (15%)	(23.3%)	1.8E-31	2E-27
GO:00066 13 BP GO:00450	protein targeting to membrane protein targeting	tan	32	267 (12%) 267	94 (34%) 96	3.6E-31	4E-27
47 BP	to ER	tan	32	(12%)	(33.3%	7.8E-31	9E-27

GO:00022

GO:00024

GO:00433

GO:00022

74 BP

46 BP

12 BP

83 BP

leukocyte

activation

neutrophil

mediated

immunity

neutrophil

neutrophil

activation

degranulation

yellow

yellow

yellow

yellow

)		
	establishment of protein localization to				/		
GO:00725 99 BP	endoplasmic reticulum	tan	32	267 (12%)	100 (32%) 706	3.5E-30	4E-26
GO:00508 77 BP	nervous system process	turquoise	394	4262 (9.2%)	(55.8%)	1.5E-40	2E-36
GO:00076 00 BP	sensory perception	turquoise	236	4262 (5.5%)	379 (62.3%)	2.8E-34	3E-30
GO:00072 67 BP	cell-cell signaling	turquoise	550	4262 (12.9 %) 4262	(46.9%) 1721	2.2E-28	3E-24
GO:00073 99 BP	nervous system development	turquoise	757	4202 (17.8 %) 4262	(43.7%)	1.6E-27	2E-23
GO:00072 75 BP	organism development	turquoise	150 3	4202 (35.3 %) 4262	3848 (39.1%) 2450	2.3E-27	3E-23
GO:00487 31 BP	system development	turquoise	135 1	4202 (31.7 %)	(39.2%) 472	2.2E-24	3E-20
GO:00072 68 BP	synaptic transmission	turquoise	257	4262 (6%) 4262	473 (54.3%)	3.1E-24	4E-20
GO:00325 02 BP	developmental process	turquoise	166 7	4202 (39.1 %) 4262	(37.7%)	2.5E-22	3E-18
GO:00068 11 BP	ion transport	turquoise	535	4202 (12.6 %) 4262	(44.8%) 1187	5E-22	6E-18
GO:00220 08 BP	neurogenesis	turquoise	527	4202 (12.4 %)	(44.4%)	1.5E-20	2E-16
GO:00161 92 BP	vesicle-mediated transport myeloid	yellow	278	(23.5 %)	(17.7%) 572	3.2E-32	4E-28

(24.8%

)

452

442

)

444

(27%)

(26.9%

(26.8%

4.5E-31

2.3E-30

1.6E-29

2.5E-29

5E-27

3E-26

2E-25

3E-25

1182

1182

(10.3

1182

(10.1

1182

142 (12%)

122 %)

119 %)

119 (10.1

21

	involved in immune response			%))		
				1182	452		
GO:00421	neutrophil			(10.2	(26.5%		
19 BP	activation	yellow	120	%))	3.8E-29	5E-25
				1182	478		
GO:00432	leukocyte			(10.3	(25.5%		
99 BP	degranulation	yellow	122	%))	6.7E-28	8E-24
	leukocyte	-		1182			
GO:00024	mediated			(12.4	664		
43 BP	immunity	yellow	146	%)	(22%)	5.5E-26	7E-22
				1182	1582		
GO:00069	immune			(22.2	(16.6%		
55 BP	response	yellow	262	ì %))	1.1E-25	1E-21
	·	,		11 [́] 82	, 757		
GO:00068				(13.2	(20.6%		
87 BP	exocytosis	yellow	156	»́)	Ì	1.4E-24	2E-20
	-	-			-		

Module	Overall	With cognitive	Without cognitive	p-value*
Eigengene	(N=30)	impairment (N=6)	impairment	
Median (IQR)			(N=24)	
Black	-0.03 (-0.11,	-0.11 (-0.17, -0.02)	+0.00 (-0.08,	0.52
	+0.08)		+0.09)	
Blue	+0.00 (-0.16,	+0.20 (+0.17,	-0.07 (-0.17,	0.16
	+0.11)	+0.24)	+0.07)	
Brown	-0.02 (-0.15,	-0.14 (-0.16, -0.08)	+0.05 (-0.10,	0.39
	+0.13)		+0.14)	
Cyan	+0.02 (-0.07,	-0.08 (-0.21, -0.01)	+0.06 (-0.05,	0.39
	+0.08)		+0.09)	
Green	-0.01 (-0.12,	-0.01 (-0.09,	-0.01 (-0.13,	0.91
	+0.07)	+0.02)	+0.07)	
Greenyellow	-0.01 (-0.12,	-0.17 (-0.22, -0.04)	+0.08 (-0.07,	0.16
	+0.13)		+0.14)	
Grey60	-0.01 (-0.09,	-0.01 (-0.07,	-0.01 (-0.09,	0.91
	+0.11)	+0.05)	+0.13)	
Lightcyan	-0.02 (-0.12,	-0.01 (-0.19,	-0.04 (-0.11,	0.88
	+0.11)	+0.00)	+0.12)	
Lightgreen	-0.01 (-0.12,	-0.06 (-0.17,	-0.01 (-0.10,	0.67
	+0.08)	+0.02)	+0.11)	
Lightyellow	+0.02 (-0.12,	+0.09 (-0.05,	-0.01 (-0.14,	0.67
	+0.16)	+0.16)	+0.14)	
Magenta	+0.04 (-0.14,	+0.13 (+0.06,	-0.01 (-0.16,	0.39
	+0.16)	+0.17)	+0.14)	
Midnightblue	+0.00 (-0.06,	+0.07 (-0.05,	-0.01 (-0.06,	0.64
	+0.13)	+0.22)	+0.13)	
Pink	-0.02 (-0.11,	+0.10 (+0.04,	-0.04 (-0.11,	0.50
	+0.10)	+0.13)	+0.08)	
Purple	+0.00 (-0.13,	+0.12 (+0.05,	-0.07 (-0.15,	0.16
	+0.10)	+0.14)	+0.06)	
Red	+0.01 (-0.13,	+0.13 (+0.00,	+0.01 (-0.14,	0.52
	+0.14)	+0.17)	+0.10)	
Salmon	+0.02 (-0.07,	-0.07 (-0.13,	+0.04 (-0.07,	0.64
	+0.11)	+0.07)	+0.12)	
Tan	+0.05 (-0.05,	+0.08 (+0.06,	+0.02 (-0.07,	0.67
	+0.12)	+0.10)	+0.13)	
Turquoise∂	-0.06 (-0.08, -0.04)	-0.06 (-0.08, -0.05)	-0.06 (-0.09, -0.02)	1.00
Yellow	+0.01 (-0.13,	-0.24 (-0.25, -0.17)	+0.08 (-0.06,	0.16
	+0.13)	, , ,	+0.14)	

eTable 3.	Module eigengene	e summary by	cognitive	impairment	status f	or primary	Weighted
Network /	Analysis.		-	-			-

* Wilcoxon rank sum test, adjusted for multiple comparisons using the false discovery rate approach

 ∂ Module containing APOE

eTable 4. Weighted Network Analysis (WNA) module membership for genes identified by the

1100		1 A A A A A A A A A A A A A A A A A A A
differential	expression	analysis
uncrendar	CAPICOSION	anarysis

Gene			
Name	Description	P value*	module
LIG3	DNA ligase 3	0.042	blue
GAS7	growth arrest specific 7	0.018	greenyellow
POLA2	DNA polymerase alpha 2, accessory subunit	0.047	red
ACPP	acid phosphatase, prostate	0.007	turquoise
DERA	deoxyribose-phosphate aldolase	0.045	brown
CD44	CD44 molecule (Indian blood group) amyloid beta precursor protein binding family A	0.009	greenyellow
APBA2	member 2	0.050	blue
HSPA5	heat shock protein family A (Hsp70) member 5	0.034	yellow
SOAT1	sterol O-acyltransferase 1	0.045	yellow
YIPF1	Yip1 domain family member 1	0.026	yellow
DGAT2	diacylglycerol O-acyltransferase 2	0.032	greenyellow
MTMR1	myotubularin related protein 1	0.033	greenyellow
ACSL4	acyl-CoA synthetase long-chain family member 4	0.008	yellow
LAPTM4A	lysosomal protein transmembrane 4 alpha	0.020	brown
CLEC2D	C-type lectin domain family 2 member D	0.007	blue
MAPK6	mitogen-activated protein kinase 6	0.000	yellow
CLTCL1	clathrin heavy chain like 1	0.045	turquoise
PPP1R12B	protein phosphatase 1 regulatory subunit 12B	0.024	magenta
GPR137B	G protein-coupled receptor 137B	0.007	turquoise
ACER3	alkaline ceramidase 3	0.019	yellow
SLC1A3	solute carrier family 1 member 3	0.004	yellow
APLP2	amyloid beta precursor like protein 2	0.044	yellow
CD82	CD82 molecule	0.001	yellow
C3orf18	chromosome 3 open reading frame 18	0.047	blue
SIGLEC1	sialic acid binding Ig like lectin 1	0.042	turquoise
XRN2	5'-3' exoribonuclease 2 spastic paraplegia 21 (autosomal recessive, Mast	0.012	yellow
SPG21	syndrome)	0.012	greenyellow
NLRC4	NLR family CARD domain containing 4	0.032	yellow
PSMD5	proteasome 26S subunit, non-ATPase 5	0.030	greenyellow
NANS	N-acetylneuraminate synthase	0.029	yellow
CRISP3	cysteine rich secretory protein 3	0.017	brown
SH3GLB1	SH3 domain containing GRB2 like endophilin B1	0.050	yellow

HSD3B7	hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7	0.048	yellow
GADD45B	growth arrest and DNA damage inducible beta	0.016	yellow
PIK3IP1	phosphoinositide-3-kinase interacting protein 1	0.040	blue
HMOX1	heme oxygenase 1	0.016	turquoise
KIAA0930	KIAA0930	0.039	greenyellow
CTSG	cathepsin G	0.007	blue
DICER1	dicer 1, ribonuclease III	0.007	yellow
CINP	cyclin dependent kinase 2 interacting protein solute carrier organic anion transporter family member	0.050	greenyellow
SLCO4A1	4A1	0.042	greenyellow
VSIG1	V-set and immunoglobulin domain containing 1	0.050	blue
TNFSF13B	tumor necrosis factor superfamily member 13b	0.040	brown
DGKH	diacylglycerol kinase eta	0.001	blue
AP3B2	adaptor related protein complex 3 beta 2 subunit	0.001	yellow
TRPS1	transcriptional repressor GATA binding 1	0.048	yellow
SPAG1	sperm associated antigen 1	0.015	turquoise
PLIN3	perilipin 3	0.043	yellow
COA1	cytochrome c oxidase assembly factor 1 homolog phosphatidylinositol glycan anchor biosynthesis class	0.009	magenta
PIGL	L	0.019	blue
GALK1	galactokinase 1	0.006	yellow
SYNGR2	synaptogyrin 2 FAM20A, golgi associated secretory pathway	0.048	yellow
FAM20A	pseudokinase	0.000	yellow
TMEM33	transmembrane protein 33	0.042	yellow
BST1	bone marrow stromal cell antigen 1	0.021	yellow
VWA5A	von Willebrand factor A domain containing 5A	0.032	turquoise
MS4A6A	membrane spanning 4-domains A6A	0.017	yellow
MS4A4A	membrane spanning 4-domains A4A	0.001	yellow
ST3GAL4	ST3 beta-galactoside alpha-2,3-sialyltransferase 4	0.004	greenyellow
CD69	CD69 molecule	0.010	midnightblue
TBC1D30	TBC1 domain family member 30	0.013	yellow
SMIM8	small integral membrane protein 8	0.042	turquoise
FIG4	FIG4 phosphoinositide 5-phosphatase	0.042	yellow
LMNB1	lamin B1	0.007	yellow
SEC24A	SEC24 homolog A, COPII coat complex component	0.039	yellow
NIT2	nitrilase family member 2	0.007	blue
ATP6V1A	ATPase H+ transporting V1 subunit A	0.046	greenyellow
HEMK1	HemK methyltransferase family member 1	0.026	blue
STEAP3	STEAP3 metalloreductase	0.043	yellow
RHOU	ras homolog family member U	0.031	brown

	late endosomal/lysosomal adaptor, MAPK and MTOR	0 038	vellow
RAR32	RAB32 member RAS oncogene family	0.000	vellow
ΡΤΡΔ	nrotein phosphatase 2 phosphatase activator	0.001	vellow
1 11 /	pleckstrin homology and RhoGEF domain containing	0.004	yenew
PLEKHG1	G1	0.004	yellow
SCPEP1	serine carboxypeptidase 1	0.045	yellow
TSHZ3	teashirt zinc finger homeobox 3	0.024	black
COPA	coatomer protein complex subunit alpha	0.033	yellow
NCKAP1L	NCK associated protein 1 like	0.049	yellow
G0S2	G0/G1 switch 2	0.049	yellow
PARD6B	par-6 family cell polarity regulator beta 5-methyltetrahydrofolate-homocysteine	0.004	blue
MTRR	methyltransferase reductase	0.007	yellow
SIGLEC9	sialic acid binding lg like lectin 9	0.035	greenyellow
	neural precursor cell expressed, developmentally		0 ,
NEDD8	down-regulated 8	0.035	brown
NECTIN2	nectin cell adhesion molecule 2	0.002	yellow
SH3BGRL	SH3 domain binding glutamate rich protein like	0.041	brown
CAPN7	calpain 7	0.040	red
CHSY1	chondroitin sulfate synthase 1	0.035	yellow
ENOSF1	enolase superfamily member 1	0.037	blue
EMILIN2	elastin microfibril interfacer 2	0.004	yellow
CTNNBL1	catenin beta like 1	0.042	yellow
CCNA1	cyclin A1	0.049	yellow
KL	klotho	0.050	greenyellow
STARD13	StAR related lipid transfer domain containing 13	0.048	turquoise
ATP13A3	ATPase 13A3	0.020	turquoise
RSAD2	radical S-adenosyl methionine domain containing 2	0.026	lightgreen
CTSL	cathepsin L	0.024	cyan
LMO2	LIM domain only 2	0.004	yellow
CD63	CD63 molecule	0.050	yellow
ITGA7	integrin subunit alpha 7 biogenesis of lysosomal organelles complex 1 subunit	0.018	yellow
BLOC1S1	1	0.042	yellow
ACVR1B	activin A receptor type 1B	0.031	greenyellow
GNS	glucosamine (N-acetyl)-6-sulfatase	0.001	yellow
DRAM1	DNA damage regulated autophagy modulator 1	0.007	yellow
IL10	interleukin 10	0.003	yellow
RPS6KC1	ribosomal protein S6 kinase C1	0.023	yellow
SLC31A1	solute carrier family 31 member 1	0.021	yellow
CASP5	caspase 5	0.030	turquoise
			-

CYP19A1	cytochrome P450 family 19 subfamily A member 1	0.000	greenyellow
CYP1B1	cytochrome P450 family 1 subfamily B member 1	0.000	yellow
STAT4	signal transducer and activator of transcription 4	0.007	blue
PARP16	poly(ADP-ribose) polymerase family member 16	0.044	magenta
BMP2K	BMP2 inducible kinase	0.050	turquoise
NEIL1	nei like DNA glycosylase 1	0.039	turquoise
CLTC	clathrin heavy chain	0.033	greenyellow
EFHD2	EF-hand domain family member D2	0.031	black
C1orf43	chromosome 1 open reading frame 43	0.050	brown
GALNT2	polypeptide N-acetylgalactosaminyltransferase 2	0.009	yellow
METTL21A	methyltransferase like 21A	0.042	red
CSRNP1	cysteine and serine rich nuclear protein 1	0.048	yellow
PLAC8	placenta specific 8 TRAF interacting protein with forkhead associated	0.001	yellow
TIFA	domain	0.045	yellow
PDGFC	platelet derived growth factor C	0.005	greenyellow
MYO10	myosin X	0.008	yellow
FAM105A	family with sequence similarity 105 member A	0.016	yellow
KRBOX4	KRAB box domain containing 4	0.047	blue
PROSC	proline synthetase cotranscribed homolog (bacterial) globoside alpha-1,3-N-	0.048	yellow
GBGT1	acetylgalactosaminyltransferase 1	0.044	greenyellow
GSTO1	glutathione S-transferase omega 1	0.007	yellow
NPAT	nuclear protein, coactivator of histone transcription	0.043	blue
ROM1	retinal outer segment membrane protein 1	0.017	yellow
FCGR1A	Fc fragment of IgG receptor la	0.007	yellow
PTS	6-pyruvoyltetrahydropterin synthase	0.048	turquoise
CAST	calpastatin	0.050	greenyellow
MERTK	MER proto-oncogene, tyrosine kinase	0.017	greenyellow
HS2ST1	heparan sulfate 2-O-sulfotransferase 1	0.026	yellow
OXNAD1	oxidoreductase NAD binding domain containing 1	0.047	blue
APCDD1	APC down-regulated 1	0.036	turquoise
SLC25A28	solute carrier family 25 member 28	0.038	yellow
PIK3AP1	phosphoinositide-3-kinase adaptor protein 1 potassium calcium-activated channel subfamily M	0.007	yellow
KCNMA1	alpha 1	0.042	turquoise
TDRD9	tudor domain containing 9	0.012	greenyellow
WDR19	WD repeat domain 19 brain and reproductive organ-expressed (TNFRSF1A	0.013	blue
BRE	modulator)	0.045	greenyellow
COPG2	coatomer protein complex subunit gamma 2	0.012	yellow
FCER1G	Fc fragment of IgE receptor Ig	0.042	yellow

LBHD1	LBH domain containing 1	0.042	blue
ACP6	acid phosphatase 6, lysophosphatidic	0.001	green
PDLIM5	PDZ and LIM domain 5	0.050	greenyellow
TGFBR2	transforming growth factor beta receptor 2	0.012	yellow
CD200R1	CD200 receptor 1	0.021	turquoise
RPL9	ribosomal protein L9	0.045	red
PCOLCE2	procollagen C-endopeptidase enhancer 2	0.007	greenyellow
PLSCR2	phospholipid scramblase 2	0.042	yellow
GYG1	glycogenin 1	0.013	yellow
PLB1	phospholipase B1	0.017	greenyellow
CCR1	C-C motif chemokine receptor 1	0.001	yellow
ZDHHC19	zinc finger DHHC-type containing 19	0.032	greenyellow
ZNF589	zinc finger protein 589	0.049	blue
KIF27	kinesin family member 27	0.031	magenta
SPTSSA	serine palmitoyltransferase small subunit A	0.045	brown
CYYR1	cysteine and tyrosine rich 1	0.045	greenyellow
SERPINB8	serpin family B member 8	0.040	turquoise
PDIA3	protein disulfide isomerase family A member 3	0.041	brown
LAIR1	leukocyte associated immunoglobulin like receptor 1 Yip1 interacting factor homolog B, membrane	0.025	yellow
YIF1B	trafficking protein	0.042	yellow
IRF2BP2	interferon regulatory factor 2 binding protein 2	0.045	blue
SIGLEC7	sialic acid binding Ig like lectin 7	0.004	yellow
METTL7B	methyltransferase like 7B 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase	0.007	yellow
PFKFB3	3	0.039	greenyellow
FPR1	formyl peptide receptor 1	0.012	yellow
LRRC8C	leucine rich repeat containing 8 family member C	0.043	yellow
SLFN12	schlafen family member 12	0.040	brown
SMPDL3A	sphingomyelin phosphodiesterase acid like 3A	0.008	yellow
OLR1	oxidized low density lipoprotein receptor 1	0.023	magenta
RBM4	RNA binding motif protein 4	0.029	blue
GNG5	G protein subunit gamma 5	0.045	yellow
ANKRD36C	ankyrin repeat domain 36C	0.042	blue
ADGRE1	adhesion G protein-coupled receptor E1	0.002	greenyellow
PARL	presenilin associated rhomboid like	0.044	yellow
CDK5R1	cyclin dependent kinase 5 regulatory subunit 1	0.031	magenta
BASP1	brain abundant membrane attached signal protein 1	0.014	greenyellow
CD163L1	CD163 molecule like 1	0.005	greenyellow
ZNF366	zinc finger protein 366	0.003	greenyellow
CTC1	CST telomere replication complex component 1	0.036	magenta

SELENOW	selenoprotein W	0.011	yellow
CALR	calreticulin	0.035	yellow
SEPHS2	selenophosphate synthetase 2	0.042	yellow
RNF135	ring finger protein 135	0.034	yellow
FAM89A	family with sequence similarity 89 member A	0.001	greenyellow
EXT1	exostosin glycosyltransferase 1	0.044	greenyellow
SPATA13	spermatogenesis associated 13	0.024	yellow
MCEMP1	mast cell expressed membrane protein 1	0.044	greenyellow
SELENOF	selenoprotein F	0.042	brown
TNFAIP8L3	TNF alpha induced protein 8 like 3	0.001	yellow
ZNF438	zinc finger protein 438	0.012	yellow
SEPT5	septin 5	0.042	magenta
ATL3	atlastin GTPase 3	0.007	yellow
F8	coagulation factor VIII	0.031	yellow
TARSL2	threonyl-tRNA synthetase like 2	0.049	blue
	interferon induced protein with tetratricopeptide	0 000	li alatana an
	repeats 1	0.032	ligntgreen
	tree fatty acid receptor 3	0.004	yellow
	cytochrome P450 family 4 subfamily F member 3	0.015	magenta
	ieukocyte immunogiobulin like receptor B4	0.035	DIACK
ISG15	ISG15 ubiquitin-like modifier	0.050	lightgreen
	Ras and Rab Interactor like	0.047	greenyellow
IREML4	triggering receptor expressed on myeloid cells like 4	0.000	yellow
ADA12	adenosine deaminase, tRNA specific 2	0.049	blue
FAM21/B	family with sequence similarity 217 member B	0.048	yellow
	transcription factor 4	0.013	yellow
SERPINA1	serpin family A member 1	0.042	black
	ectonucleoside triphosphate diphosphohydrolase /	0.000	yellow
FCGR1B	Fc fragment of IgG receptor Ib	0.025	yellow
SFI1	SFI1 centrin binding protein	0.020	blue
ZNF43	zinc finger protein 43	0.034	red
LIPN	lipase family member N	0.031	yellow
AIF1	allograft inflammatory factor 1	0.044	brown
TRIM27	tripartite motif containing 27	0.047	yellow
TRIM71	tripartite motif containing 71	0.004	yellow
DDAH2	dimethylarginine dimethylaminohydrolase 2 protein phosphatase, Mg2+/Mn2+ dependent 1N	0.037	yellow
PPM1N	(putative)	0.032	yellow
CCNL2	cyclin L2	0.007	blue
WBP1	WW domain binding protein 1	0.043	blue
PLEKHO2	pleckstrin homology domain containing O2	0.047	black

NAIP	NLR family apoptosis inhibitory protein	0.001	yellow
KIAA1147	KIAA1147	0.029	blue
CEP95	centrosomal protein 95	0.033	blue
KLF14	Kruppel like factor 14	0.002	greenyellow
CD24	CD24 molecule	0.046	brown

*P value is adjusted for a 5% false discovery rate and is based on a Fisher exact comparison to the background universe of all genes assigned to the Gene Ontology

eTable 5. Potentially enriched pathways for normal vs. abnormal cognitive function from the

primary Weighted Network Analysis

		Leading	Enrichment	р
Pathway	Size	edge	Score	value*
Ribosome	83	63	0.62	<10-7
Primary immunodeficiency	28	17	0.59	0.002
ABC transporters Phosphatidylinositol signaling	26	6	0.54	0.04
system	59	16	0.42	0.049
Oxidative phosphorylation	97	70	-0.6	<10-7
Proteasome	41	33	-0.68	<10-7
Parkinsons Disease	95	55	-0.51	<10-7
Alzheimers Disease	126	75	-0.47	<10-3
Cardiac muscle contraction	32	21	-0.62	<10-3
Huntingtons Disease	141	75	-0.46	0.001
Lysosome	104	46	-0.47	0.001
Complement and coagulation Pathogenic Escherichia coli	26	16	-0.59	0.01
infection	43	22	-0.50	0.02
Glutathione metabolism RIG-I-like receptor signaling	30	16	-0.55	0.02
pathway Fc gamma R-mediated	46	14	-0.49	0.02
phagocytosis	78	28	-0.44	0.02
Toll Like Receptor signaling	70	37	-0.44	0.03
NOD Like Receptor signaling	48	14	-0.46	0.03
Regulation of actin cytoskeleton	130	51	-0.38	0.03
Leishmania infection	58	22	-0.45	0.03
Glycosaminoglycan degradation	15	9	-0.60	0.04
Arginine and proline metabolism	25	13	-0.52	0.04
O Glycan biosynthesis	17	6	-0.57	0.05

*p value is adjusted for a false discovery rate of 5%. This analysis used Gene Set Enrichment Analysis (GSEA)

Module	Overall	With cognitive	Without cognitive	p-value*
Eigengene	(N=30)	impairment (N=6)	impairment	
Median (IQR)			(N=24)	
Black	-0.05 (-0.12,	+0.19 (+0.10,	-0.09 (-0.13,	0.22
	+0.09)	+0.26)	+0.05)	
Blue	-0.06 (-0.10,	-0.07 (-0.10,	-0.04 (-0.10,	0.84
	+0.07)	+0.03)	+0.07)	
Brown	-0.02 (-0.14,	+0.21 (+0.13,	-0.07 (-0.14,	0.22
	+0.10)	+0.24)	+0.07)	
Cyan	+0.01 (-0.06,	-0.18 (-0.32, -0.09)	+0.03 (-0.02,	0.22
Deuleuneun	+0.10)		+0.11)	0.50
Darkgreen	-0.02 (-0.13,	-0.08 (-0.20, -0.01)	-0.01 (-0.09,	0.50
Darkaray	+0.00)		+0.10)	0.79
Darkgrey	+0.02 (-0.10,	+0.08 (-0.07,	+0.00 (-0.15,	0.78
Darkmaganta	± 0.10	$\pm 0.10)$	± 0.10	0.91
Darkinayenta	+0.02 (-0.11,	+0.03 (-0.23,	+0.02 (-0.10,	0.01
Darkolivegreen	+0.03/-0.06	+0.00)	+0.02 (-0.09	0.81
Darkonvegreen	+0.12)	+0.11)	+0.11)	0.01
Darkorange	+0.01 (-0.13	+0.11 (+0.03	-0.04 (-0.14	0.48
Dankorango	+0.12)	+0.17)	+0.12)	0.10
Darkred	+0.01 (-0.11.	-0.07 (-0.15, -0.02)	+0.03 (-0.10.	0.52
	+0.12)		+0.13)	0.01
Darkturguoise	-0.01 (-0.12,	+0.09 (+0.05,	-0.03 (-0.12,	0.48
•	+0.08)	+0.13)	+0.05)	
Green	+0.00 (-0.15,	-0.18 (-0.22, -0.09)	+0.10 (-0.10,	0.22
	+0.17)		+0.18)	
Greenyellow	-0.02 (-0.10,	+0.05 (-0.03,	-0.02 (-0.17,	0.76
	+0.12)	+0.12)	+0.12)	
Grey60	+0.04 (-0.07,	+0.04 (-0.04,	+0.03 (-0.07,	0.81
	+0.11)	+0.06)	+0.13)	
Lightcyan	-0.04 (-0.10,	-0.01 (-0.05,	-0.06 (-0.10,	0.81
1 :	+0.04)	+0.03)	+0.04)	0.74
Lightgreen	+0.04 (-0.14,	+0.08 (+0.04,	-0.02 (-0.14,	0.74
Lightvollow	+0.13)	+0.12)	+0.15)	0.50
Lightyenow	+0.02 (-0.11,	-0.15 (-0.25,	+0.05 (-0.06,	0.50
Magonta	-0.03 (-0.15	-0.03)	+0.01 (-0.11	0.50
Mayerita	+0.12)	-0.03 (-0.10, -0.00)	+0.13)	0.50
Mediumpurple3	+0.03 (-0.13	+0.04 (-0.01	+0.00 (-0.14	0.84
ine analipa pice	+0.09)	+0.06)	+0.10)	0.01
Midniahtblue	+0.03 (-0.09.	-0.02 (-0.10.	+0.03 (-0.08.	0.90
J	+0.13)	+0.12)	+0.13)	
Orange	-0.02 (-0.08,	+0.03 (-0.03,	-0.02 (-0.09,	0.72
-	+0.11)	+0.21)	+0.10)	
Orangered4	+0.03 (-0.08,	-0.02 (-0.09,	+0.04 (-0.07,	0.84
	+0.11)	+0.11)	+0.11)	
Paleturquoise	-0.03 (-0.12,	-0.07 (-0.12, -0.05)	+0.01 (-0.11,	0.54

eTable 6. Module eigengene summary by cognitive status for secondary WNA

	+0.11)		+0.16)	
Pink	+0.00 (-0.13,	+0.12 (+0.05,	-0.07 (-0.15,	0.22
	+0.10)	+0.14)	+0.06)	
Plum1	-0.01 (-0.10,	+0.02 (-0.02,	-0.02 (-0.10,	0.72
	+0.08)	+0.11)	+0.07)	
Purple	-0.03 (-0.14,	+0.14 (+0.10,	-0.07 (-0.15,	0.48
	+0.12)	+0.17)	+0.10)	
Red	-0.03 (-0.12,	-0.01 (-0.06,	-0.05 (-0.13,	0.90
	+0.08)	+0.04)	+0.09)	
Royalblue	-0.04 (-0.11,	-0.11 (-0.17, -0.05)	-0.01 (-0.10,	0.50
	+0.09)		+0.10)	
Saddlebrown	+0.03 (-0.15,	-0.04 (-0.14,	+0.07 (-0.14,	0.90
	+0.11)	+0.14)	+0.11)	
Salmon	-0.03 (-0.15,	+0.17 (+0.15,	-0.07 (-0.16,	0.32
	+0.15)	+0.18)	+0.09)	
Sienna3	+0.00 (-0.11,	+0.12 (+0.09,	-0.02 (-0.13,	0.25
	+0.09)	+0.16)	+0.03)	
Skyblue	+0.01 (-0.10,	+0.04 (+0.02,	-0.03 (-0.13,	0.50
	+0.12)	+0.12)	+0.09)	
Skyblue3	+0.00 (-0.08,	+0.04 (-0.05,	+0.00 (-0.09,	0.81
	+0.09)	+0.09)	+0.08)	
Steelblue	+0.02 (-0.08,	-0.09 (-0.23,	+0.07 (-0.05,	0.49
	+0.09)	+0.00)	+0.09)	
Tan	+0.05 (-0.11,	+0.14 (+0.04,	+0.04 (-0.12,	0.50
	+0.13)	+0.16)	+0.07)	
Turquoise	+0.01 (-0.10,	-0.24 (-0.31, -0.16)	+0.07 (-0.05,	0.22
	+0.14)	0.45 (0.04	+0.14)	0.40
Violet	-0.03 (-0.10,	+0.15 (+0.04,	-0.04 (-0.10,	0.46
\ A /l!4	+0.11)	+0.30)	+0.08)	0.04
white	-0.04 (-0.13,	-0.03 (-0.14,	-0.07 (-0.13,	0.84
Vallaw	+0.09)	+0.01)	+U.1Z)	0.50
Tellow	+0.03(-0.12,	-0.12 (-0.16, -0.01)	+0.00 (-0.09,	0.50
Valleyvances	+0.11)		+U. IZ)	0.00
renowgreen	+0.00(-0.10,	+0.05 (+0.00,	-0.03 (-0.11,	0.80
	+0.10)	+0.09)	+0.11)	

* Wilcoxon rank sum test, adjusted for multiple comparisons using the false discovery rate (5%) approach

eTable 7. Gene ontology categories differentially expressed in the two most significant modules

Gene category	Category ID	Module	Enrichment p	Bonferroni p
oxidoreductase activity	GO:0016491 MF	turquoise	6.94E-06	0.03
calcium ion binding	GO:0005509 MF	turquoise	3.89E-05	0.15
protein binding	GO:0005515 MF	turquoise	4.61E-04	1.00
protein serine/threonine kinase activator activity	GO:0043539 MF	turquoise	4.94E-04	1.00
protein domain specific binding	GO:0019904 MF	turquoise	7.91E-04	1.00
oxidoreductase activity, acting on a sulfur group of donors	GO:0016667 MF	turquoise	1.12E-03	1.00
cofactor binding	GO:0048037 MF	turquoise	1.30E-03	1.00
molecular function regulator	GO:0098772 MF	turquoise	1.56E-03	1.00
calcium-dependent protein binding	GO:0048306 MF	turquoise	1.62E-03	1.00
enzyme regulator activity	GO:0030234 MF	turquoise	1.71E-03	1.00
hormone activity	GO:0005179 MF	green	2.69E-06	0.01
peroxisome targeting sequence binding	GO:0000268 MF	green	7.42E-04	1.00
interleukin-1 receptor activity	GO:0004908 MF	green	1.78E-03	1.00
UDP- glycosyltransferase activity	GO:0008194 MF	green	1.92E-03	1.00
NADPH- hemoprotein reductase activity	GO:0003958 MF	green	3.36E-03	1.00
protein-tyrosine sulfotransferase activity	GO:0008476 MF	green	3.36E-03	1.00
sulfotransferase activity	GO:0008146 MF	green	3.80E-03	1.00
intramolecular transferase activity, phosphotransferase s	GO:0016868 MF	green	5.69E-03	1.00
transferase activity,	GO:0016758 MF	green	6.08E-03	1.00

from the secondary Weighted Network Analysis

transferring hexosyl				
groups				
palmitoyltransferase activity	GO:0016409 MF	green	7.44E-03	1.00

CASS

eTable 8. Genes in the GO oxidoreductase activity molecular function

category with differential expression on the secondary Weighted Network

Analysis (WNA)

Gene	Base mean expression	log2-fold change in expression	Adjusted p value*	WNA module
HSD3B7	73	-0.99	0.048	turquoise
HMOX1	387	-0.96	0.016	turquoise
STEAP3	43	-1.01	0.043	green
MTRR	605	-1.04	0.007	green
CYP19A1	477	-1.32	0.0002	green
CYP1B1	4334	-1.66	0.0005	turquoise
GSTO1	1086	-0.98	0.007	turquoise
OXNAD1	474	0.83	0.047	brown
PDIA3	414	-0.55	0.041	turquoise
F8	101	-0.87	0.031	turquoise
CYP4F3	1484	1.10	0.015	darkorange
*p value is adj	usted for a false	discovery rate c	of 5%	_

WNA = Weighted Network Analysis

REFERENCES

- 1. Horvath S. Weighted Network Analysis: Applications in Genomics and Systems Biology. Springer; 2011.
- Levine AJ, Miller JA, Shapshak P, Gelman B, Singer EJ, Hinkin CH, Commins D, Morgello S, Grant I, Horvath S. Systems analysis of human brain gene expression: mechanisms for HIV-associated neurocognitive impairment and common pathways with Alzheimer's disease. *BMC Med Genomics* 2013; 6: 4.
- 3. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. *BMC Bioinformatics* 2008; 9: 559.
- 4. Langfelder P, Horvath S. Fast R Functions for Robust Correlations and Hierarchical Clustering. *J Stat Softw* 2012; 46.
- Presson AP, Sobel EM, Papp JC, Suarez CJ, Whistler T, Rajeevan MS, Vernon SD, Horvath S. Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome. *BMC Syst Biol* 2008; 2: 95.
- Presson AP, Yoon NK, Bagryanova L, Mah V, Alavi M, Maresh EL, Rajasekaran AK, Goodglick L, Chia D, Horvath S. Protein expression based multimarker analysis of breast cancer samples. *BMC Cancer* 2011; 11: 230.
- 7. Ravasz E. Detecting hierarchical modularity in biological networks. *Methods Mol Biol* 2009; 541: 145-160.
- Tang Y, Scheef EA, Wang S, Sorenson CM, Marcus CB, Jefcoate CR, Sheibani N. CYP1B1 expression promotes the proangiogenic phenotype of endothelium through decreased intracellular oxidative stress and thrombospondin-2 expression. *Blood* 2009; 113: 744-754.
- 9. Falero-Perez J, Song YS, Sorenson CM, Sheibani N. CYP1B1: A key regulator of redox homeostasis. *Trends in cell & molecular biology* 2018; 13: 27-45.
- 10. Zarbato GF, de Souza Goldim MP, Giustina AD, Danielski LG, Mathias K, Florentino D, de Oliveira Junior AN, da Rosa N, Laurentino AO, Trombetta T, Gomes ML, Steckert AV, Moreira AP, Schuck PF, Fortunato JJ, Barichello T, Petronilho F. Dimethyl Fumarate Limits Neuroinflammation and Oxidative Stress and Improves Cognitive Impairment After Polymicrobial Sepsis. *Neurotox Res* 2018; 34: 418-430.
- 11. Catalao CHR, Santos-Junior NN, da Costa LHA, Souza AO, Alberici LC, Rocha MJA. Brain Oxidative Stress During Experimental Sepsis Is Attenuated by Simvastatin Administration. *Mol Neurobiol* 2017; 54: 7008-7018.
- 12. Arslan D, Ekinci A, Arici A, Bozdemir E, Akil E, Ozdemir HH. Effects of Ecballium elaterium on brain in a rat model of sepsis-associated encephalopathy. *Libyan J Med* 2017; 12: 1369834.