
Appendix 

1. Deduction of Equations (1), (2) and (23)   

These equations were established based on the yield-line theory. The yield-line pattern is shown in 

Fig. A.1. The positive moment hinge at the beam end F and negative yield line along edge CD are ignored 

due to the free boundary conditions. Assume that the deflection at the column removal location equals to 1, 

the internal work done due to the rotation in plastic hinges (A, J, K, D, E) and along the yield lines (AA1, 

BJ and KC) are given by (For simplicity, the length of AA1 is assumed to be l): 

 

Fig. A.1 Yield-line pattern of the substructure due to a PS column loss 
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where M’
x and Mx are the negative and positive yield bending moment (unit width) of the slab about Y-
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direction, respectively; My is the positive yield bending moment (unit width) of the slab about X-direction; 

MLN and MLP are the negative and positive plastic moment of the beam in X-direction, respectively; MTN is 

the negative plastic moment of the beam in Y-direction. 

For the concentrated load, the work done by the external force is given by:  

 extW F    (A-2) 

Thus the yield load can be expressed as: 
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Thus Equations (2) and (22) are obtained. 

The parameter α can be determined as follows: 
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The solution to Eq. (A-5) is given by: 
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Therefore, Equation (1) is obtained. 

 



2. Deduction of Equation (5) 

Fig. A.2 shows the deformation configuration of steel beam FD due to a vertical displacement v. The 

internal work done by this extension can be calculated as 

 
Fig. A.2 Deformation of steel beam FD 

 

 

2 2
2 2

1
2 2

2
( ( ) )

( )
in beamFD uL FD uL uL

v u u L
W F F L u v L F

L u v L


 

 

 
      

  
       (A-7) 

3. Deduction of Equations (6) and (7) 

As shown in Fig. A. 3, when the mid-span section of the simplified truss suffers from a unit vertical 

load, the corresponding vertical displacement 1  at the mid-span F is calculated as: 

 

Fig. A.3 Simplified truss model 
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where Ks is the lateral stiffness provided by the peripheral beam CD and corner column D; KL is the axial 

stiffness of the beam AF and FD.  

The horizontal displacement 2  at the beam end D is given by: 
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Therefore, when the mid-span section of the truss suffers from a vertical displacement v, the 

corresponding horizontal displacement at the beam end D can be proportionally determined as: 
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Based on the geometric relationship: 
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Substituting Equation (A-11) into Equation (A-10) yields: 
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