Appendix

1. Deduction of Equations (1), (2) and (23)

These equations were established based on the yield-line theory. The yield-line pattern is shown in

Fig. A.1. The positive moment hinge at the beam end F and negative yield line along edge CD are ignored due to the free boundary conditions. Assume that the deflection at the column removal location equals to 1 , the internal work done due to the rotation in plastic hinges (A, J, K, D, E) and along the yield lines $\left(A A_{1}\right.$, $B J$ and $K C$) are given by (For simplicity, the length of $A A_{l}$ is assumed to be l):

Fig. A. 1 Yield-line pattern of the substructure due to a PS column loss

$$
\begin{equation*}
W_{i n}=\frac{2 \alpha M_{y} L}{l}+\frac{2 M_{x} l}{\alpha L}+\frac{M_{x}^{\prime} l}{\alpha L}+\frac{2\left(M_{L N}+M_{L P}\right)}{\alpha L}+\frac{M_{T N}}{l} \tag{A-1}
\end{equation*}
$$

where M_{x}^{\prime} and M_{x} are the negative and positive yield bending moment (unit width) of the slab about Y -
direction, respectively; M_{y} is the positive yield bending moment (unit width) of the slab about X-direction; $M_{L N}$ and $M_{L P}$ are the negative and positive plastic moment of the beam in X-direction, respectively; $M_{T N}$ is the negative plastic moment of the beam in Y-direction.

For the concentrated load, the work done by the external force is given by:

$$
\begin{equation*}
W_{e x t}=F \tag{A-2}
\end{equation*}
$$

Thus the yield load can be expressed as:

$$
\begin{equation*}
F=\alpha B+\frac{A}{\alpha}+\frac{M_{T N}}{l} \tag{A-3}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\frac{2 M_{x} l+M_{x}^{\prime} l+2 M_{L N}+2 M_{L P}}{L} \quad \mathrm{~B}=2 \frac{M_{y} L}{l} \tag{A-4}
\end{equation*}
$$

Thus Equations (2) and (22) are obtained.

The parameter α can be determined as follows:

$$
\begin{equation*}
\frac{d F}{d \alpha}=0 \tag{A-5}
\end{equation*}
$$

The solution to Eq. (A-5) is given by:

$$
\begin{equation*}
\alpha=\sqrt{\frac{A}{B}} \tag{A-6}
\end{equation*}
$$

Therefore, Equation (1) is obtained.

2. Deduction of Equation (5)

Fig. A. 2 shows the deformation configuration of steel beam FD due to a vertical displacement v. The internal work done by this extension can be calculated as

Fig. A. 2 Deformation of steel beam FD

$$
\begin{equation*}
W_{\text {inlbeamFD }}=F_{u L} \Delta_{F D}=F_{u L}\left(\sqrt{(\alpha L-u)^{2}+v^{2}}-\alpha L\right)=F_{u L} \frac{v^{2}+u^{2}-2 u \alpha L}{\sqrt{(\alpha L-u)^{2}+v^{2}}+\alpha L} \tag{A-7}
\end{equation*}
$$

3. Deduction of Equations (6) and (7)

As shown in Fig. A. 3, when the mid-span section of the simplified truss suffers from a unit vertical load, the corresponding vertical displacement Δ_{1} at the mid-span F is calculated as:

Fig. A. 3 Simplified truss model

$$
\begin{equation*}
\Delta_{1}=\frac{1}{2 K_{L} \sin ^{2} \theta_{0}}+\frac{1}{4 K_{s} \tan ^{2} \theta_{0}} \tag{A-8}
\end{equation*}
$$

where K_{s} is the lateral stiffness provided by the peripheral beam CD and corner column D ; K_{L} is the axial stiffness of the beam AF and FD.

The horizontal displacement Δ_{2} at the beam end D is given by:

$$
\begin{equation*}
\Delta_{2}=\frac{1}{2 K_{s} \tan \theta_{0}} \tag{A-9}
\end{equation*}
$$

Therefore, when the mid-span section of the truss suffers from a vertical displacement v, the corresponding horizontal displacement at the beam end D can be proportionally determined as:

$$
\begin{equation*}
u=\frac{\Delta_{2}}{\Delta_{1}} v=\frac{1}{\left(\frac{1}{K_{L} \sin ^{2} \theta_{0}}+\frac{1}{2 K_{s} \tan ^{2} \theta_{0}}\right) K_{s} \tan \theta_{0}} v \tag{A-10}
\end{equation*}
$$

Based on the geometric relationship:

$$
\begin{equation*}
\sin \theta_{0}=\frac{v_{A}}{\sqrt{\left(v_{A}\right)^{2}+(\alpha L)^{2}}} \quad \tan \theta_{0}=\frac{v_{A}}{\alpha L} \tag{A-11}
\end{equation*}
$$

Substituting Equation (A-11) into Equation (A-10) yields:

$$
\begin{equation*}
u=\frac{1}{\frac{K_{s}\left((\alpha L)^{2}+v_{A}^{2}\right)}{\alpha K_{L} v_{A} L}+\frac{\alpha L}{2 v_{A}}} v \tag{A-12}
\end{equation*}
$$

