APPENDIX

Area of crack surface (A)

 $f_{sv} + \Delta f_{sv}$

2 \rightarrow Detailed calculation procedures for estimating local tensile stress increase (Δf_{sx})

 $d_{s}-c$ $d_{s}-c$ $d_{s}-c$ $d_{s}-c$ $d_{s}-c$ $f_{sx} + \Delta f_{sx}$ v_{ci} $f_{sx} + \Delta f_{sx}$ v_{ci} v_{ci} v_{ci} v_{ci} $f_{sx} + \Delta f_{sx}$ v_{ci} v_{ci} v_{ci} $f_{sy} + \Delta f_{sy} + \Delta f_{sy} + \Delta f_{sy}$ $f_{sy} + \Delta f_{sy} + \Delta$

3 4 Fig. A1 – Stress distribution between adjacent cracks and corresponding local stresses at crack

5

1

Fig. A1 shows a detailed derivation process of Eq. (2), and the similar results of the equilibrium conditions can be found in previous researches (Vecchio and Collins, 1986; Vecchio, 2010; Pang and Hsu, 1996; Hsu and Mo, 2010). In addition, as shown in Fig. A2, the local tensile stress increase in steel reinforcement (Δf_{sx}) should be equilibrated by the bond stress, as follows:

11
$$\Delta f_{sx} = f_{sx,\text{max}} - f_{sx,\text{min}} = 2\tau_x S_{mx} / d_b$$
(A1)

12 where τ_x is the bond stress, S_{mx} is the flexural crack spacing, d_b is the diameter of the 13 longitudinal reinforcement.

Fig. A2 - Bond stress distribution between adjacent cracks

16

14 15

17 If the concrete compressive strain at the extreme top fiber of the section (ε_i) is selected, the 18 tensile stress ($f_{sx,max}$) at the crack surface can be obtained by performing a non-linear flexural 19 analysis at the considered critical section, as shown in Fig. A3. In the flexural analysis, 20 Collins model shown in Fig. A4(a) was used for the stress-strain relationship of concrete in 21 compression, and the elastic-linear work-hardening model shown in Fig. A4(b) was used for 22 the constitutive laws of steel reinforcement. For the bond-slip relationship between the steel 23 bar and surrounding concrete, the CEB-FIP model code was adopted, as shown in Fig. A4(c).

24

35 follows:

36
$$e_{s} = \frac{S_{mx}}{E_{s}} \left(f_{sx,max} - \frac{\tau_{x}S_{mx}}{d_{b}} \right) \qquad (\text{when } f_{sx,max} \le f_{y}) \qquad (A2-a)$$

37
$$e_{s} = \frac{S_{mx}}{E_{s}} \left(f_{sx,\max} - \frac{\tau_{x}S_{mx}}{d_{b}} \right) + \frac{S_{mx}}{E_{sp}} \left(f_{sx,\max} - f_{y} \right) \quad \text{(when } f_{sx,\max} > f_{y} \text{)} \quad \text{(A2-b)}$$

If the slip (s_x) is assumed, the bond stresses τ_{x1} and τ_{x2} can be obtained from the bond stress-slip relationship shown in Fig. A4 and Eqs. (3) and (A2), respectively. Consequently, the local tensile stress increase in steel reinforcement (Δf_{sx}) can be estimated by iterating previous calculation process mentioned above until the τ_{x1} and τ_{x2} are converged. In Fig. A5, the analysis flow to estimate Δf_{sx} is summarized.

43

Fig. A5 – Analysis flow chart for estimating Δf_{sx}