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APPENDIX  1 

 Detailed calculation procedures for estimating local tensile stress increase ( sxf ) 2 

 3 
Fig. A1 – Stress distribution between adjacent cracks and corresponding local stresses at crack 4 

 5 

Fig. A1 shows a detailed derivation process of Eq. (2), and the similar results of the 6 

equilibrium conditions can be found in previous researches (Vecchio and Collins, 1986; 7 

Vecchio, 2010; Pang and Hsu, 1996; Hsu and Mo, 2010). In addition, as shown in Fig. A2, 8 

the local tensile stress increase in steel reinforcement ( sxf ) should be equilibrated by the 9 

bond stress, as follows: 10 

,max ,min 2 /sx sx sx x mx bf f f S d          (A1) 11 

where x  is the bond stress, mxS  is the flexural crack spacing, bd  is the diameter of the 12 

longitudinal reinforcement. 13 
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 14 
Fig. A2 – Bond stress distribution between adjacent cracks 15 

 16 

If the concrete compressive strain at the extreme top fiber of the section ( t ) is selected, the 17 

tensile stress ( ,maxsxf ) at the crack surface can be obtained by performing a non-linear flexural 18 

analysis at the considered critical section, as shown in Fig. A3. In the flexural analysis, 19 

Collins model shown in Fig. A4(a) was used for the stress-strain relationship of concrete in 20 

compression, and the elastic-linear work-hardening model shown in Fig. A4(b) was used for 21 

the constitutive laws of steel reinforcement. For the bond-slip relationship between the steel 22 

bar and surrounding concrete, the CEB-FIP model code was adopted, as shown in Fig. A4(c). 23 

 24 

  25 
Fig. A3 – Non-linear flexural analysis model 26 
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  27 
(a) Concrete      (b) Steel reinforcement 28 

 29 

 30 
(c) Bond between steel reinforcement and concrete 31 

Fig. A4 – Constitutive models used in flexural analysis 32 

 33 

From Eq. (3) and Fig. A2, the elongation of steel reinforcement ( se ) can be calculated, as 34 

follows: 35 
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If the slip ( xs ) is assumed, the bond stresses 1x  and 2x  can be obtained from the bond 38 

stress-slip relationship shown in Fig. A4 and Eqs. (3) and (A2), respectively. Consequently, 39 

the local tensile stress increase in steel reinforcement ( sxf ) can be estimated by iterating 40 

previous calculation process mentioned above until the 1x  and 2x  are converged. In Fig. A5, 41 

the analysis flow to estimate sxf  is summarized. 42 

 43 
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 44 
Fig. A5 – Analysis flow chart for estimating sxf  45 
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