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(1) S/N Evaluation

We benchmark the DCS with FT-IR, therefore we use S/N as in FT-IR using the following 
formula: , where the numerator corresponds to the signal intensity in the measurement (i.e., 
the maximum difference signal from the fit described in the manuscript), and  due to the 
different spectral characteristics of the two spectrometers, is calculated differently for DCS 
and FT-IR. In DCS, each spectrum consists of a set of points that correspond to the narrow 
laser lines that are individually detected with their standard deviation. We describe different 
ways of DCS  quantification below. For FT-IR,  is equal to the RMSE (root mean squared 
error), calculated for a linear fit (to zero-line) of the baselined to zero spectral region without 
spectral features below 1200 cm-1. The obtained signal-to-noise ration (S/N) results are 
collected in Table S2. Of note, there are several processes taking place during the experiment,
that may influence the spectral response and influence the analysis of the noise, e.g., ice 
formation, nitrogen bubbling, etc. Furthermore, the 2-MeTHF solvent is observed to possess 
a small Stark contribution in the spectral region analyzed.

Thanks to monitoring of laser line intensity in the DCS system, we can quantify the 
standard deviation for each spectral point, as presented in the manuscript and visualized in 
Figure 4 (main text) and Figure S1 below. We use the standard deviation values as the base in
the following (sections 1.1–1.3) analysis.



Figure S1. Histogram of DCS standard deviation values. The analysis is across all spectral 
elements.

1.1. DCS - Mean
The mean value of standard deviation, i.e., its arithmetic average, is the simplest way of 
treating the set, although not the most statistically representative. Nevertheless, this is the 
value that could be thought of as the most similar to FT-IR derived value. The mean of DCS 
noise is 0.62.

1.2. DCS - Median
The median represents how the population is distributed and is more representative of 
populations that are not normal. The median value for DCS noise is 0.47.

1.3. DCS - Mean of (signal over standard deviation)
Another approach can be to calculate S/N at each data point and then take the mean value of 
it. This will be more affected by very low noise values. A simple arithmetic average of S/N 
for DCS gives the value of 22.

1.4.  FT-IR
From the fitting of a spectrum to zero (see above) made possible due to using the flat noise 
characteristics in a spectral region without spectral features, one obtains rmse = 0.32. 
 
1.5.  Summary
The fitted signal values for DCS and FT-IR are 4.53 and 5.04, respectively. For FT-IR it 
results in S/N of ~16. FT-IR and DCS values for different approaches are collected in Table 
S1. To account for the improvement of S/N coming from using the DCS instrument, we are 
comparing the S/N values in the form of a ratio: . 

Table S1. The results of S/N analysis for spectra obtained with DCS and FT-IR instruments.



Approac
h

1.1 7 16 0.44 7.5

1.2 10 16 0.63 10.7

1.3 22 16 1.4 23.6

Differences in the values collected in Table S1 highlight the difficulty of assessing S/N for a 
system that does not have uniformly distributed noise and that has spectral regions with very 
low noise levels. We decided to use noise level as determined as the median of standard 
deviation of signal for the DCS system. This value was used to further estimate S/N values 
for potentially more demanding experiments. The results are presented in Table S2.

From Figure 4 it can be seen that the C-F stretching band is located in the low-noise 
region of the DCS spectrum. However, it should be noted that this is not the origin of the 
observed improvement of S/N obtained thanks to DCS system, since the noise was calculated
for the whole spectral window covered by DCS. The location of the low noise region only 
affects the estimated value (the Stark tuning rate) and its uncertainty. As laser development 
continues, more homogeneous power distributions will be achieved, leading to less 
wavelength-dependent noise levels throughout the covered spectral range.

Table S2. Comparison of performances of two setups used in this study. All predictions 
assume, unless stated otherwise, 100 mM solution of fluorobenzene. S/N were estimated 
using a square root dependence of the S/N on time and a linear dependence on concentration. 
The base for S/N estimations are the values from row 1.2 of Table S1.

(1) Representation how the weighted fit was implemented – realized using Python

Requirements: numpy (as np) and scipy.optimize (as optimization).

1 Only valid when no filters are introduced in the beam path, e.g., to reduce illumination of the detector.



a. Define the fit formula (separate derivative and pseudo-Voigt formulas not shown). At 
first, declare A, mu, sig, and alfa, as the values you found by fitting the absorbance 
spectrum (a separate step).

def fit(x, c1, c2, c3):
    return c1*pVoigt(x, A, mu, sig, alfa)+c2*firstDer(x, A, mu, sig, alfa)+c3*secondDer(x, A, 
mu, sig, alfa)

b. Fit the data to the sum of derivatives. Inputs: fit – as defined above, 
WavenumberValues – x-axis, AbsorbanceValues – y-axis, x0 – initial guess of 
parameters (here: x0 = np.array([0, 0, 0])).

params, params_covariance = optimization.curve_fit(fit, WavenumberValues, 
AbsorbanceValues, x0, sigma=STD, absolute_sigma=True) # sigma=STD - standard 
deviation of each laser line intensity; absolute_sigma=True refers to the fact that exact 
values of standard deviation are used, without additional normalization; for FT-IR, sigma and 
absolute_sigma are not specified and used as default. See below.
"""sigma : None or M-length sequence or MxM array, optional
    Determines the uncertainty in ydata. If we define residuals as r = ydata - f(xdata, *popt), 
then the interpretation of sigma depends on its number of dimensions:
        A 1-d sigma should contain values of standard deviations of errors in ydata. In this case, 
the optimized function is chisq = sum((r / sigma) ** 2).
        A 2-d sigma should contain the covariance matrix of errors in ydata. In this case, the 
optimized function is chisq = r.T @ inv(sigma) @ r.
        New in version 0.19.
        None (default) is equivalent of 1-d sigma filled with ones.
    """
 
yfitDCS = fit(WavenumberValues, params[0], params[1], params[2])

c. Find the Stark tuning rate and its uncertainty

Calculate the Stark tuning rate:

DmuDCS  = np.sqrt(10*params[2])

Calculate the uncertainty on the Stark tuning rate:

paramsErr = np.sqrt(10*np.sqrt(np.diag(params_covariance)))

The Stark tuning rate is DmuDCS +/- paramsErr[2]

d. For S/N analysis, one needs to obtain signal value from the fit:

sigDCS = max(yfitDCS)-min(yfitDCS) # signal DCS – from the fit not to rely on noisy data 
points

(2) The Full FT-IR Spectrum



Figure S2. Full FT-IR spectrum. Note features corresponding to, e.g., ice formation. Vertical 
bar corresponds to the window of analysis for the Stark tuning rate determination.


