SUPPORTING INFORMATION

Title: "Targeting hydrophilic regions of recombinant proteins by MS using in-solution buffer-free trypsin digestion"

Authors: Lázaro Betancourt^{1&*,} Luis Ariel Espinosa^{2&}, Yassel Ramos², Mónica Bequet-Romero³, Elías Nelson Rodríguez⁴, Aniel Sánchez¹, Gyorgy Marko-Varga¹, Luis Javier González², Vladimir Besada^{2*}

Affiliation:

¹Div. Clinical Protein Science & Imaging, Dept. of Clinical Sciences (Lund) and Dept. of Biomedical Engineering, Lund University, BMC D13, Lund, Sweden.

²Mass Spectrometry Laboratory, Department of Proteomics; ³Pharmaceutics, Biomedical Research; ⁴Division for Technological Development, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba.

Figure S1. ESI-MS/MS spectra of four short and hydrophilic peptides obtained by the in-solution

Figure S2. Deconvoluted ESI-MS/MS spectra of two hydrophilic tryptic peptides obtained by the

Table S1. Assignment of ESI-MS spectra of the hydrophilic peptides of HBcAg: comparison of

Figure S3. ESI-MS/MS spectra of three hydrophilic peptides obtained by the in-solution BFD

Figure S4. MALDI-MS spectra of the HBcAg tryptic digestion by using the in-solution BFD

Table S2. Summary of the assignment of MALDI-MS spectrum shown in figure S5 obtained

Figure S5. Deconvoluted ESI-MS/MS spectrum of a hydrophilic N-glycopeptide 11

Figure S6. ESI-MS spectrum (m/z 200-1250) of the in-solution BFD procedure of RNase B

	10
leglycosylated with Endo H	12

Figure S7. Deconvoluted ESI-MS/MS spectra of two hydrophilic peptides obtained by the in-
solution BFD procedure of the RNaseB deglycosylated with Endo H:
Figure S8. ESI-MS spectra (m/z 700-1220) of the tryptic digestion of S-alkylated and non-
deglycosylated RNase B
References

& Authors with same contribution * Corresponding authors:

E-mail: <u>lazaro.betancourt@med.lu.se;</u> <u>vladimir.besada@cigb.edu.cu</u>

Figure S1. ESI-MS/MS spectra of four short and hydrophilic peptides obtained by the in-solution buffer free tryptic digestion procedure of the fusion VEGF-recombinant protein. (A) $^{115}AR^{116}$ (expected m/z 246.16, 1+); (B) $^{113}DR^{114}$ (expected m/z 290.15, 1+); (C) $^{117}QEK^{119}$ (expected m/z 404.21, 1+); and (D) $^{112}KDR^{114}$ (expected m/z 418.24, 1+). Fragment ions observed in (A-D) that were generated by neutral losses are indicated with broken lines. The assignment of these

fragment ions are in agreement with previous works^{1,2,3} that report the fragmentation of protonated α -amino acids and dipeptides containing arginine and lysine. Single-letter amino acids with asterisk represent the immonium-related ions.

Figure S2. Deconvoluted ESI-MS/MS spectra of two hydrophilic tryptic peptides obtained by the in-solution BFD procedure of the fusion VEGF-recombinant protein. (A) ¹²⁶VDGGHHHHHH¹³⁵ (expected m/z 585.26, 2+) corresponding to the C-terminal end and (B) peptides linked by an inter-molecular disulfide bond (¹²⁰CDKPR¹²⁴)-S-S-(¹²⁰CDKPR¹²⁴) (expected m/z 617.30, 2+). "-S-S-" indicates the sulphur atoms linked by an intermolecular disulfide bond between (P1) and

(P2) peptides. Single-letter amino acids with asterisk represent the immonium-related ions. The nomenclature used for the assignment of fragment ions agrees with previous reports⁴.

The ESI-MS/MS spectrum of the His-tag C-terminal peptide (figure S-2A) confirmed the C-terminal sequence shown in figure 2A. Complete set of y"_n ion series as well as six b_n ions (b₄ to b₁₀) were observed. Immonium ions as well as internal fragments detected in the MS/MS spectrum confirmed the assigned sequences. Also, the ESI-MS/MS spectra of ion (m/z 617.31, 2+, figure S2 B) further confirmed the inter-molecular disulfide bond peptide (figure 2A) of the protein. The fragment ions detected at m/z 584.38, 1+ and 650.30, 1+ were assigned to the asymmetric cleavage of the disulfide bond to yield the peptide (120 CDKPR 124) with the cysteine transformed as dehydroalanine [1 α or 2 α] and disulfohydryl cysteine [1 β or 2 β] residues⁴, respectively.

Table S1. Assignment of ESI-MS spectra of the hydrophilic peptides of HBcAg: comparison of in-solution BFD and standard digestion (Std Dig). The experimental and expected m/z values for each peptide that contributed to the 100% sequence verification of HBcAg is summarized in this Table.

	Experimental <i>m/z</i>		Expected	Z	Sequence	Detec proced	ction lure ^{b)}
02C.IFA.E407 ^{a)}	02C.IFA.E505 ^{a)}	02C.IFA.E503 ^{a)}	m/z.		-	BFD	Std Dig
638.63	638.64	638.64	638.64	3	$^{40}\text{E-R}^{56}$	Х	-
331.23	331.23	331.23	331.22	1	151 RR 152	х	-
290.15	290.15	290.15	290.15	1	153 DR 154	х	-
503.28	503.27	503.27	503.27	1	¹⁵³ DRGR ¹⁵⁶	Х	-
359.20	359.21	359.21	359.20	1	¹⁵⁷ SPR ¹⁵⁹	х	-
331.23	331.23	331.23	331.22	1	160 RR 161	Х	-
557.31	557.31	557.31	557.30	1	¹⁶² TPSPR ¹⁶⁶	х	-
331.23	331.23	331.23	331.22	1	167 RR 168	Х	-
487.29	487.30	487.29	487.32	1	167 RRR 169	х	-
574.30	574.30	574.30	574.29	1	¹⁷⁰ SQSPR ¹⁷⁴	х	-
331.23	331.23	331.23	331.22	1	175 R R^{176}	х	-
487.29	487.30	487.29	487.32	1	¹⁷⁵ RRR ¹⁷⁷	х	-
477.25	477.24	477.25	477.24	1	¹⁷⁸ SQSR ¹⁸¹	х	-
466.16	466.16	466.17	466.16	1	182 ESQC 185	х	-
					(C-terminal)		

a) Codes assigned to the three production batches of HBcAg characterized in this study by in-solution BFD.

b) Dashes mean that a given peptide was not detected, while "X" means that the tryptic peptide was detected and its identity was confirmed by ESI-MS/MS analysis. All signals assigned to the HBcAg sequence using the standard digestion procedure were also found in the ESI-MS spectra generated by the in-solution BFD of the three productions batches.

Figure S3. ESI-MS/MS spectra of three hydrophilic peptides obtained by the in-solution BFD procedure of the HBcAg protein: (**A**) RR (expected m/z 331.22, 1+; probable amino acid regions 151-152, 160-161, 167-168, 168-169, 175-176 or 176-177); (**B**) RRR (expected m/z 487.32, 1+; probable amino acid regions 167-169 or 175-177); and (**C**) ¹⁸²ESQC¹⁸⁵ (expected m/z 466.22, 1+) corresponding to the C-terminal peptide with free cysteine residue. The most intense fragment ions observed in the MS/MS spectra of arginine peptides shown in (**A**) and (**B**) are generated by the partial and complete loss of the guanidinium group side chain of arginine residues and are in agreement with previous works^{1,2,3}. Single-letter amino acids with asterisk represent the immonium-related ions.

Figure S4. MALDI-MS spectra of the HBcAg tryptic digestion by using the in-solution BFD procedure, (A) low mass range and (B) high mass range. Signals with asterisks were the unique detected in the matrix spectrum. Peptide sequence RRR (m/z 487.32, 1+) could be assigned to amino acid regions 167-169 or 175-177.

Experimental	Expected	Sequence
m/z (M+H) ⁺	m/z (M+H) ⁺	
3220.5864	3220.5910	1 M-R ²⁸
1237.6435	1237.6423	²⁹ D-R ³⁹
1913.8941	1913.8922	${}^{40}\text{E-R}{}^{56}$
2888.4050	2888.4069	⁵⁷ Q-R ⁸²
1579.8165	1579.8148	⁸³ D-K ⁹⁶
1990.0857	1990.0843	⁹⁷ I-R ¹¹²
1720.8987	1720.8992	⁹⁹ Q-R ¹¹²
1810.9755	1810.9737	$^{113}\text{E-R}^{127}$
2490.3710	2490.3714	128 T-R 150
2646.4716	2646.4725	128 T-R 151
503.2683	503.2684	¹⁵³ DRGR ¹⁵⁶
843.4543	843.4543	¹⁵³ DRGRSPR ¹⁵⁹
572.3263	572.3263	¹⁵⁵ GRSPR ¹⁵⁹
869.5072	869.5064	¹⁶⁰ RRTPSPR ¹⁶⁶
1025.6086	1025.6075	¹⁶⁰ RRTPSPRR ¹⁶⁷
713.4057	713.4053	¹⁶¹ RTPSPR ¹⁶⁶
869.5072	869.5064	¹⁶¹ RTPSPRR ¹⁶⁷
1025.6086	1025.6075	¹⁶¹ RTPSPRRR ¹⁶⁸
557.3041	557.3042	¹⁶² TPSPR ¹⁶⁶
713.4057	713.4053	¹⁶² TPSPRR ¹⁶⁷

Table S2. Summary of the assignment of MALDI-MS spectrum shown in figure S5 obtained from in-solution BFD of HBcAg.

869.5072	869.5064	¹⁶² TPSPRRR ¹⁶⁸
1025.6086	1025.6075	¹⁶² TPSPRRRR ¹⁶⁹
487.3210	487.3212	¹⁶⁷ RRR ¹⁶⁹
1042.5987	1042.5977	¹⁶⁷ RRRSQSPR ¹⁷⁴
886.4966	886.4966	¹⁶⁸ RRSQSPR ¹⁷⁴
1042.5987	1042.5977	¹⁶⁸ RRSQSPRR ¹⁷⁵
730.3958	730.3954	¹⁶⁹ RSQSPR ¹⁷⁴
886.4973	886.4966	¹⁶⁹ RSQSPRR ¹⁷⁵
1042.5987	1042.5977	¹⁶⁹ RSQSPRRR ¹⁷⁶
574.2943	574.2943	¹⁷⁰ SQSPR ¹⁷⁴
730.3958	730.3954	¹⁷⁰ SQSPRR ¹⁷⁵
886.4973	886.4966	¹⁷⁰ SQSPRRR ¹⁷⁶
1042.5987	1042.5977	¹⁷⁰ SQSPRRRR ¹⁷⁷
487.3210	487.3212	¹⁷⁵ RRR ¹⁷⁷
945.5457	945.5449	¹⁷⁵ RRRSQSR ¹⁸¹
789.4445	789.4438	¹⁷⁶ RRSQSR ¹⁸¹
633.3429	633.3427	¹⁷⁷ RSQSR ¹⁸¹
477.2415	477.2416	¹⁷⁸ SQSR ¹⁸¹
924.3847	924.3840	¹⁷⁸ SQSRESQC ¹⁸⁵

.

Figure S5. Deconvoluted ESI-MS/MS spectrum of a hydrophilic N-glycopeptide (34 NLTK 37)-GlcNAc₂Man₆ (expected *m*/*z* 927.39, 2+) obtained by the in-solution BFD procedure of the reduced and S-alkylated RNase B. The N-glycan structure is represented according to the nomenclature proposed by Harvey and coworkers⁵. The nomenclature used for the fragment ions is in agreement with the one proposed by Domon and Costello⁶. Signals labeled with asterisks are artefacts of the MaxEntropy software and correspond to multiply-charged ions not completely transformed into singly-charged ions in the deconvolution process.

Figure S6. ESI-MS spectrum (m/z 200-1250) of the in-solution BFD procedure of RNase B deglycosylated with Endo H (see experimental section). The arrows indicate signals assigned to hydrophilic peptides confirming the partial occupancy of the Asn³⁴ N-glycosylation site. Man and GlcNAc represent mannose and N-acetylglucosamine residues, respectively. Between parentheses the expected m/z values are indicated.

Figure S7. Deconvoluted ESI-MS/MS spectra of two hydrophilic peptides obtained by the insolution BFD procedure of the RNaseB deglycosylated with Endo H: (A) ³⁴NLTK³⁷ (expected m/z 475.30, 1+) and (B) (³⁴NLTK³⁷)-GlcNAc (expected m/z 678.37, 1+). Both peptides contain the potential N-glycosylation located at Asn³⁴. The ion at m/z 204.10 corresponds to the oxonium ion of GlnNAc residue that remains linked to Asn³⁴ after Endo H treatment. Star indicates a satellite ion at m/z 126.06 corresponding to a fragment of a GlcNAc residue in agreement with previous work⁷.

Figure S8. ESI-MS spectra (m/z 700-1220) of the tryptic digestion of S-alkylated and nondeglycosylated RNase B by using the in-solution BFD procedure during 16 h at 37 °C in presence of (**A**) aqueous solution, (**B**) 20% acetonitrile and (**C**) 50% acetonitrile, except for (**D**) performed in 80% acetonitrile and kept for 1h at room temperature (22 °C). The arrows shown correspond to signals exclusively assigned to hydrophilic high-mannose N-glycopeptides. Continuous and broken arrows correspond to the tetra- (³⁴NLTK³⁷) and hexa-peptide (³²SRNLTK³⁷), respectively linked to GlcNAc and Man residues. Man and GlcNAc represent mannose and N-acetylglucosamine residues and the expected values are indicated within parentheses.

References

[1] N. N. Dookeran, T. Yalcin, and A. G. Harrison. Fragmentation Reactions of Protonated a-Amino Acids. J. Mass Spectrom., 31(5):500–508, 1996. https://doi.org/10.1002/(SICI)1096-9888(199605)31:5<500::AID-JMS327>3.0.CO;2-Q.

[2] M. W. Forbes, R. A. Jockusch, A. B. Young, and A. G. Harrison. Fragmentation of protonated dipeptides containing arginine. Effect of activation method. J. Am. Soc. Mass. Spectrom., 18(11):1959–1966, 2007. https://doi.org/10.1016/j.jasms.2007.08.003.

[3] P. Y. I. Shek, J. Zhao, Y. Ke, K. W. M. Siu, and A. C. Hopkinson. Fragmentations of Protonated Arginine, Lysine and Their Methylated Derivatives: Concomitant Losses of Carbon Monoxide or Carbon Dioxide and an Amine. J. Phys. Chem. A, 110(27):8282–8296, 2006. https://doi.org/10.1021/jp055426k.

[4] M. Mormann, J. Eble, C. Schwöppe, R. M. Mesters, W. E. Berdel, J. Peter-Katalinić, and G. Pohlentz. Fragmentation of intra-peptide and inter-peptide disulfide bonds of proteolytic peptides by nanoESI collision-induced dissociation. Anal. Bioanal. Chem., 392(5):831–838, 2008. https://doi.org/10.1007/s00216-008-2258-7.

[5] D. J. Harvey, A. H. Merry, L. Royle, M. P. Campbell, R. A. Dwek, and P. M. Rudd. Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics, 9(15):3796–3801, 2009. https://doi.org/10.1002/pmic.200900096.

[6] B. Domon and C. E. Costello. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate J., 5(4):397–409, 1988. https://doi.org/10.1007/BF01049915.

[7] J. P. Williams, S. Pringle, K. Richardson, L. Gethings, J. P. C. Vissers, M. De-Cecco, S. Houel, A. B. Chakraborty, Y. Q. Yu, W. Chen, and J. M. Brown. Characterisation of glycoproteins using a quadrupole time-of-flight mass spectrometer configured for electron transfer dissociation. Rapid Commun. Mass Spectrom., 27(21):2383–2390, 2013. https://doi.org/10.1002/rcm.6684.