Supplementary Material

Minimization and Regression Method

As noted in the main text, other parameter estimation approaches may also be appropriate for estimating representative intrinsic period given group illuminanceresponse curve data. Therefore, we also considered minimization and regression methods that seek to find an intrinsic period value \hat{t} that minimizes the difference between functions of both light intensity and the predicted or actual intrinsic period:

$$\min_{\hat{\tau}} |f_{data}(light\ intensity, \tau) - f(light\ intensity, \hat{\tau})|$$

where the light intensities (lux) are the same for both functions and $\hat{\tau}$ is the unknown intrinsic period that is estimated using minimization. For the synthetic data, τ or mean τ are known and may be compared to the estimated representative intrinsic period as well as the MCMC estimate. For the experimental data, we used known phase shift data and compared to the MCMC estimates only. We considered three functions, *f*. (1) a pointwise comparison (*f* = *phase shift*(*light intensity*)), (2) a linear comparison (*f* = m * (light intensity) + b), and (3) a log linear comparison (*f* = *m* *

 $(\log_{10}(light intensity) + b)$. For the second and third functions, the (synthetic or experimental) phase shift data was first fitted with the equation, the model was used to simulate phase shifts, and the resulting phase shifts were fitted to the same equation. The fitted equations were then used to determine the absolute difference between the functions evaluated at τ and $\hat{\tau}$ and, ultimately, find an intrinsic period that minimizes the absolute difference. Minimization was implemented using the built in MATLAB function fminsearch.

Generally, the minimization and regression approaches were similar for all functions and robustly estimated representative intrinsic period for the synthetic data for which τ or mean τ were known (**Table S1**). Slight differences were present in for estimates using the experimental data where more variability was present. All estimates were using the minimization and regression approach were similar to the results obtained using the mean of the twelve MCMC runs (**Table S1**).

Table S1: The estimated intrinsic periods for the synthetic data sets using the three minimization and regression functions and the mean of the twelve MCMC runs of 10,000 iterations with a 5% burn-in are similar across τ values. The mean and standard deviations (std) of the synthetic data sets are also reported.

au data value or $ au$ data distribution	data mean	data std	point estimate	linear fit	log linear fit	mean of MCMC
23.7	23.7	0	23.6968	23.6966	23.6965	23.6979
N(23.7, 0.2)	23.7017	0.2148	23.7721	23.6849	23.7853	23.6969
24.2	24.2	0	24.2000	24.2000	24.2000	24.1967
N(24.2, 0.2)	24.2158	0.2054	24.3040	24.2183	24.2171	24.2121
N(24.2, 0.4)	24.2202	0.3829	24.1716	24.2473	24.2378	24.2303
24.6	24.6	0	24.6018	24.5995	24.6044	24.5999
N(24.6, 0.2)	24.6146	0.2125	24.6395	24.5916	24.5490	24.6140
24.9	24.9	0	24.8970	24.8956	24.8901	24.8893
Experimental data			24.3323	24.3093	24.1811	24.2674 (uniform)/24.2642 (normal)

Table S2: MCMC estimates of τ for simulated single τ illuminance-response curves generated from $\tau = 23.7, 24.2, 24.6, \text{ and } 24.9 \text{ h}$ were similar across initial chain values. Average τ values (±standard deviations) over twelve runs (four runs from each initial chain value $\tau = 23.9, 24.1, \text{ and } 24.7 \text{ h}$) are presented. Each MCMC run included 10,000 iterations with a 5% burn-in.

au value used	Estimated $ au$	Estimated $ au$	Estimated τ	Average
to generate	value with initial	value with	value with	estimated $ au$
data	chain value	initial chain	initial chain	value over
	<i>τ</i> =23.8 h	value	value	all runs
		<i>τ</i> =24.1 h	<i>τ</i> =24.7 h	
<i>τ</i> =23.7 h	23.6972	23.6984	23.6981	23.6979
	(±0.0408) h	(±0.0405) h	(±0.0409) h	(±0.0407) h
<i>τ</i> =24.2 h	24.1967	24.1970	24.1966	24.1967
	(±0.0417) h	(±0.0420) h	(±0.0433) h	(±0.0423) h
<i>τ</i> =24.6 h	24.5996	24.6005	24.5996	24.5999
	(±0.0433) h	(±0.0433) h	(±0.0433) h	(±0.0433) h
<i>τ</i> =24.9 h	24.8891	24.8891	24.8897	24.8893
	(±0.0382) h	(±0.0387) h	(±0.0381) h	(±0.0383) h

Table S3: Average 95% credible intervals of τ were similar across initial chain values and contained the τ value used to generate simulated single τ illuminance-response curves generated from $\tau = 23.7, 24.2, 24.6, \text{ and } 24.9 \text{ h.}$ Average 95% credible intervals of τ over four runs from each initial chain value $\tau = 23.9, 24.1, \text{ and } 24.7 \text{ h}$ are reported. Each MCMC run included 10,000 iterations with a 5% burn-in.

au value used to	Initial Chain	Initial Chain	Initial Chain	Average of
generate data	Value:	Value:	Value:	all runs
	<i>τ</i> =23.8 h	<i>τ</i> =24.1 h	<i>τ</i> =24.7 h	
<i>τ</i> =23.7 h	[23.6163,	[23.6214,	[23.6193,	[23.6190,
	23.7771]	23.7785]	23.7785]	23.7780]
<i>τ</i> =24.2 h	[24.1157,	[24.1140,	[24.1110,	[24.1136,
	24.2797]	24.2785]	24.2815]	24.2799]
<i>τ</i> =24.6 h	[24.5146,	[24.5156,	[24.5145,	[24.5149,
	24.6847]	24.6851]	24.6828]	24.6842]
<i>τ</i> =24.9 h	[24.8090,	[24.8089,	[24.8109,	[24.8096,
	24.9542]	24.9562]	24.9559]	24.9554]

Table S4: MCMC estimates of τ for simulated multi- τ illuminance-response curves approximated average τ values and were similar across initial chain values. Simulated multi- τ illuminance-response curves were generated from τs drawn from $N(23.7, 0.2^2)$, $N(24.2, 0.2^2)$, $N(24.2, 0.4^2)$, and $N(24.6, 0.2^2)$. Average τ values (±standard deviations) from four runs from each initial chain value ($\tau = 23.9, 24.1$, and 24.7 h) are presented. Each MCMC run included 10,000 iterations with a 5% burn-in.

au distribution	Initial Chain	Initial Chain	Initial Chain	Average of
data was drawn	Value:	Value:	Value:	all runs
from	<i>τ</i> =23.8 h	<i>τ</i> =24.1 h	<i>τ</i> =24.7 h	
N(23.7, 0.2 ²)	23.6970	23.6974	23.6963	23.6969
	(±0.0412) h	(±0.0409) h	(±0.0399) h	(±0.0407) h
N(24.2, 0.2 ²)	24.2122	24.2127	24.2114	24.2121
	(±0.0425) h	(±0.0421) h	(±0.0422) h	(±0.0423) h
N(24.2, 0.4 ²)	24.2310	24.2301	24.2298	24.2303
	(±0.0426) h	(±0.0421) h	(±0.0421) h	(±0.0423) h
N(24.6, 0.2 ²)	24.6140	24.6141	24.6138	24.6140
	(±0.0433) h	(±0.0435) h	(±0.0438) h	(±0.0435) h

Table S5: Average 95% credible intervals of τ contained mean τ value used to generate simulated multi- τ illuminance-response curves and were similar across initial chain values. Average 95% credible intervals of τ were computed from four runs from each initial chain value (τ = 23.9, 24.1, and 24.7 h). Simulated multi- τ illuminance-response curves were generated from τs drawn from $N(23.7, 0.2^2)$, $N(24.2, 0.2^2)$, $N(24.2, 0.4^2)$, and $N(24.6, 0.2^2)$. Each MCMC run included 10,000 iterations with a 5% burn-in.

au value data	Initial Chain	Initial Chain	Initial Chain	Average of
was generated	Value:	Value:	Value:	all runs
from	<i>τ</i> =23.8 h	<i>τ</i> =24.1 h	<i>τ</i> =24.7 h	
<i>N</i> (23.7, 0.2 ²)	[23.6171,	[23.6164,	[23.6190,	[23.6175,
	23.7779]	23.7781]	23.7757]	23.7772]
N(24.2, 0.2 ²)	[24.1286,	[24.1314,	[24.1267,	[24.1289,
	24.2947]	24.2966]	24.2930]	24.2948]
N(24.2, 0.4 ²)	[24.1486,	[24.1486,	[24.1475,	[24.1482,
	24.3157]	24.3137]	24.3137]	24.3144]
N(24.6, 0.2 ²)	[24.5286,	[24.5297,	[24.5277,	[24.5286,
	24.6986]	24.6995]	24.6990]	24.6990]

Table S6: MCMC estimates of τ for experimental illuminance-response curve data with a uniform (U(23.5, 25)) and a normal ($N(24.2, 0.2^2)$) prior were similar across initial chain values. Average τ values (±standard deviations) from four runs from each initial chain value ($\tau = 23.9, 24.1$, and 24.7 h) are presented. Each MCMC run included 10,000 iterations with a 5% burn-in.

Prior	Initial Chain	Initial Chain	Initial Chain	Average of
distribution	Value:	Value:	Value:	all runs
	<i>τ</i> =23.8 h	<i>τ</i> =24.1 h	<i>τ</i> =24.7 h	
U(23.5, 25)	24.2668	24.2673	24.2680	24.2674
	(±0.0427) h	(±0.0420) h	(±0.0430) h	(±0.0425) h
N(24.2, 0.2 ²)	24.2636	24.2648	24.2643	24.2642
	(±0.0410) h	(±0.0418) h	(±0.0413) h	(±0.0414) h

Table S7: Average 95% credible intervals of τ from four runs to estimate τ for experimental illuminance-response curve data with a uniform (U(23.5, 25)) and a normal ($N(24.2, 0.2^2)$) prior contains $\tau = 24.2$ h, the average estimated intrinsic period for healthy adults. Results were similar across initial chain values ($\tau = 23.9, 24.1$, and 24.7 h). Each MCMC run included 10,000 iterations with a 5% burn-in.

Prior	Initial Chain	Initial Chain	Initial Chain	Average of
distribution	Value:	Value:	Value:	all runs
	<i>τ</i> =23.8 h	<i>τ</i> =24.1 h	<i>τ</i> =24.7 h	
U(23.5, 25)	[24.1823,	[24.1832,	[24.1845,	[24.1833,
	24.3506]	24.3490]	24.3521]	24.3506]
N(24.2, 0.2 ²)	[24.1833,	[24.1845,	[24.1828,	[24.1835,
	24.3447]	24.3469]	24.3458]	24.3458]