	≤ 90-day survival		> 90-day s			
Parameter	Av. data No.		Av. data	No.	p-value	
Age (years) ²	36	60 (54.8 - 65.3)	246	58 (48 - 64.5)	0.099	
Gender (male/female)	36	20/16	243	146/97	0.606	
Etiology of liver disease	36		243		0.587	
Alcohol abuse		12		72		
NASH/ASH/NAFLD		4/1/0		26/5/6		
Cryptogen		5		27		
Hepatitis B/C/E		0/4/0		5/20/1		
PSC/PBC		1/0		17/7		
Drug related		1		5		
Autoimmune hepatitis		2		6		
Secondary sclerosing cholangitis		3		5		
Other		3		41		
Clinical conditions			•			
AD/ACLF	36	20/16	243	232/11	<0.001	
Inflammation (pos./neg.)	36	20/16	242	49/193	<0.001	
Ascites (pos./neg.)	36	15/21	242	58/184	0.024	
Hepatic encephalopathy	36	14/22	242	31/211	<0.001	
Hepatorenal syndrome (pos./neg.)	36	14/22	242	23/219	<0.001	
Anemia (pos./neg.)	36	10/26	243	52/191	0.39	
Comorbidities						
Coronary heart disease	36	6/30	228	14/228	0.018	
Hypertension (pos./neg.)	36	19/17	243	111/132	0.426	
Diabetes (pos./neg.)	36	10/26	243	61/182	0.731	
Chronic kidney disease	36	21/15	243	44/199	<0.001	
Hepatocellular cancer (pos./neg.)	36	3/33	243	39/204	0.227	
Alcohol abuse (neg./active/history of)	36	21/3/12	235	150/27/58	0.513	
Established clinical scores predicting survival						
CHILD A/B/C	34	2/14/18	210	89/89/32	<0.001	
MELD-Score	36	26.2 (± 8.6) ¹	213	13 (8 – 17) ²	<0.001	

AD-Score ¹	20	55.2 (±9.8)	183	46.7 (±10.2)	<0.001		
Biomedical characteristics							
WBC (10 ⁹ /l) ²	36	7.1 (5 – 11.4)	239	5.9 (4.3 – 7.9)	0.017		
Sodium ²	33	138 (134 – 141)	238	139 (136 – 142)	0.057		
Albumin (g/dl)	25	2.8 (±0.48) ¹	157	3.5 (2.8 – 4.1) ²	<0.001		
Ferritin (µg/l) ²	36	861 (244.3 – 1876.5)	243	190 (63.5 – 456)	<0.001		
Transferrin (mg/dl)	32	102.1 (±46.4) ¹	218	198.5 (137.5 – 262) ²	<0.001		
Transferrin saturation (in %) ²	32	78 (27.3 – 92)	214	31 (18 – 52)	<0.001		
Iron (µg/dl) ²	33	74 (44 – 108)	234	78 (52.3 – 122.8)	0.366		
CRP (mg/dl) ²	33	3.6 (1.8 – 7.1)	152	1.8 (0.4 – 3.6)	<0.001		
AST (U/I) ²	31	79 (54.5 – 184.5)	212	54.4 (35.8 – 114)	0.01		
ALT (U/I) ²	35	40 (23 – 110)	214	42.5 (27.3 – 84.8)	0.749		
GGT (U/I) ²	36	115.5 (37 – 326.8)	213	122 (56 – 268)	0.519		
Creatinine (mg/dl) ²	36	1.4 (1 – 2.3)	209	0.9 (0.7 – 1.2)	<0.001		
Bilirubin (mg/dl) ²	35	7.9 (2.6 – 16.3)	220	1.3 (0.7 – 2.8)	<0.001		
INR ²	36	1.9 (±0.5)	215	1.2 (1.1 – 1.5)	<0.001		
			1				

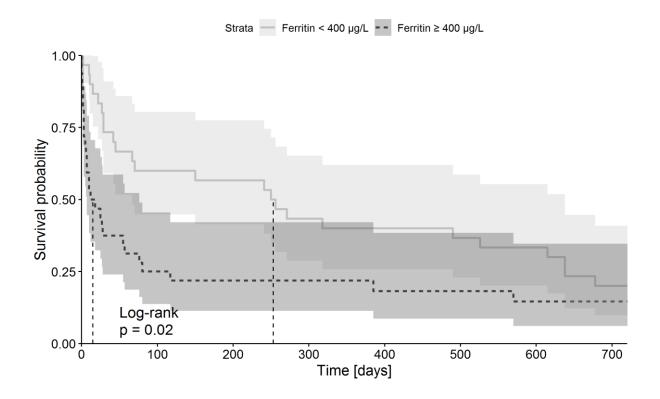
Supplemental Table 1: Demographic data and clinical conditions of included unmatched patients with end-stage liver disease based on 90-day survival (n=286). Non-alcoholic steatohepatitis (NASH), alcoholic steatohepatitis (ASH), nonalcoholic fatty liver disease (NAFLD), primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), acute decompensation (AD), acute on chronic liver failure (ACLF)

¹ Mean (\pm Std. deviation); ² Median (1st – 3rd quartile)


	≤ 90-day survival		> 90-day :		
Parameter	Av. data No.		Av. data	Av. data No.	
Age (years) ²	36	60 (54.8 – 65.3) ²	36	57.1 (±8.8) ¹	0.157
Gender (male/female)	36	20/18	36	18/18	0.637
Etiology of liver disease	36		36	•	0.448
Alcohol abuse		12		20	
NASH/ASH/NAFLD		4/1/0		1/1/0	
Cryptogen		5		4	
Hepatitis B/C/E		0/4/0		0/5/0	
PSC/PBC		1/0		0/0	
Drug related		1		2	
Autoimmun Hepatitis		2		1	
Secondary sclerosing cholangitis		3		0	
Others		3		2	
Clinical conditions					
AD/ACLF	36	20/16	36	25/11	<0.001
Inflammation (pos./neg.)	36	20/16	36	20/16	1
Ascites (pos./neg.)	36	15/21	36	24/12	0.033
Hepatic encephalopathy	36	14/22	36	12/24	0.624
Hepatorenal syndrome (pos./neg.)	36	14/22	36	11/25	0.458
Anemia	36	10/26	36	12/24	0.609
Comorbidities					
Coronary heart disease	36	6/30	36	1/35	0.047
Hypertension (pos./neg.)	36	19/17	36	15/21	0.345
Diabetes (pos./neg.)	36	10/26	36	5/31	0.147
Chronic kidney disease	36	21/15	36	8/28	0.002
Hepatocellular cancer (pos./neg.)	36	3/33	36	2/34	0.643
Alcohol abuse (neg./active/history	36	21/3/12	35	14/15/6	0.003
of)					
Scores predicting survival					
CHILD A/B/C	34	2/14/18	36	7/14/15	0.224
MELD-Score ¹	36	26.2 (± 8.6)	34	20 (± 7.5)	0.003

AD-Score ¹	20	55.2 (± 9.8)	22	53.2 (± 8.7)	0.493			
Biomedical characteristics	Biomedical characteristics							
WBC (10 ⁹ /l) ²	36	7.1 (5 – 11.4)	36	6.8 (4.9 – 10.7)	0.757			
Sodium	33	138 (134 – 141) ²	36	135.5 (± 6) ¹	0.423			
Albumin (g/dl) ¹	25	2.8 (± 0.5)	24	3.0 (± 0.9)	0.257			
Ferritin (µg/l) ²	36	861 (244.3 – 1876.5)	36	251.5 (85.8 – 995.3)	0.017			
Transferrin (mg/dl)	32	102.1 (± 46.4) ¹	35	119 (76 – 191.5) ²	0.108			
Transferrin saturation (in %) ²	32	78 (27.3 – 92)	32	55 (21.8 – 82.5)	0.080			
Iron (µg/dl) ²	33	74 (44 – 108)	33	69 (47 – 116)	0.918			
CRP (mg/dl)	33	3.6 (1.8 – 7.1) ²	27	3.7 (± 2.6) ¹	0.444			
AST(U/I) ²	31	79 (54.5 – 184.5)	32	104 (56.3 – 199)	0.685			
ALT (U/I) ²	35	40 (23 – 110)	32	42.5 (27.8 – 102.75)	0.679			
GGT (U/I) ²	36	115.5 (37 – 326.8)	32	115.5 (48 – 207.3)	0.658			
Creatinine (mg/dl) ²	36	1.4 (1 – 2.3)	33	1.1 (0.8 – 1.7)	0.048			
Bilirubin (mg/dl) ²	35	7.9 (2.6 – 16.3)	33	4.40 (1.6 – 9.9)	0.133			
INR	36	1.9 (± 0.53) ¹	33	1.5 (1.3 – 1.7) ²	0.014			

Supplemental Table 2: Propensity score matched demographic data and clinical conditions of the included patients with end-stage liver disease (n=72). Non-alcoholic steatohepatitis (NASH), alcoholic steatohepatitis (ASH), non-alcoholic fatty liver disease (NAFLD), primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), acute decompensation (AD), acute on chronic liver failure (ACLF


¹ Mean (\pm Std. deviation); ² Median (1st – 3rd quartile)

Subgroup analysis of the effect of alcohol abuse upon serum ferritin levels of patients with end stage liver disease.

Supplemental Figure 1: Differences in serum ferritin levels of end-stage liver disease patients based upon alcohol abuse in unmatched analysis. Patients were grouped in patients with no, with active and with a history of alcohol abuse. Pairwise comparisons of serum ferritin levels based upon subgroups of alcohol abuse. There was a significant difference between the serum ferritin value of patients with active alcohol abuse compared to patients with no alcohol abuse (p=0.013). The Y-axis has been limited to a maximum value of 5000 µg/L to allow for better visualization.

Analysis based on hyperferritinemia

Supplemental Figure 2: Overall survival based on hyperferritinemia. The cutoff for hyperferritinemia was chosen based on the upper reference limit of our laboratory. Statistically significant differences between both groups can be demonstrated over the two-year observational period (p=0.02). Vertical lines indicate median survival (serum ferritin level >400 μ g/L: 15 days; serum ferritin level <400 μ g/L: 253 days). Shaded areas represent the 95% confidence interval.

Parameter	Survival (%)	95% CI (lower – upper)
Serum ferritin ≤ 400 µ/L	60%	44.8% - 80.4%
Serum ferritin > 400 µ/L	25%	13.7% - 45.5%

Supplemental Table 3: 90-day survival expressed as percentage values including

lower and upper 95% confidence intervals.

Overview of currently published studies evaluating the role of ferritin and transferrin for the outcome of patients with end-stage liver disease (ESLD).

Author, year (Ref No.)	Study design	No of patients included (n)	Parameter	Study Titel	Results
Walker 2010 ¹	Retrospective cohort	322	SF	SF concentration predicts mortality in patients awaiting LT	 SF ≥200 µg/L independent risk factor for significantly increased 1-y mortality in patients awaiting LT (p=0.01)
Weismüller 2011 ²	Retrospective cohort	410	SF	SF concentration and transferrin saturation before LT predict decreased long-term recipient survival	 Patients with a SF ≥365 µg/L before LT had a significant lower overall survival following LT than patients with a SF <365 µg/L (61.1% vs. 74.4%; p<0.01)
Al-Freah 2013 ³	Retrospective cohort	1079	SF	The association of pretransplant ferritin level with waiting list and post- transplant survival. Does ferritin actually predict outcome?	 ESLD patients with a SF >300 µg/L had a significantly increased 3-, 6- and 12-month mortality compared to ESLD patients with a SF ≤300 µg/L (18.4%; 28.0% and 33.4% vs. 9.7%, 15.4% and 21.5%; all p<0.001)
Maiwall 2014⁴	Retrospective cohort	318	SF	SF predicts early mortality in patients with decompensated cirrhosis	 SF (≥200 µg/L) was a significant predictor of early mortality (15-d and 30-d) in patients decompensated cirrhosis (p<0.05)
Wu 2014 ⁵	Prospective cohort	172	SF	SF concentration predicts mortality in patient with hepatitis B virus-related acute-on- chronic liver failure	 Patients with hepatitis b virus-related acute-on-chronic liver failure and elevated SF levels (>500 µg/L) had a significant higher 3-month mortality rate than patients with lower SF levels (p<0.01) The AUROCs for 3-month mortality were 0.64 for SF (p<0.01) and 0.91 for MELD+SF (p<0.001)
Maras 2015 ⁶	Prospective cohort	160	SF/ST	Dysregulated iron homeostasis is strongly associated with multiorgan failure and early mortality in acute-on- chronic liver failure	 Lower ST levels were found in patients with acute-on-chronic liver failure (with and without multi-organ failure) compared to patients with compensated cirrhosis and healthy controls (p<0.01) Higher SF levels were found in patients with acute-on-chronic liver failure with multi-organ failure compared to those without and healthy controls (p<0.05)
Ripoll 2015 ⁷	Retrospective cohort	51	SF	SF in patients with cirrhosis is associated with markers of liver insufficiency and circulatory dysfunction, but not of portal hypertension	 SF was not associated with prolonged survival in patients with liver cirrhosis in univariate analysis (p value not provided) SF levels were not different in liver cirrhosis patients who died compared to patients who were still alive at the end of follow-up (p value not provided)
Beer 2015 ⁸	Retrospective cohort	405	SF	Etiologies and short-term mortality in	 Patients with an acute liver injury and SF values >5000 μg/L have a 30-d

				patients with ultraelevated SF	mortality of 33% and a 6-month mortality of 39%
Hagström 2016 ⁹	Retrospective cohort	222	SF	Elevated SF is associated with increased mortality in non- alcoholic fatty liver disease after 16 y of follow-up	 High SF cutoff values (men >350 µg/L; women >150 µg/L) showed an increased mortality 15 y after diagnosis in patients with non- alcoholic fatty liver disease (hazard ratio 1.1 per y; p<0.05)
Anastasiou 2017 ¹⁰	Retrospective cohort	102	SF/ST	Low transferrin and high ferritin concentrations are associated with worse outcome in acute liver failure	 Patients with SF >1510 μg/L had a significant higher mortality in patients with acute liver failure compared to patients with SF <1510 μg/L (p<0.0001) Patients with ST <155 mg/dL had a significant higher mortality in patients with acute liver failure compared to patients with ST >155 mg/dL (p<0.0001) The AUROC for 90-d survival were 0.80 for SF, 0.87 for ST, 0.89 for MELD+SF and 0.95 for MELD+ST (all p<0.002)
Bruns 2017 ¹¹	Prospective cohort	292	SF/ST	Low ST correlates with acute-on- chronic organ failure and indicates short- term mortality in decompensated cirrhosis	 90-d non-survivors presented with higher SF (p=0.03) and lower ST (p=0.02) The AUROCs for 30-d mortality were 0.68 for ST (p=0.003) and 0.75 for MELD+ST (p value not provided)
Oikonomou 2017 ¹²	Retrospective cohort	192	SF	High SF is associated with worse outcome of patients with decompensated cirrhosis	 SF was an independent risk factor for mortality (HR 1.001; p=0.005) SF had a low discriminative ability to the outcome of patients with decompensated cirrhosis (AUROC of 0.61) Patients with cut-off SF >55 μg/L had a worse outcome (p=0.001)
Umer 2017 ¹³	Prospective cohort	132	SF	SF as a predictor for 30- d mortality in patients of decompensated chronic liver disease	 Patients with elevated SF levels had a significantly increased 30-d mortality (SF <200 μg/L: 0% mortality; SF 200-400 μg/L: 50% mortality; SF >400 μg/L: 93% mortality; p<0.001)
Viveiros 2018 ¹⁴	Retrospective cohort	1851	ST	Transferrin as a predictor of survival in cirrhosis	 In ESLD patients with ST <180mg/dL, 3-month, 1-y, and 5-y transplant-free survival rates were significantly lower (92%, 79% and 31%) compared to ESLD patients with ST ≥180 mg/dL (99%, 96% and 68%; all p<0.001)
Ribot- Hernandez 2019 ¹⁵	Prospective cohort	238	SF/ST	Prognostic value of serum iron, ferritin and transferrin in chronic alcoholic liver disease	 ST was significantly associated with survival of patients with chronic alcoholic liver disease (p<0.05 in log- rank test) No association was found between SF and survival of patient with chronic alcoholic liver disease (p value not provided)

Supplemental Table 4: Overview of currently published studies evaluating the role of

ferritin and transferrin for the outcome of patients with end-stage liver disease (ESLD).

After performing a systematic literature search in an electronic database (database: NCBI

pubmed; search items "ferritin AND outcome AND liver", "transferrin AND outcome AND liver", "ferritin AND survival AND liver" and "transferrin AND survival AND liver"; date of search: 29/09/2019) 1112 records were identified. After removing duplicates, 925 records were checked for evaluating the role of ferritin and transferrin for the outcome of ESLD patients. Finally, 15 records could be identified. Exclusion of records: Non-English language, case reports, case series, abstracts only, congress abstracts, reviews and animal studies. Abbreviations: D=day; y=year; AUROC=area under the receiver operating characteristic; SF=serum ferritin; ST=serum transferrin; ESLD=end-stage liver disease; LT=liver transplantation; MELD=Model of end-stage liver disease.

REFERENCES:

1. Walker NM, Stuart KA, Ryan RJ, et al. Serum ferritin concentration predicts mortality in patients awaiting liver transplantation. *Hepatology*. 2010; 51: 1683-91.

2. Weismuller TJ, Manns MP and Strassburg CP. Ferritin and liver allocation? Impact on mortality not only on the waiting list but also after orthotopic liver transplantation should be considered. *Hepatology*. 2010; 52: 392-3; author reply 3.

3. Al-Freah MA, Kriese S, Foxton MR, et al. The association of pretransplant ferritin level with waiting list and post-transplant survival. Does ferritin actually predict outcome? *Transpl Int.* 2013; 26: 1070-9.

4. Maiwall R, Kumar S, Chaudhary AK, et al. Serum ferritin predicts early mortality in patients with decompensated cirrhosis. *J Hepatol*. 2014; 61: 43-50.

5. Wu J, Chen L, Chen Y, Yang J and Wu D. Serum ferritin concentration predicts mortality in patients with hepatitis B virus-related acute on chronic liver failure. *Arch Med Res.* 2014; 45: 251-6.

6. Maras JS, Maiwall R, Harsha HC, et al. Dysregulated iron homeostasis is strongly associated with multiorgan failure and early mortality in acute-on-chronic liver failure. *Hepatology*. 2015; 61: 1306-20.

7. Ripoll C, Keitel F, Hollenbach M, Greinert R and Zipprich A. Serum Ferritin in Patients With Cirrhosis is Associated With Markers of Liver Insufficiency and Circulatory Dysfunction, but Not of Portal Hypertension. *J Clin Gastroenterol*. 2015; 49: 784-9.

8. Beer T and Vadakara J. Etiologies and Short-Term Mortality in Patients with Ultraelevated Serum Ferritin. *South Med J.* 2015; 108: 574-8.

9. Hagstrom H, Nasr P, Bottai M, et al. Elevated serum ferritin is associated with increased mortality in non-alcoholic fatty liver disease after 16 years of follow-up. *Liver Int.* 2016; 36: 1688-95.

10. Anastasiou OE, Kalsch J, Hakmouni M, et al. Low transferrin and high ferritin concentrations are associated with worse outcome in acute liver failure. *Liver Int.* 2017; 37: 1032-41.

11. Bruns T, Nuraldeen R, Mai M, et al. Low serum transferrin correlates with acute-onchronic organ failure and indicates short-term mortality in decompensated cirrhosis. *Liver Int.* 2017; 37: 232-41.

12. Oikonomou T, Goulis I, Soulaidopoulos S, et al. High serum ferritin is associated with worse outcome of patients with decompensated cirrhosis. *Ann Gastroenterol.* 2017; 30: 217-24.

13. Umer N, Makki MU, Kiran SK and Jadoon NA. Serum ferritin as a predictor of 30 days mortality in Patients of decompensated chronic liver disease. *J Ayub Med Coll Abbottabad*. 2017; 29: 415-8.

14. Viveiros A, Finkenstedt A, Schaefer B, et al. Transferrin as a predictor of survival in cirrhosis. *Liver Transpl.* 2018; 24: 343-51.

15. Ribot-Hernandez I, Martin-Gonzalez C, Vera-Delgado V, et al. Prognostic Value of Serum Iron, Ferritin, and Transferrin in Chronic Alcoholic Liver Disease. *Biol Trace Elem Res.* 2019.