Appendix

Appendix A

Benchmark line	Categories	Installed capacity (MW)	The benchmark value (tCO2/MWh)
1	Coal-fired power unit	(0,100]	1.0177
2	Coal-fired power unit	(100,300]	0.9266
3	Coal-fired power unit	(300,600]	0.8748
4	Coal-fired power unit	(600,+∞)	0.8066
5	Integrated Gasification Combined Cycle unit	(0,300]	0.9565
6	Integrated Gasification Combined Cycle unit	(300,+∞)	1.1597
7	Gas-fired power unit	(0,200]	0.5192
8	Gas-fired power unit	(200,+∞)	0.3795

Table A.1. Detailed parameters and their sources in the benchmarking

Table A. 2. Technology set for the power industry

Technology	Description Investment cost (yuan/KW) Annual change in O&M cost (yuan/KW)		Annual energy savings (tce/MW)	Annual CO2 emission reductions (t/MW)	
A1	Modernized retrofit of flow passage of steam turbine	10.06	0	19	51
A2	Transformation of seal system of steam turbine	2	-0.1	11	29
A3	Control technology of energy- saving and efficiency of electrostatic precipitation	7.83	0	5	12
A4	Transformation of pure condensing steam unit to CHP	2.77	0	35	92
A5	Contacting sealing technology of rotary air pre heater	6	0	12	32
A6	intelligent optimization and online coking early warning system of utility boiler	58	0.5	1	3
A7	Steam heating startup technology of utility boiler from neighboring unit	164.18	0	1	3
A8	Flue gas waste heat recovery and fan operation optimization technology of FGD	625	0	15	38
A9	Integrated technology of improved performance of steam turbine in power plant	3.91	0	30	79
A10	Integrated optimization system of flue gas and advanced heat recovery technology	1	-0.7	13	34

	Vacuum maintenance and					
A11	energy-saving technology of	40	0.39	10	26	
	power plants' condensers					
	Draft fan and steam-driven					
A12	technology of SC and USC	8.2	0	3	8	
	unit					
A 13	Efficient centrifugal spray	12.0	0	6	16	
AIS	device in cooling tower	12.9	0	0	10	
	Double backpressure dual					
A14	rotor swap cycle-water heating	21.85	13.06	180	952	
	technology					
A15	Energy-saving seal technology	30	0	4	11	
AIS	for rotary air preheater	50	0	4	11	
	High parameter and large					
A16	capacity technology for brown	16.67	0	220	582	
	coal powder boilers					
	Gas-steam combined cycle					
A17	technology using low-heat	30	0	83	218	
	value blast furnace gas					
Δ18	Pilot fuel gas alternative	100	0	98	259	
	technology for gas turbine	100	0	20	237	
Δ19	High efficiency combined	343 33	0	24	64	
	evaporative condenser	545.55	0	27	01	
	Boiler combustion					
A20	temperature monitor and	9	0	7	18	
	performance optimization	,	Ū		10	
	system					
A21	Thermoelectric synergy	435.19	0	140.5	743	
	district heating technology		-			
A22	energy-saving technology of	166.67	0	689	1805	
	small-middle steam turbine		-			
	Coordinated control			6		
A23	technology of USC unit based	51.41	0.06		16	
	on load adjustment of					
	condensate					
	Stable combustion and oil-		<u>^</u>	10	- 1	
A24	saving technology of oxygen-	175	0	19	51	
	enriched ignition					
1.25	Energy-saving technology of	22.15	0	10	21	
A25	electric precipitation with	32.17	0	10	21	
	quasi stable DC power					
100	generalized regeneration	1.0	0	55	150	
A26	technology for 1000 MW	1.8	0	55	150	
	USC unit	24	0	00	217	
A27	CHP	24	0	80	21/	
A28	Scaling apparatus of spiral	20.94	0	20	54	
	Strips for condenser					
4.00	Efficient utilization of CFB	130 1	0	1.0	16	
A29	boller lifting ultra-low heat	128.1	0	18	40	
	value gangue					

Source: Chen et.al (2017).

Appendix B

(1) Datang group with market power

Table B.1 shows the simulation results when Datang group with market power and other power plants are price-takers. Compared with the scenario that all power plants are price-takers, the following conclusions can be drawn. First, ETS with different carbon permits allocation schemes will bring about a downturn in carbon price and the average cost-saving effect. Second, the total abatement cost of Datang group changes quite distinctly as the carbon allowance allocation policy changes. For instance, in Scenario S0, Datang group with market power increases its total abatement cost by 0.39% because of a great increase in emission reductions, but significantly reduces trading cost by 16.66% due to the fact that the decrease of carbon price as well as the amount of purchasing carbon permits. However, in Scenarios A1 and A2, Datang group reduces its total abatement cost in a certain extent. Third, more than 75% of price-taking power plants increase their total abatement costs in all three Scenarios S0, A1 and A2. For example, in Scenario S0, changes in total abatement cost range from -2.34% to 11.41% and 322 power plants' total abatement cost increase. But the aggregate abatement cost of all power plants falls in all three Scenarios S0, A1 and A2. This is because the amount of abatement cost reduced by Datang group is greater than it increased by price-taking power plants. In addition, it should be noticed that emission trading role changes quite distinctly as the carbon allowance allocation policy changes. In Scenarios A1 and A2, there are 157 and 263 power plants respectively change their emission trading role, while only three coal-fired power plants increase their CO2 emissions from permits seller to permits buyer in Scenario S0.

			S 0	A1	A2
Carbon price (yuan/tCO2)		12.93	13.13	13.30	
	The average	cost-saving effect	11.67%	12.05%	12.14%
The aggregate abatement cost		-0.10%	-0.50%	-0.60%	
		Changes in emission reductions	25.14%	13.61%	4.05%
	Datang group with	Changes in emissions	-0.56%	-0.30%	-0.09%
	group with market	Changes in total abatement cost	0.39%	-4.17%	-5.38%
	power	Changes in trading cost	-16.66%	-17.02%	-1131.76%
			(buyer)	(buyer)	(seller)
The	The lowest initial carbon intensity	Changes in emission reductions	-3.29%	-1.78%	-0.53%
feature of		Changes in emissions	0.05%	0.03%	0.008%
		Changes in total abatement cost	-2.30%	-1.24%	-0.37%
plant		Changes in trading cost	4.67%	187.92%	4993.08%
plant			(buyer)	(from buyer to seller)	(buyer)
		Changes in emission reductions	-3.29%	-1.78%	-0.53%
	The highest	Changes in emissions	0.02%	0.01%	0.003%
	initial carbon	Changes in total abatement cost	-2.23%	-1.20%	-0.37%
	intensity	Changes in trading cost	4.58%	-21.92%	2320.38%
			(buyer)	(buyer)	(buyer)

Table B.1. Datang grou	p with market	power under	different carbo	n permits all	ocation schemes
<i></i>					

(2) Huadian group with market power

Table B.2 shows the simulation results when Huadian group with market power and other power plants are price-taker. Compared with the scenario that all power plants are price-takers, the following conclusions can be drawn. First, ETS with different carbon permits allocation schemes will bring about a downturn in carbon price and the average cost-saving effect. Second, as a strategic enterprise, by manipulating carbon

price, Huadian group with market power reduces its total abatement cost in all three Scenarios S0, A1 and A2. For example, Huadian group with market power significantly reduce its total abatement cost by 11.30% and trading cost by 45.81% in Scenario S0. Third, more than 75% of price-taking power plants increase their total abatement costs in all three Scenarios S0, A1 and A2. For example, changes in total abatement cost range from -3.67% to 17.33% and the total abatement costs of 323 power plants increase in Scenario S0. However, the aggregate abatement cost of all power plants falls in all three Scenarios, because the amount of abatement cost reduced by Huadian group is greater than it increased by price-taking power plants. Furthermore, emission trading role changes obviously as changes in the carbon allowance allocation policy. For example, 15 power plants change their emission trading role in Scenario S1, among them, 8 power plants reduce their carbon emissions from permits buyer to permits seller. But in Scenarios S0 and A2, there are just 3 and 5 power plants respectively increase their CO2 emissions from permits seller to permits buyer.

			S 0	A1	A2
Carbon price (yuan/tCO2)		12.68	12.89	13.15	
	The average	cost-saving effect	11.33%	11.24%	11.22%
The aggregate abatement cost		-1.81%	-1.24%	-1.69%	
	TT 1'	Changes in emission reductions	9.77%	4.85%	10.98%
	group with	Changes in emissions	-2.00%	-0.10%	-0.23%
	group with market	Changes in total abatement cost	-11.30%	-11.20%	-11.43%
	power	Changes in trading cost	-45.81%	17.81%	147.80%
			(buyer)	(seller)	(from seller to buyer)
The	The lowest initial carbon intensity	Changes in emission reductions	-5.13%	-3.60%	-1.62%
feature of		Changes in emissions	0.08%	0.05%	0.02%
nower		Changes in total abatement cost	-3.62%	-2.53%	-1.12%
nlant		Changes in trading cost	4.97%	-3.72%	1.52%
plant			(buyer)	(seller)	(buyer)
		Changes in emission reductions	-5.13%	-3.60%	-1.62%
	The highest	Changes in emissions	0.09%	0.02%	0.01%
	initial carbon	Changes in total abatement cost	8.16%	-2.45%	-1.09%
	intensity	Changes in trading cost	4.94%	-3.55%	-1.09%
			(buyer)	(buyer)	(buyer)

Table B.2. Huadian group with market power under different carbon permits allocation schemes

(3) Guodian group with market power

Table B.3 shows the simulation results when Guadian group with market power and other power plants are price-taker. Compared with the scenario that all power plants are price-takers, the following conclusions can be drawn. First, ETS with different carbon permits allocation schemes will bring about a downturn in carbon price and the average cost-saving effect. Second, the total abatement cost of Guadian group changes quite obviously as the carbon allowance allocation policy changes. For instance, in Scenario S0, Guadian group with market power reduce its total abatement cost by 1.45% and significantly reduces trading cost by 99.71%. However, in Scenarios A1 and A2, Datang group reduces its total abatement cost in a certain extent. Third, more than 75% of price-taking power plants increase their total abatement cost is all three Scenarios S0, A1 and A2. For example, in Scenario S0, changes in total abatement cost range from -3.30% to 15.70% and 315 power plants' total abatement cost increase. But the aggregate abatement cost of all power plants falls in Scenarios S0 and A1. This is because the amount of abatement cost reduced by Guodian group is greater than it increased by price-taking power plants. Moreover, changes in emission trading role have subtle difference under different carbon permits allocation schemes. In Scenarios S0 and A2, there are 3 and 3 power plants respectively increase their CO2 emissions from permits seller to permits buyer. But all sampled power plants don't change their emission trading role in Scenario A1.

			SO	A1	A2
Carbon price (yuan/tCO2)			12.75	13.30	13.26
	The average	cost-saving effect	12.11%	11.99%	12.00%
	The aggrega	te abatement cost	-0.07%	-0.95%	0.15%
	Cuedien	Changes in emission reductions	33.36%	3.73%	10.98%
	Guodian group with	Changes in emissions	-0.77%	-0.09%	-0.23%
	group with market	Changes in total abatement cost	1.45%	-8.54%	-11.43%
	power	Changes in trading cost	-99.71%	16.65%	147.80%
			(buyer)	(seller)	(from seller to buyer)
The	The lowest initial carbon intensity	Changes in emission reductions	-4.62%	-0.51%	-0.78%
feature of		Changes in emissions	0.07%	0.008%	0.011%
neature of		Changes in total abatement cost	-3.26%	-0.34%	-0.54%
plant		Changes in trading cost	-4.46%	-0.57%	0.77%
plant			(buyer)	(seller)	(buyer)
		Changes in emission reductions	-4.62%	-0.51%	-0.78%
	The highest	Changes in emissions	0.03%	0.003%	0.004%
	initial carbon	Changes in total abatement cost	-3.15%	0.06%	-0.52%
	intensity	Changes in trading cost	-4.57%	-0.76%	-0.55%
		Changes in trading cost	(buyer)	(buyer)	(buyer)

Table B.3. Guodian group with market power under different carbon permits allocation schemes

(4) State power investment group with market power

Table B.4 shows the simulation results when State power investment group with market power and other power plants are price-taker. Compared with the scenario that all power plants are price-takers, the following conclusions can be drawn. First, ETS with different carbon permits allocation schemes will bring about a downturn in the average cost-saving effect. Second, as a strategic enterprise, by manipulating carbon price, State power investment group with market power reduces its total abatement cost in all three Scenarios S0, A1 and A2. For example, State power investment group reduce its total abatement cost by 1.67% and significantly reduces trading cost by 99.35% in Scenario S0. Third, more than 75% of price-taking power plants increase their total abatement costs in Scenarios S0 and A2, while less than 25% of price-taking power plants increase their total abatement costs in Scenario A1. For example, in Scenario S0, changes in total abatement cost range from -2.49% to 12.10% and 342 power plants' total abatement cost increase. Additionally, the aggregate abatement cost of all power plants falls in all three Scenarios, because the amount of abatement cost reduced by State power investment group is greater than it increased by price-taking power plants. However, changes in total abatement cost range from -0.45% to 0.09% and just 96 power plants' total abatement cost increase. Besides, changes in emission trading role are not obvious in all three Scenarios S0, A1 and A2. Be specific, all sampled power plants don't change their emission trading role in Scenario A1 and there are only two and one power plants respectively increase their CO2 emissions from permits seller to permits buyer in Scenarios S0 and A2.

Table B.4. State power investment group with market power under different carbon permits allocation

schemes

			S 0	A1	A2
Carbon price (yuan/tCO2)			12.90	13.38	13.33
The average cost-saving effect			11.72%	11.60%	11.62%
The aggregate abatement cost			-0.18%	-0.21%	-0.23%
The	State power	Changes in emission reductions	16.10%	6.38%	4.19%
feature of	investment	Changes in emissions	-0.30%	0.04%	-0.08%

power	group with	Changes in total abatement cost	-1.67%	-2.40%	-2.71%
plant	market	Changes in trading cost	-99.35%	-2.19%	-25.85%
	power		(buyer)	(seller)	(buyer)
		Changes in emission reductions	-3.50%	0.13%	-0.28%
	The lowest	Changes in emissions	0.05%	-0.002%	0.004%
_	initial carbon	Changes in total abatement cost	-2.45%	0.09%	-0.20%
	intensity	Changes in trading cost	-3.38%	0.079%	0.28%
			(buyer)	(seller)	(buyer)
		Changes in emission reductions	-3.50%	0.13%	-0.28%
	The highest	Changes in emissions	0.02%	-0.001%	0.002%
	initial carbon	Changes in total abatement cost	-2.38%	0.08%	-0.19%
	intensity	Changes in trading cost	-3.47%	0.073%	-0.20%
			(buyer)	(buyer)	(buyer)