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     SUPPLEMENTARY MATERIAL 

 

S1. Transition Probabilities 

Below are the annual transition probabilities (per year) used in the multistate model in Figure 1. The 

references on which they are based are provided. Here rij(a) is the probability of transitioning from state i 

at age a to stage j at age a+1. Also, di (a, g) are the annual death rates for a person of age a and gender g 

who is in state i. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S.2 Calculation of ( ), , ,kP a g I J  

The probability that an individual in study arm k (control =1 or intervention=2) who is age a (in years), 

gender g, and is initially in preclinical state I at enrollment reaches state J during T years of follow-up is 
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called ( ), , ,kP a g I J  where state  J is the primary study endpoint (e.g. MCI state 5 or Alzheimer’s 

dementia state 7). Here we use the notation ( ), , ,kP a g I J rather than simply Pk to emphasize that the 

probability depends on enrollment age, gender, the initial state (I) and the final primary endpoint (J). This 

probability, ( ), , ,kP a g I J , is the summation of probabilities of entering state J at exactly age a+n(.25) 

for values of n ranging from 1 to 4T (the factor .25 arises  because 1 time unit=.25 years; the term 4T 

arises because there are 4T time units over T years if one time unit=.25 years); that is, 
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where ( ), , ,n a g I Jf |  is the probability of entering state J at exactly age a+n(.25) for a person who at 

enrollment is in disease state I at age a. It turns out that the terms ( ), , ,n a g I Jf | can be calculated by 

matrix multiplication of one step transition matrices as described next. 

 
We assume the disease process illustrated in Figure 1 in the paper is a discrete nonhomogeneous 

multistate Markov model. We use a discrete time model in which transitions into and out of states occur 

only at discrete time points. We allow only one transition in a time unit. The one step transition matrix 

( ),a gT  gives the probabilities for an individual who is age a and gender g of transitioning from one 

state to another state in one time unit (one time unit=0.25 years). The entry in the ith row and jth column of 

the matrix ( ),a gT , called pij(a, g), is the probability that a person who age a (in years), gender g and is in 

state i will transition to state j at age a+.25. We wish to calculate ( ), , ,n a g I Jf | which is the probability 

a person who is age a and in disease state I enters state J at exactly age a+n(.25). 

 

The n-step transition matrix ( ) ( ),n a gT  is a matrix where the entry in the ith row and jth column is the 

probability that an individual who is age a and is in state i will be in state j at age a+n(.25). The n-step 

transition matrix ( ) ( ),n a gT  can be calculated by matrix multiplication, and is the product of n one step 

transition matrices; specifically, the n-step transition matrix is       
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The above result follows from the Chapman-Kolmogorov equation. The entry in the Ith row and Jth 

column of ( ),n a gΤ  is the probability that an individual who is age a and in state I is in state J at age 

a+n(.25) . Now, that probability includes the possibilities that the individual first entered state J at any of 

the ages between (or equal to) a+.25 and a+n(.25). However, the quantity we need is ( ), , ,n a g I Jf |  

which refers to the probability that a person enters state J at exactly age a+n(.25). Fortunately, we can 

also obtain ( ), , ,n a g I Jf |  through matrix multiplication using the following adjustment. We define an 

adjusted one step transition matrix W where W is the same as the one step transition matrix T with the 

following important difference: the probability of death in one time unit for persons in states J is always 

set to 1. By making that adjustment, we remove the possibility that a person remains in state J for more 

than one time unit. Let   
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Then the entry in the Ith row and Jth column of ( ),n a gW  is ( ), , ,n a g I Jf |  which we use in equation to 

obtain ( ), , ,kP a g I J  

 

 S.3  Impact of Ages at Enrollment 

We considered the impact of ages at enrollment on ( ), , ,kP a g I J  and thus on sample size requirements. 

We assumed the numbers of males and females trial participants are approximately equal and that the 

distributions of ages at trial enrollment are the same for males and females. Let w(a) represent the 

proportion of trial participants who are enrolled at age a. Then, the probability of a primary endpoint 

occurring in group k is  
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 We considered three age distributions: a young age distribution where w(a)= 0.25 at ages a=60, 65, 70 

and 75 (and 0 at other ages) which has a mean age of 67.5; a uniform age distribution where w(a)= 0.167 

at ages a=60, 65, 70, 75, 80 and 85 which has a mean age of 72.5; an old age distribution where w(a) 

=0.25 at ages a=70, 75, 80 and 85 which has a mean age of 77.5.  
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S.4 Impact of Preclinical Disease Enrollment Criteria 

We also considered the impact of preclinical disease state at enrollment on ( ), , ,kP a g I J  and thus on 

sample size requirements. For example, we considered secondary prevention trials that enrolled persons 

with amyloidosis who are in state 2 (I=2). We considered primary prevention trials that enrolled persons 

without any brain pathology who are in the normal state 1 (I=1). We also considered trials that did not 

screen with biomarkers for the specific preclinical disease state and instead enrolled a random sample (or 

cross-section) of persons in preclinical states (I=1, 2, 3 or 4). In the case of random sampling of persons 

who are preclinical, the probability of a primary event (state J) is  
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where ( ),f I a  is the proportion in individuals at age a who are preclinical (states1 through 4) that are in 

state I. These proportions can be obtained from estimates of the prevalence in each disease state.1 It turns 

out that these proportions are nearly identical for males and females and so we use only one set of values 

for ( ),f I a rather than gender specific values. The proportion of persons at age a who are in state I 

among those who are preclinical (states 1, 2, 3 or 4) is denoted by ( ),f I a . These proportions are used in 

the calculation of sample sizes when a random sample of persons in the preclinical states (states1-4) is 

enrolled. The numbers in the Table below are based on state specific prevalence rates by age.2  

 

Table S1: Values of ( ),f I a  

age   I=1 I=2 I=3 I=4 

60 .692 .189 .056 .063 

65 .550 .241 .085 .124 

70 .390 .266 .120 .224 

75 .236 .249 .151 .364 

80 .121 .185 .165 .529 

85 .049 .108 .157 .686 

 

 

The  values f(I, a) given in Table S1 can also be used to calculate the factor to inflate sample sizes to 

account for numbers of persons who would need to be screened with biomarkers to reach the target 
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sample sizes. For example, consider a prevention trial that enrolls persons with amyloidosis (state 2). The 

prevalence of amyloidosis (state 2) among person without clinical disease assuming a uniform age 

distribution between ages 60 and 85 is approximately  
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Thus, the numbers of preclinical individuals who would need to be screened for biomarkers in order to 

enroll the required sample sizes is approximately (1/.206)=4.85 times the numbers shown in Table 1 
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