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Abstract 

Background: Assessing motor impairment in spastic cerebral palsy (SCP) is a key factor in 

the treatment and rehabilitation of patients. We intend to investigate the correlation between 

diffusion tensor imaging properties of sensorimotor pathways and motor function in SCP 

using meta-analysis, and to determine specific white matter lesions that are closely related to 

motor dysfunction in SCP.  

Methods: We conducted a literature search of PubMed, Embase, Scopus, and Web of Science 

databases to identify trials published from January 1999 to January 2019, that had evaluated 

the correlation between fractional anisotropy (FA) and motor function scores in SCP. 

Correlation coefficient (r) values were extracted for each study, and the extent of r was 

quantitatively explored. The r values between FA within different sensorimotor pathways and 

motor function scores were pooled respectively. 

Results: Nineteen studies involving 504 children with SCP, were included. FA in both 

sensory and motor pathways significantly correlated with motor function scores. However, 

compared with the corticospinal tract and thalamic radiation, FA in the posterior limb of the 

internal capsule (PLIC) correlated more strongly with gross motor function classification 

system and upper limb motor function (r = -0.71, 95% CI -0.80--0.60; r = 0.73, 95% CI 

0.60-0.82, respectively; P < 0.05).  

Conclusions: FA within the PLIC is more closely related to motor dysfunction, and can 

potentially be a biomarker for evaluating the degree of motor impairment in SCP. 

Keywords: cerebral palsy; diffusion tensor imaging; fractional anisotropy; sensorimotor 

pathways; motor function 
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Introduction 

Cerebral palsy (CP) is a childhood-onset motor and posture disorder resulting from an early 

non-progressive brain lesion, the most common subtype of which is spastic CP (SCP).1,2 

Assessing the degree of motor impairment allows development of management and treatment 

strategy, and is therefore a key factor in the rehabilitation of patients.3 

In previous studies, the Gross Motor Function Classification System (GMFCS) and 

assessments of upper limb motor function (ULMF), such as the Assisting Hand Assessment 

(AHA) have been frequently used to assess the degree of motor impairment in children with 

bilateral and unilateral SCP because of good inter-rater reliability.4-7 However, it is important 

to note that an individual’s performance will vary across the different assessment systems, 

which pose a problem for the integrated analysis of motor function. Furthermore, the 

accuracy of evaluation relies on the experience of assessors and the state of the assessed 

children. It may be difficult to perform detailed clinical assessments during infancy. 

As a non-invasive imaging technique, magnetic resonance imaging (MRI) can reveal 

general anatomical positions and severity of brain lesions, as well as study the underlying 

pathogenesis in SCP.3 However, conventional MRI cannot be used to comprehensively 

analyze variations in microscopic structure and is limited in the quantitative assessment of 

motor impairment.8 A more sensitive method is diffusion tensor imaging (DTI), which detects 

microscopic structural white matter changes. As DTI metrics, fractional anisotropy (FA) 

correlates significantly with the structural integrity of white matter, such as reduced myelin, 

axonal count, and/or axonal integrity; and mean diffusivity (MD) reflects changes in cell 

density and extracellular space.9 In studies of SCP using DTI, FA is the most frequently used 
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metric. Decreased FA reflects the severity of white matter damage.10 

Further, several studies have explored the relationship between FA of sensorimotor 

pathways and motor function. Some studies reveal that decreased FA of motor pathways such 

as the corticospinal tract (CST) and posterior limb of the internal capsule (PLIC), is 

associated with motor function scores.7,11-23 However, other studies have reported that 

sensory pathways including the posterior thalamic radiation (PTR) and superior thalamic 

radiation (STR), are more associated with motor function than are motor pathways in 

SCP.8,24-26 However, several other studies did not find a significant correlation between FA of 

sensorimotor pathways and motor outcomes.27-29 These conflicting findings may result from 

underlying differences in types of CP and heterogeneous methodology. Thus, the tracts 

associated with motor impairment have not been definitively identified, and it is not yet 

known whether specific white matter tract lesions are more likely to be associated with 

clinical motor deficits.  

Therefore, in this study, we investigate the correlation between FA of sensorimotor 

pathways and motor function scores through a meta-analysis. We also aim to determine if 

specific white matter lesions are closely related to motor dysfunction in SCP.  

 

Materials and Methods 

This study was conducted according to Preferred Reporting Items for Systematic Reviews 

and Meta-analyses.30 

Literature search 

A literature search of relevant databases (PubMed, Embase, Scopus, and Web of Science) was 
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conducted to identify trials published from January 1999 to January 2019, using the keywords 

“cerebral palsy” and “diffusion magnetic resonance imaging or diffusion MRI or diffusion 

tensor imaging or DTI or tractography” and “fractional anisotropy or FA” and “motor 

function”. Two investigators (HJ, with 15 years of pediatric radiology experience; and HL, 

with 13 years of pediatric radiology experience) independently reviewed all identified studies. 

References in identified articles were also reviewed. Disagreements were resolved by 

discussion between the two review authors. If no agreement could be reached, the plan was 

determined by a third author (JY, with 25 years of pediatric radiology experience). 

Study selection 

Inclusion criteria in the present meta-analysis were as follows: (a) data were acquired from 

children who had been diagnosed with SCP by pediatric neurologists, following the definition 

of CP established by the International Executive Committee, USA, 20061; (b) DTI of the 

brain had been performed; and (c) the relationship between FA of sensorimotor pathways and 

motor function scores was investigated. 

The following studies were excluded: (a) review articles, letters, comments, case reports; 

(b) those that provided no relevant data; including studies that had analyzed the relationship 

between FA and motor scores with change of treatment, the correlation between FA 

asymmetry index and motor scores, or did not obtain the full data; and (c) studies that 

reported duplicate patient data. 

Quality Assessment and Data Extraction 

The methodological quality of the included studies was independently assessed by two 

observers using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) 
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instrument.31 The information extracted from each publication included the following: authors, 

publication year, nation of origin, sample size, patient age at MRI scan, study design, MRI 

field, sensorimotor pathway, motor function score, and correlation coefficient. The motor 

function assessment scales selected for SCP were selected according to the following 

hierarchy of assessment scales: GMFCS > AHA > Box & Blocks test > Melbourne unilateral 

upper limb assessment > Jebsen-Taylor test of hand function > Children’s Hand Experience 

Questionnaire. For bilateral SCP, the data were pooled from both right and left hemispheres. 

For unilateral SCP, the data were extracted from the ipsilateral hemisphere. In case of 

disagreements regarding quality assessment, the two observers discussed each instance until a 

consensus was reached.  

Meta-analysis 

In this meta-analysis, the r values for the correlation between FA within different 

sensorimotor pathways (PTR, STR, CST, and PLIC), and the motor function scores were 

pooled respectively. The r values were extracted for each study and the extent of r was 

quantitatively explored. Because the range of r values is limited from -1 to 1, Fisher 

transformation was used to convert r into an approximately normal distribution.32 

Subsequently, the weighted summary r values were calculated using the Hedges-Olkin 

method.33 Data heterogeneity was analyzed by using the Cochran Q statistic and the 

inconsistency index (I2) value. I2 > 50% and P < 0.1 indicated high heterogeneity. A random 

effects model was used to analyze combined data from the selected studies32. Statistical 

analysis was conducted to compare differences in r values among pathways. A subgroup 

analysis by study design was performed to explore the extent of r. Meta-regression analysis 
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was performed to investigate the influence of age. Publication bias was assessed using Begg’s 

test. All analyses were performed using the software STATA version 14 and Review Manager 

5.3. P < 0.05 was considered statistically significant. 

 

Results 

Literature Search 

The detailed steps of the literature search are shown in Figure 1. The search initially yielded 

140 potential studies after removal of duplicates. From these, a total of 89 articles were 

excluded based on careful reading of abstracts; and these included studies of patients without 

SCP, no correlation analyses, reviews, case reports, and animal model studies. An additional 

32 articles were excluded after careful reading of the full-text because of non-relevant data, a 

lack of sufficient information to calculate the correlation coefficients, and duplicate patient 

data. Of these excluded studies, six were focused on the relationship between FA and motor 

scores following changes in treatment, and 5 were focused on the relationship between FA 

asymmetry and motor scores. Finally, 19 articles were included in this meta-analysis.  

Data Extraction and Quality Assessment 

The included studies involved a total of 504 patients with SCP (bilateral SCP: n = 223; 

unilateral SCP: n = 281), aged 0–19 years. Five of the selected studies were prospective 

studies; the rest were retrospective studies. Nine studies explored the correlation between FA 

and the GMFCS in bilateral SCP, while 10 explored the correlation between FA and ULMF in 

unilateral SCP. In five studies, motor function was assessed using the AHA, as well as the 

Melbourne unilateral upper limb assessment and Jebsen-Taylor test of hand function - In 
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these studies, only the AHA data were extracted. The r values of all studies on sensory and 

motor pathways were extracted for the meta-analysis. For three studies, the r values were 

calculated using the reported r2 values. Detailed information regarding the included studies is 

presented in Table 1. Evaluations of the study design characteristics based on the QUADAS-2 

tool are shown in On-line Figures 1 and 2. 

Meta-Analysis 

The summary r values for the correlation between FA within different sensorimotor pathways 

and GMFCS are shown in Figure 2. After pooling 6 studies, the FA in PTR correlated with 

GMFCS (r = -0.51, 95% CI -0.63--0.37) and was not markedly heterogeneous (I2 = 1%, P = 

0.41). After pooling 6 studies, the FA in CST correlated with GMFCS (r =-0.43, 95% CI 

-0.54--0.30) and was not markedly heterogeneous (I2 = 41%, P = 0.13). However, compared 

with the PTR and CST, the FA in PLIC most strongly correlated with GMFCS (r = -0.71, 95% 

CI -0.80--0.60; P < 0.01) after pooling 5 studies, and was not markedly heterogeneous (I2 = 

36%, P = 0.18). 

The summary r values for the correlation between FA within different sensorimotor 

pathways and ULMF are shown in Figure 3. After pooling 4 studies, the FA in STR correlated 

with GMFCS (r = 0.53, 95% CI 0.40-0.64) and was not markedly heterogeneous (I2 = 10%, P 

= 0.34). After pooling 6 studies, the FA in CST significantly correlated with ULMF (r = 0.53, 

95% CI 0.40-0.65) and was not markedly heterogeneous (I2 = 0%, P = 0.74). However, 

compared with the STR and CST, FA in the PLIC most strongly correlated with ULMF (r = 

0.73, 95% CI 0.60-0.82; P < 0.05) after pooling 4 studies, and was not markedly 

heterogeneous (I2 = 0%, P = 0.72).  
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In the subgroup analysis by study design, FA in PLIC significantly correlated with the 

GMFCS and ULMF in all the subgroups (On-line Table 1). In the meta-regression analysis, 

no significant effect modification was found for age contribution (P > 0.05). The results of 

Begg’s test indicated no significant publication bias (P > 0.05) (On-line Table 2).  

 

Discussion 

To our knowledge, this is the first meta-analysis to investigate the correlation between FA of 

sensorimotor pathways and motor function scores in patients with SCP. After systematic 

review and evaluation, we include results from 19 studies, of which 9 studies explore the 

correlation between FA and GMFCS, and 10 studies explore the correlation between FA and 

ULMF. This meta-analysis shows that FA of sensorimotor pathways significantly correlates 

with motor function scores in SCP, and specific white matter tract lesions in the PLIC are 

most closely related to motor dysfunction. 

In the clinic, GMFCS and ULMF (AHA, B&B test, and CHEQ) scales are frequently 

used to evaluate motor function dysfunction. In the DTI analysis, FA has been used as an 

objective metric to evaluate the degree of white matter damage, and much research has 

indicated that motor impairment in SCP is associated with decreased FA which indicates 

brain white matter damage.18,34-36 Therefore, the correlation between FA and motor function 

scores has been widely investigated. However, these studies show significant heterogeneity 

due to the underlying types of cerebral palsy and the different methodologies used. In 

contrast to the other heterogeneous CP subtype studies; we included only SCP in this study. 

We also analyzed bilateral and unilateral SCP, and the different sensorimotor pathways as a 



10 
 

means to provide more convincing evidence. Thus, our results show no significant 

heterogeneity in the correlation between FA and motor function scores. 

In this meta-analysis, FA in both sensory and motor pathways significantly correlated 

with GMFCS and ULMF. The CST, is the major projectional motor tract in close proximity to 

the periventricular white matter and is vulnerable in most of the patients with SCP37; notably; 

CST lesions may interrupt the corticomotor circuit governing movement execution. Therefore, 

CST was the first tract to be investigated for an association with motor function in SCP.10 

Based on DTI, a series of studies have indicated that the degree and extent of CST injury 

correlates with motor impairment and functional reorganization of motor pathways.11,12,15,18-21 

On the other hand, Hoon et al.25 reported that damage to the PTR, which connects the 

thalamus to the posterior parietal and occipital cortices, was related to motor dysfunction in 

children with SCP; also, a PTR injury decreased sensorimotor cortical connections and 

attenuated the descending CST. Furthermore, the STR, which connects the thalamus to the 

somatosensory cortex, was considered to be involved with upper limb function as well.26 

Thus, we performed a comprehensive meta-analysis to enhance the interpretation of multiple 

studies. Several studies also revealed there was significant correlation between FA of 

sensorimotor pathways with normal appearance on conventional MRI and motor function 

scores in SCP.8,14,38 It suggests that FA is a better measure than conventional MRI for 

assessing the degree of motor impairment. 

However, relative to other sensorimotor pathways, this study shows that motor function 

scores are most strongly correlated with FA in the PLIC. The anterior two-thirds of the main 

PLIC contain fibers of the CST and are commonly referred to as the CST at the internal 
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capsule level. Indeed, the descending motor pathways of the PLIC also contain the 

cortico-rubro-spinal and cortico-reticulo-spinal systems.39 The densely concentrated 

descending motor axons and the vulnerability of white matter in the internal capsule level14,40 

indicate that the PLIC plays a very important role in motor dysfunction, than the entire CST 

and other sensory pathways. Hence, we also investigated the correlation between MD of 

sensorimotor pathways and motor function scores in SCP (On-line Figures 3 and 4). The 

correlation for MD in PLIC was weaker than that for FA. In addition, for typical developing 

children, the FA increases with age, and is most prominent in the early infant phase. Previous 

studies revealed that FA within sensorimotor pathways in SCP infants were significant related 

to motor function, but not related to age.12,41 Similarly, in the current meta-regression analysis, 

no significant modification was found for age. Thus, our results suggest that specific white 

matter lesions of the PLIC contribute to motor impairment, and the FA is suitable for 

evaluation of the degree of motor impairment in SCP. 

This meta-analysis has several limitations. First, the number of included studies was small, 

and future studies might benefit from investigating a larger sample size. Second, the FA 

asymmetry index was not included in this meta-analysis due to the heterogeneity of previous 

studies, but it might offer additional insights into the potential unilateral patterns of injury. 

Third, DTI metrics of thalamocortical projections were also associated with sensory 

function.23,24,28 However, heterogeneous analysis methodologies and clinical measures are not 

directly comparable, and the meta-analysis cannot be performed. Finally, although several 

studies had longitudinal data, most included studies were retrospective and cross-sectional 

cohort studies with unclear fidelity in predicting motor outcome at early developmental stage 
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during infancy. In our future work, we plan to analyze more prospective studies investigating 

the correlation between FA and follow-up motor function. 

In conclusion, despite the limitations of the current meta-analysis, the broader clinical 

implications are striking. Particularly, in two studies,12,14 the FA of the PLIC showed strong 

correlation with the follow-up GMFCS, supporting the feasibility of early prediction of motor 

outcomes in SCP. FA within the PLIC is more closely related to motor dysfunction, which 

represents a potential biomarker for evaluating the degree of motor impairment in SCP. 
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Figure Legends 

 

Figure 1. Flow chart of search results. SCP, spastic cerebral palsy. 

 

Figure 2. Forest plots of the summary correlation coefficient (r) with corresponding 95% CIs 

for the correlation between FA within the posterior thalamic radiation (PTR). (A) 

corticospinal tract (CST); (B) posterior limb of the internal capsule (PLIC); (C) gross motor 

function classification system in patients with SCP.  

 

Figure 3. Forest plots of the summary correlation coefficient (r) with corresponding 95% CIs 

for the correlation between FA within the superior thalamic radiation (STR) (A) corticospinal 

tract (CST); (B) posterior limb of the internal capsule (PLIC); (C) upper limb motor function 

in patients with SCP.  

 

On-line Figure 1. Risk of bias and applicability concerns summary for each included study 

 

On-line Figure 2. Risk of bias and applicability concerns graph 

 

On-line Figure 3. Forest plots of the summary correlation coefficient (r) with corresponding 

95% CIs for the correlation between MD within the posterior thalamic radiation (PTR) (A) 

corticospinal tract (CST); (B) posterior limb of the internal capsule (PLIC); (C) gross motor 

function classification system in patients with SCP. 

 

On-line Figure 4. Forest plots of the summary correlation coefficient (r) with corresponding 

95% CIs for the correlation between MD within the superior thalamic radiation (STR) (A) 

corticospinal tract (CST); (B) posterior limb of the internal capsule (PLIC); (C) upper limb 

motor function in patients with SCP.  
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Tables 

Table 1. Characteristics of the included studies 

Study Year Country 

S
a

m
p

le
 

si
ze

 Age at MRI 

mean (SD) D
es

ig
n

 

F
ie

ld
 Sensori 

motor 

pathway 

Motor 

scores 
r  P 

Arrigoni11 2016 Italy 25 11.8 (3.1) y R 3.0 CST GMFCS -0.52 <0.05 

       PTR GMFCS -0.50 <0.05 

Hasegawa27 2018 Japan 8 3.5 m P 1.5 CST GMFCS -0.33 >0.05 

       PTR GMFCS -0.28 >0.05 

Jiang12 2019 China 20 11.7 (2.1) m R 3.0 CST GMFCS -0.73 <0.01 

       PLIC GMFCS -0.80 <0.01 

       PTR GMFCS -0.46 <0.01 

Madhavan13 2014 USA 8 12 m P 3.0 PLIC GMFCS -0.94 <0.01 

       PTR GMFCS -0.80 <0.05 

Rose14 2007 USA 10 2.5 (0.4) m P 1.5 PLIC GMFCS -0.65 <0.05 

Trivedi8 2010 India 39 8 y R 1.5 CST GMFCS -0.48 <0.01 

       STR GMFCS -0.66 <0.01 

Wang15 2014 China 46 22.4 (6.7) m R 3.0 CST GMFCS -0.42 <0.01 

Yoshida16 2010 Japan 34 2.2 (2) y R 1.5 CST GMFCS -0.10 >0.05 

       PLIC GMFCS -0.57 <0.01 

       PTR GMFCS -0.38 <0.05 

Ye17 2016 China 43 28 (8) m R 3.0 PLIC GMFCS -0.72 <0.05 

Holmstrom18 2011 Sweden 15 12.4 y R 1.5 PLIC B&B test 0.61 <0.05 

       CST B&B test 0.57 <0.05 

Hodge19 2017 Canada 28 10.3 (4.6) y R 1.5 CST AHA 0.61 <0.05 

Kuczynski28 2017 Canada 14 12 (3.7) y R 3.0 STR AHA 0.57 =0.05 

Pannek20 2014 Australia 50 10.9 (3.2) y R 3.0 CST AHA 0.54a <0.01 

       STR AHA 0.53a <0.05 

Reid21 2016 Australia 24 11.7 (2.7) y R 3.0 CST AHA 0.58a <0.05 

Schertz22 2016 Israel 20 10.9 (1.8) y P 3.0 CST AHA 0.19 >0.05 

       PLIC AHA 0.64 <0.05 

Tsao24 2013 Australia 42 11.3 (3.3) y R 3.0 STR AHA 0.35 <0.05 

Tsao23 2014 Australia 40 11.5 (3.1) y R 3.0 PLIC AHA 0.77a <0.01 

 2014 Australia 40 11.5 (3.1) y R 3.0   STR AHA 0.65a <0.01 

Weinstein7 2014 Israel 14 10.6 (2.7) y R 3.0 PLIC CHEQ 0.76 <0.01 

Weinstein29 2015 Israel 12 11 (3.6) y P 3.0 CST AHA 0.56 >0.05 

R, retrospective; P, prospective; CST, corticospinal tract; PLIC, posterior limb of the internal capsule; PTR, 

posterior thalamic radiation; STR, superior thalamic radiation; GMFCS, Gross Motor Function 

Classification System; AHA, Assisting Hand Assessment; CHEQ, Children’s Hand Experience 

Questionnaire; B&B, Box and Blocks; r, correlation coefficient between sensorimotor pathways and motor 

scores; ra values were calculated based on r2 values. 
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On-line Table 1．Subgroup analyses of the study design 

  

 

 

k r 95% CI Z 

 

P value 

FA and GMFCS 

 
   

 
 

Retrospective    
 

 

PLIC 3 -0.70 (-0.79, -0.57) 
8.00 

<0.001 

Prospective    
 

 

PLIC 2 -0.83 (-0.94, -0.54) 
4.06 

<0.001 

FA and ULMF    
 

 

Retrospective    
 

 

PLIC 3 0.74 (0.61, 0.84) 
7.54 

<0.001 

Prospective    
 

 

PLIC 1 0.64 (0.23, 0.86) 
2.81 

0.005 

PLIC, posterior limb of the internal capsule; GMFCS, Gross Motor Function Classification System; ULMF, 

upper limb motor function. 

 

 

On-line Table 2．Bias analysis in the meta-analysis 

 Publication bias 

 t P 

FA and GMFCS   

PTR -0.05 0.96 

CST -0.48 0.65 

PLIC -1.03 0.38 

FA and ULMF   

STR 0.18 0.88 

CST -0.53 0.62 

PLIC -1.39 0.30 

CST, corticospinal tract; PLIC, posterior limb of the internal capsule; PTR, posterior thalamic radiation; 

STR, superior thalamic radiation; GMFCS, Gross Motor Function Classification System; ULMF, upper 

limb motor function. 


