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1 Computations for Simple Examples

The following program computed the hierarchical tests for the two simple examples of differ-
ences in means or proportions among four groups.

%macro assoc;

data two; set one end=eof;

drop i muk SEk;

array mus (&Levels) mu1-mu&Levels;

array SEs (&Levels) SE1- SE&Levels;

retain mu1-mu&Levels SE1- SE&Levels;

mus(i) = muk;

SEs(i) = SEk;

if eof then output;

data tests; set two;

data mus; set tests (keep = mu1-mu&Levels);

data SEs; set tests (keep = SE1- SE&Levels);

proc iml;

use mus;

read all into mus;

use SEs;

read all into SEs;

var = diag( SEs##2);

**** test of H01+H02+H03;

**** equal to test of H01+H02+H03+H04, also H01+H02+H04, H01+H03+H04, H02+H03+H04;

c123 = {3 -1 -1 -1, -1 3 -1 -1, -1 -1 3 -1}/3;

1



CH123 = (mus*c123‘)* inv(c123*var*c123‘) * (c123*mus‘);

pCh123 = 1 - Probchi(CH123, 3);

Print "test of H01 and H02 and H03";

print ch123 pch123;

**** test of H01+H02;

c12 = {3 -1 -1 -1, -1 3 -1 -1}/3;

CH12 = (mus*c12‘)* inv(c12*var*c12‘) * (c12*mus‘);

pCh12 = 1 - Probchi(CH12, 2);

Print "test of H01 and H02";

print ch12 pch12;

run;

**** test of H01+H03;

c13 = {3 -1 -1 -1, -1 -1 3 -1}/3;

CH13 = (mus*c13‘)* inv(c13*var*c13‘) * (c13*mus‘);

pCh13 = 1 - Probchi(CH13, 2);

print "test of H01 and H03";

print ch13 pch13;

**** test of H01+H04;

c14 = {3 -1 -1 -1, -1 -1 -1 3}/3;

CH14 = (mus*c14‘)* inv(c14*var*c14‘) * (c14*mus‘);

pCh14 = 1 - Probchi(CH14, 2);

print "test of H01 and H04";

print ch14 pch14;

**** test of H02+H03;

c23 = {-1 3 -1 -1, -1 -1 3 -1}/3;

CH23 = (mus*c23‘)* inv(c23*var*c23‘) * (c23*mus‘);

pCh23 = 1 - Probchi(CH23, 2);

print "test of H02 and H03";

print ch23 pch23;

**** test of H02+H04;

c24 = {-1 3 -1 -1, -1 -1 -1 3}/3;

CH24 = (mus*c24‘)* inv(c24*var*c24‘) * (c24*mus‘);

pCh24 = 1 - Probchi(CH24, 2);

print "test of H02 and H04";

print ch24 pch24;

**** test of H03+H04;

c34 = {-1 -1 3 -1, -1 -1 -1 3}/3;

CH34 = (mus*c34‘)* inv(c34*var*c34‘) * (c34*mus‘);

pCh34 = 1 - Probchi(CH34, 2);

print "test of H03 and H04";

print ch34 pch34;

**** test of H01;

c1= {3 -1 -1 -1}/3;

mu1o = mus*{0 1 1 1}‘/3;

CH1= (mus*c1‘)* inv(c1*var*c1‘) * (c1*mus‘);
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pCh1= 1 - Probchi(CH1, 1);

print "test of H01";

print ch1 pch1;

**** test of H02;

c2= {-1 3 -1 -1}/3;

mu2o = mus*{1 0 1 1}‘/3;

CH2= (mus*c2‘)* inv(c2*var*c2‘) * (c2*mus‘);

pCh2= 1 - Probchi(CH2, 1);

print "test of H02";

print ch2 pch2;

**** test of H03;

c3= {-1 -1 3 -1}/3;

mu3o = mus*{1 1 0 1}‘/3;

CH3= (mus*c3‘)* inv(c3*var*c3‘) * (c3*mus‘);

pCh3= 1 - Probchi(CH3, 1);

print "test of H03";

print ch3 pch3;

**** test of H04;

c4= {-1 -1 -1 3}/3;

mu4o = mus*{1 1 1 0}‘/3;

CH4= (mus*c4‘)* inv(c4*var*c4‘) * (c4*mus‘);

pCh4= 1 - Probchi(CH4, 1);

print "test of H04";

print ch4 pch4;

quit;

%mend assoc;

data one; input i muk SEk;

Title McMillan 4 diets;

cards;

1 4.2 0.6

2 5.5 0.5

3 6.2 0.4

4 4.8 0.7

;

%let Levels = 4;

%assoc; run;

data one; input i muk nk;

Title Treiman 4 proportions;

SEk = sqrt(muk*(1-muk)/nk);

cards;

1 0.436 101

2 0.649 97

3 0.582 91

4 0.558 95

;
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%let Levels = 4;

%assoc; run;

2 Computation of Power by Numerical Integration

The relative power of the closed versus Bonferroni-corrected t-test was computed as follows.
As in the simulations assume that the sample size is n = 200 where Xi ∼ N(µi, σ

2
i ), σi = 5

(i = 1, 2, 3). For specified mean values (µ1, µ2, µ3), the probability that a test would be
significant is computed as∫

x1

∫
x2

∫
x3

I [t(x1, x2, x3)] φ1(x1) φ2(x2) φ3(x3) dx1 dx2 dx3

where t(x1, x2, x3) denotes the test statistic as a function of the observed values, I(t) is the
indicator function to denote whether t reaches the criteria for significance and φj(xj) is the
normal density for the jth group. For closed testing I(t) denotes whether both the 2 df F -test
of H0,123 : µ1 = µ2 = µ3 and the t-test of H0,1:23 : µ1 = (µ2 + µ3)/2 are significant at the 0.05
level. Likewise, the probability of significance of the Bonferroni-corrected t-test is obtained
using the indicator function I(t) to denote a t-test p-value ≤ 0.05/3.

3 Numerical Results for Logistic Regression Model Sim-

ulations

Consider the case of three treatment groups G = 1, 2, 3 and a binary outcome Y = 0, 1, where

logit [P (Y = 1|G)] = α + β2:1 · I(G = 2) + β3:1 · I(G = 3),

where βi:1 is the log odds ratio for comparing group i versus 1, i = 2, 3. The table below
reports the probability of rejection for the comparison of group 1 versus the others (i.e., H01)
at level 0.05 for various combinations of the parameters α, β2:1 and β3:1 for n = 200 per group
(i.e., a total sample size of 600) and using 5,000 simulations. The results are reported first
without (Unadjusted) and then with adjustment for multiple testing using the Bonferroni,
Holm, Hommel and the closed testing procedure approaches.

α β2:1 β3:1 Unadjusted Bonferroni Holm Hommel Closed Testing
1 1 0.0 0.0 0.0534 0.0208 0.0216 0.0224 0.0282
2 1 0.2 -0.2 0.0492 0.0176 0.0252 0.0264 0.0446
3 1 0.5 -0.5 0.0462 0.0130 0.0376 0.0410 0.0462
4 1 0.0 0.5 0.2446 0.1314 0.1656 0.1706 0.2216
5 1 0.2 0.5 0.4594 0.2968 0.3130 0.3214 0.3644
6 1 0.5 0.5 0.6932 0.5286 0.5368 0.5438 0.5640

The first three simulation scenarios correspond to the null hypothesis H01. While all four
adjustments for multiplicity control the type I error probability, the Bonferroni, Holm and
Hommel procedures are more conservative (i.e., lower p-values) than the closed testing pro-
cedure. The last three simulations correspond to the alternative hypothesis, and the results
show that the closed testing procedure provides higher power than the other three approaches.
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4 Numerical Results for Cox PH Model Simulations

Consider the case of three treatment groups G = 1, 2, 3 and an exponentially distributed
time-to-event outcome Y with log hazard rate given by

log(λ(t|G)) = α + β2:1 · I(G = 2) + β3:1 · I(G = 3) ,

where βi:1 is the log hazard ratio for comparing group i versus 1, i = 2, 3. The simulations
considered administrative censoring of the event times larger than 0.5 censored at 0.5. The
table below reports the probability of rejection for the comparison of group 1 versus the
others (i.e., H01) at level 0.05 for various combinations of the parameters α, β2:1 and β3:1 for
n = 200 per group (i.e., a total sample size of 600) and using 5,000 simulations. The rejection
probabilities are reported first without (Unadjusted) and then with adjustment for multiple
testing using the Bonferroni, Holm, Hommel and the closed testing procedure approaches.

α β2:1 β3:1 Unadjusted Bonferroni Holm Hommel Closed Testing
1 1 0 0 0.0522 0.0206 0.0216 0.0222 0.0254
2 1 log(1.3) log(0.7) 0.0502 0.0206 0.0492 0.0494 0.0502
3 1 log(1.5) log(0.5) 0.0536 0.0210 0.0536 0.0536 0.0536
4 1 1 log(1.3) 0.2258 0.0916 0.1282 0.1376 0.2216
5 1 log(1.3) log(1.3) 0.6882 0.4638 0.4906 0.5020 0.6302
6 1 log(1.3) log(1.5) 0.9002 0.7608 0.8004 0.8072 0.8840

The first three simulation scenarios correspond to the null hypothesis H01. While all four
adjustments for multiplicity control the type I error, the Bonferroni, Holm and Hommel pro-
cedures are more conservative (i.e., lower p-values) than the closed testing procedure. The
last three simulations correspond to the alternative hypothesis, and the results show that the
closed testing procedure provides higher power than the other three approaches.

5 Logistic Models in SAS

A logistic regression model for three groups could be conducted using the following SAS state-
ments:

proc logistic descending;

title2 individual groups with contrast tests of one-versus-others;

class group / descending param=ref;

model Y = group / expb;

contrast ’H01’ group 1 1;

contrast ’H02’ group 2 -1;

contrast ’H03’ group -1 2;

run;

Thus, for example, H02 refers to the contrast 2β2:1 − β3:1 = 0. The 2-df model Wald (or
likelihood ratio) test would provide a test of the joint null hypothesis H01 ∩ H02 ∩ H03. If
significant at level α then each of the elemental hypotheses could then be tested at level α.
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For a four group analysis, additional contrasts could be included in the program with
contrasts as shown in the text. For example, for the higher order hypothesis H02 ∩ H03, the
contrast would be of the form

contrast ’H02 and H03’ group 3 -1 1, group -1 3 -1;

6 Cox PH Models for Three Groups in SAS

With three groups, the 2-df test of the joint null hypothesis, and tests of the elemental hy-
potheses H01, H02, and H03, can be obtained using the SAS procedure PHREG as follows. The
variable group is coded such as 0, 1 or 2 with group 0 as the reference;

ods output Estimates=betas;

proc phreg;

class group / descending param=ref;

model time*event(0) = group / rl;

estimate ’H01’ group 0 1, group 1 0 / cov;

estimate ’H02’ group 0 -1, group 1 -1 / cov;

estimate ’H03’ group -1 0, group -1 1 / cov;run;

In our paper the coefficents are labeled as B2:1 and B3:1 and the other coefficients are
computed as contrasts of the vector (B2:1 B3:1). These contrasts are computed in the estimate
statements. However, the SAS ODS provides the coefficients in the order B3:1 then B2:1. Thus,
the coefficients in each in each row of the transformation matrix for each estimate must be
reversed from what is presented in the text in order to obtain the other coefficients as a function
of (B3:1 B2:1).

Additional statements then compute the tests of the three hypotheses.

Data h1 h2 h3; set betas;

keep estimate cov1 cov2;

If StmtNo = 1 and Label = "H01" then output h1;

If StmtNo = 1 and Label ne "H01" then output h1;

If StmtNo = 2 and Label = "H02" then output h2;

If StmtNo = 2 and Label ne "H02" then output h2;

If StmtNo = 3 and Label = "H03" then output h3;

If StmtNo = 3 and Label ne "H03" then output h3;

%macro domore;

PROC IML;

USE &dsin;

READ ALL INTO Xin ; ** estimates in first column, covariances in next 2 columns;

betas = Xin[1:2, 1];

covin = Xin[1:2, 2:3];

expb = exp(betas);

J = J(1, 2, 1);

stat = J*expb -2;
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HRothervj = J*expb/2;

HRjvother = 1/HRothervj; **** approximate;

vstat = expb‘*covin*expb;

c2d = stat**2/vstat;

df = 1;

P2={1} - PROBCHI(C2D, 1); *** 2-sided p;

print "&dsin" HRothervj stat vstat c2d df p2;

quit; run;

%mend domore;

title test of h1; %let dsin=h1; %domore; run;

title test of h2; %let dsin=h2; %domore; run;

title test of h3; %let dsin=h3; %domore; run;

7 Testing One vs. the Others Combined in a Cox PH

Model with Four Groups

Consider the case of K = 4 groups for a time-to-event outcome. The elementary hypotheses
for comparing each group versus the others combined are given by

H01 : exp{β2:1}+ exp{β3:1}+ exp{β4:1} = 3 (1)

H02 : exp{β1:2}+ exp{β3:2}+ exp{β4:2} = 3 (2)

H03 : exp{β1:3}+ exp{β2:3}+ exp{β4:3} = 3 (3)

H04 : exp{β1:4}+ exp{β2:4}+ exp{β3:4} = 3 . (4)

Let β(1) = (β2:1 β3:1 β4:1)
T . Then fitting a Cox PH model with group 1 as the reference group

yields an estimate β̂(1) for β(1) along with a consistent estimate of its variance-covariance

matrix, denoted by Σ(1). Note that the estimate β̂(2) for β(2) = (β1:2 β3:2 β4:2)
T is obtained as

β̂(2) =

 −1 0 0
−1 1 0
−1 0 1

 · β̂(1) . (5)

Let

f(β(1)) =


exp{β2:1}+ exp{β3:1}+ exp{β4:1} − 3
exp{−β2:1}+ exp{β3:1 − β2:1}+ exp{β4:1 − β2:1} − 3
exp{−β3:1}+ exp{β2:1 − β3:1}+ exp{β4:1 − β3:1} − 3
exp{−β4:1}+ exp{β2:1 − β4:1}+ exp{β3:1 − β4:1} − 3

 , β(1) = (β2:1, β3:1, β4:1) .

(6)
The gradient of f , denoted by ∇f has rows given by:(

exp{β2:1}, exp{β3:1}, exp{β4:1}
)

(7)(
− exp{−β2:1} − exp{β3:1 − β2:1} − exp{β4:1 − β2:1}, exp{β3:1 − β2:1}, exp{β4:1 − β2:1}

)(
exp{β2:1 − β3:1},− exp{−β3:1} − exp{β2:1 − β3:1} − exp{β4:1 − β3:1}, exp{β4:1 − β2:1}

)(
exp{β2:1 − β4:1}, exp{β3:1 − β4:1}, − exp{−β4:1} − exp{β2:1 − β4:1} − exp{β3:1 − β4:1}

)
.
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Then intersection hypotheses can be tested using their corresponding rows of f and ∇f .
For example, the intersection hypothesis H01 ∩H02 corresponds to the first two rows of f .

Using the delta method, H01 ∩H02 can be tested using

f12(β̂(1))
T ·

(
∇f12(β̂(1)) · Σ(1) · ∇f12(β̂(1))

T
)−1

· f12(β̂(1)) , (8)

which under the null follows a chi-square distribution with 2-df , where f12 and ∇f12, denote
the first two components of the function f and its gradient ∇f , respectively. One can show
that any intersection of three individual hypotheses is equivalent to the joint hypothesis β2:1 =
β3:1 = β4:1 = 0 which can be tested using a test with 3-df using the last 3 rows of f and ∇f
as in (8).

8 Additional R Program for a Cox Model for Three

Groups

In addition, the following pages display the program Cox3group.Rnw that is a Latex document
with embedded R program code that applies the closed-versus-others testing to a simulated
data set using a Cox PH model for three groups. Copy the contents into a text document and
change the file type to .Rnw and place it in a folder. Download the Sweave.sty file and save it
in the same folder as the .Rnw program.

To run the program, submit the following two lines in the R terminal:

\quad setwd("PATH TO FOLDER CONTAINING THE PROGRAM ")

\quad Sweave("Cox3group.rnw",syntax="SweaveSyntaxNoweb")

Note that R uses / as a delimiter rather than the usual \.
This will generate a .tex file that you can then compile to get the pdf output file. The

contents of this output file are also presented below.
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%Cox3group.Rnw
\documentclass[12pt]{article}

\usepackage{amsmath}
\usepackage[noae] {Sweave}
\usepackage{amscd}
\usepackage[tableposition=top]{caption}
\usepackage{ifthen}
\usepackage{color}
\SweaveOpts{echo=FALSE}
\usepackage[margin=0.93in]{geometry}

\begin{document}
\SweaveOpts{concordance=TRUE}

\title{Closed Testing of Each Group Versus the Others
Combined in a Multiple Group Analysis}
\author{John M. Lachin, Ionut Bebu\\
\vspace{0.4cm}
\texttt{ibebu@bsc.gwu.edu}}
\maketitle
%\tableofcontents

\abstract{A time-to-event example using simulated data is 
presented in R.}
%Utils
<<utils>>=
library(MASS)
tt = Sys.time()
library(survival)
library(car)
@

\section{Main}

\begin{itemize}
   \item{Consider $K=3$ groups and generate exponentially 
distributed time-to-event data with $n=200$ participants per 
group (for a total of 600 participants), $\alpha=1$, $\beta_{2:1}
=\log(1.3)$ and $\beta_{3:1}=\log(0.7)$, and administrative 
censoring at $t_0=0.5$.   
<<generate data>>=
generate_data_function = function(n,a,b21,b31)
{
   set.seed(1234)
   r_a = exp(a)
   r_b21 = exp(a + b21)
   r_b31 = exp(a + b31)

   aa  = data.frame(Y = c(rexp(n,r_a),rexp(n,r_b21),rexp
(n,r_b31)),

1



     G = as.factor(c(rep(1,n),rep(2,n),rep(3,n))))
   c_ind = which(aa$Y>0.5)
   aa$Y[c_ind] = 0.5
   aa$C = 1
   aa$C[c_ind] = 0
   aa
}

aa = generate_data_function(n=200,a=1,b21=log(1.3),b31=log(0.7))
@
}
   \item{Look at the first five rows of the data:
<<look at the first five rows>>=
#   aa$G = as.factor(aa$G)
   aa[1:5,]
@
$Y$ is the time-to-event or censoring outcome, $G$ is group (with 
three levels), and $C$ is censoring (1=event, 0=censoring).
}
   \item{Fit a Cox model and get the estimates for $\beta_{2:1}$ 
and $\beta_{3:1}$ and their variance-covariance matrix:
<<fit Cox model>>=
   m = coxph(Surv(Y,C) ~ G, data=aa)
   summary(m)$coeff
   list(beta_23_1=coef(m),Sigma_23_1=vcov(m))
@
}
   \item{Likewise, get the estimates and their variance-
covariance matrix for $(\beta_{1:2},\beta_{3:2})$ and $(\beta_
{1:3},\beta_{2:3})$
<< vs two>>=
   A2 = rbind(c(-1,0),c(-1,1))
   A3 = rbind(c(0,-1),c(1,-1))

   list(beta_13_2=A2%*%coef(m),Sigma_13_2=A2%*%vcov(m)%*%t(A2))
   list(beta_12_3=A3%*%coef(m),Sigma_12_3=A3%*%vcov(m)%*%t(A3))
@
}
   \item{These estimates and their variance-covariance matrices 
were obtained by matrix manipulations from the Cox model fit with 
$G=1$ as the reference group. One can check the results for 
$(\beta_{1:2},\beta_{3:2})$ by fitting the Cox model using $G=2$ 
as the reference group:
<<check vs two>>=  
   m2 = coxph(Surv(Y,C) ~ relevel(G,ref="2"), data=aa)
   list(beta_13_2=coef(m2),Sigma_13_2=vcov(m2))
@
}
   \item{Consider the null hypothesis:
\begin{equation}\label{null}
\exp(\beta_{2:1})+\exp(\beta_{3:1})=2\,.  
\end{equation}
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Using the delta method, run the unadjusted test for (\ref{null}) 
and obtain the p-value ($p\_value$), $\exp(\hat{\beta}_{2:1})+
\exp({\hat\beta}_{3:1})-2$ ($difference$) and its standard error 
($SE$):
<<tests>>=  
single_test_function = function(mu,Sigma)
{
   A = diag(exp(mu))
   est = sum(exp(mu)) - 2
   #ste = sqrt(c(1,1)%*%A%*%Sigma%*%t(A)%*%c(1,1))
   ste = sqrt(exp(mu)%*%Sigma%*%exp(mu))
   c(p_value=2*(1-pnorm(abs(est/ste))),difference=est,SE=ste)   
}
single_test_function(coef(m),vcov(m))
@
}
   \item{The same for testing 
\begin{equation}\label{null2}
\exp(\beta_{1:2})+\exp(\beta_{3:2})=2\,.  
\end{equation}
<<test two>>=
single_test_function(c(A2%*%coef(m)),A2%*%vcov(m)%*%t(A2))
@
and for 
\begin{equation}\label{null3}
\exp(\beta_{1:3})+\exp(\beta_{2:3})=2\,.  
\end{equation}
<<test three>>=
single_test_function(c(A3%*%coef(m)),A3%*%vcov(m)%*%t(A3))
@
}
   \item{Now test (\ref{null}) and report the {\it adjusted} p-
values (i.e., adjusted for also testing group 2 vs. groups 1 \& 3 
combined, and group 3 vs. groups 1 \& 2 combined):
<<multiplicity>>=  
   #linear.Hypothesis(m1,c(0,1,1))
  pp = c(single_test_function(coef(m),vcov(m))[1],
     single_test_function(c(A2%*%coef(m)),A2%*%vcov(m)%*%t(A2))
[1],
     single_test_function(c(A3%*%coef(m)),A3%*%vcov(m)%*%t(A3))
[1])
  p_all = linearHypothesis(m,rbind(c(1,0),c(0,1)))[[4]][2]
  
  res = c(Unadjusted=pp[1],
     Bonferroni=p.adjust(pp, method=c("bonferroni"))[1],
     Holm=p.adjust(pp, method=c("holm"))[1],
     Hommel=p.adjust(pp, method=c("hommel"))[1],
     Joint=p_all)
  out = c(res)  
  names(out) = c
("Unadjusted","Bonferroni","Holm","Hommel","Joint")
  round(out,digits=c(4,4,4,4,4))
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@ 
The "Joint" p-value corresponds to the 2 DF test for $\beta_{2:1}
=\beta_{3:1}=0$. While the joint hypothesis $\beta_{2:1}=\beta_
{3:1}=0$ is rejected ($p<0.0001$), the unadjusted p-value for 
testing (\ref{null}) is larger than 0.05, so the closed testing 
procedure fails to reject (\ref{null}). All adjustments yield p-
values larger than 0.05. 

Note that the true $\beta_{2:1}$ and $\beta_{3:1}$ values 
correspond to the null hypothesis (\ref{null}). 
}
\end{itemize}

%\begin{thebibliography}{99}

%\end{thebibliography}

\end{document}
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Closed Testing of Each Group Versus the Others
Combined in a Multiple Group Analysis

John M. Lachin, Ionut Bebu
ibebu@bsc.gwu.edu

September 6, 2019

Abstract

A time-to-event example using simulated data is presented in R.

1 Main

• Consider K = 3 groups and generate exponentially distributed time-to-event data
with n = 200 participants per group (for a total of 600 participants), α = 1,
β2:1 = log(1.3) and β3:1 = log(0.7), and administrative censoring at t0 = 0.5.

• Look at the first five rows of the data:

Y G C
1 0.500000000 1 0
2 0.090777520 1 1
3 0.002421367 1 1
4 0.500000000 1 0
5 0.142436512 1 1

Y is the time-to-event or censoring outcome, G is group (with three levels), and C
is censoring (1=event, 0=censoring).

• Fit a Cox model and get the estimates for β2:1 and β3:1 and their variance-covariance
matrix:

coef exp(coef) se(coef) z Pr(>|z|)
G2 0.3188619 1.3755613 0.1130170 2.821362 0.004782025
G3 -0.3290651 0.7195962 0.1217573 -2.702632 0.006879289

$beta_23_1
G2 G3

0.3188619 -0.3290651

$Sigma_23_1
G2 G3

G2 0.012772845 0.006668631
G3 0.006668631 0.014824831
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• Likewise, get the estimates and their variance-covariance matrix for (β1:2, β3:2) and
(β1:3, β2:3)

$beta_13_2
[,1]

[1,] -0.3188619
[2,] -0.6479269

$Sigma_13_2
[,1] [,2]

[1,] 0.012772845 0.006104214
[2,] 0.006104214 0.014260414

$beta_12_3
[,1]

[1,] 0.3290651
[2,] 0.6479269

$Sigma_12_3
[,1] [,2]

[1,] 0.01482483 0.00815620
[2,] 0.00815620 0.01426041

• These estimates and their variance-covariance matrices were obtained by matrix
manipulations from the Cox model fit with G = 1 as the reference group. One
can check the results for (β1:2, β3:2) by fitting the Cox model using G = 2 as the
reference group:

$beta_13_2
relevel(G, ref = "2")1 relevel(G, ref = "2")3

-0.3188619 -0.6479269

$Sigma_13_2
relevel(G, ref = "2")1 relevel(G, ref = "2")3

relevel(G, ref = "2")1 0.012772845 0.006104214
relevel(G, ref = "2")3 0.006104214 0.014260414

• Consider the null hypothesis:

exp(β2:1) + exp(β3:1) = 2 . (1)

Using the delta method, run the unadjusted test for (1) and obtain the p-value
(p value), exp(β̂2:1) + exp(β̂3:1)− 2 (difference) and its standard error (SE):

p_value difference SE
0.6539053 0.0951575 0.2122424

• The same for testing
exp(β1:2) + exp(β3:2) = 2 . (2)

p_value difference SE
1.333006e-09 -7.498949e-01 1.236763e-01

and for
exp(β1:3) + exp(β2:3) = 2 . (3)
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p_value difference SE
0.0002205703 1.3012421362 0.3522381368

• Now test (1) and report the adjusted p-values (i.e., adjusted for also testing group
2 vs. groups 1 & 3 combined, and group 3 vs. groups 1 & 2 combined):

Unadjusted Bonferroni Holm Hommel Joint
0.6539 1.0000 0.6539 0.6539 0.0000

The ”Joint” p-value corresponds to the 2 DF test for β2:1 = β3:1 = 0. While the
joint hypothesis β2:1 = β3:1 = 0 is rejected (p < 0.0001), the unadjusted p-value for
testing (1) is larger than 0.05, so the closed testing procedure fails to reject (1). All
adjustments yield p-values larger than 0.05.
Note that the true β2:1 and β3:1 values correspond to the null hypothesis (1).

3


	Supplement090519
	Cox3groupRnw
	Cox3group

