
Appendix. Thermodynamic constitutive model for the SMA 

A.1 Gibbs free energy of SMA materials 

SMA materials generally have two phases, that are, austenite phase and martensite phase. It is assumed that 

the volume fraction of each phase is 
 , AorM    , (superscript “ M ” refers to the martensitic phase and 

superscript “ A ” refers to the austenitic phase, respectively), and 1 MA  . Set  M
, then  1A

. 

According to the research of Boyd and Lagoudas (1996), the total specific Gibbs free energy, G , of SMA 

materials is assumed to be equal to the mass weighted sum of the free energy 
G , of each phase pluse the free 

energy 
mixG , of mixing, 
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where 
AG  is the free energy of austenite phase, 

MG  is the free energy of martensite phase,   is the volume 

fraction of martensite phase, T  is temperature, ij  is stress tensor, 
t

ij  is transformation strain tensor. 

The free energy of each phase can be expressed as (Boyd and Lagoudas, 1996), 
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and the free energy of mixing is assumed as (Lagoudas et al., 1995), 
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where 
ρ , 



ijklS , 
ij

, 
c , 



0s , 


0u  are mass density, elastic compliance tensor, thermal expansion coefficient 

tensor, specific heat, specific entropy at a reference state, and specific internal energy at a reference state of the 

“ ” phase, respectively. 0T  is the temperature at a reference state. The generic function  t

ijf  ,  physically 

represents the elastic strain energy due to the interaction between martensitic variants and the surrounding 

austenite phase, and among the martensitic variants themselves, the detailed derivation will be shown in Section 



A.2. Reorientation (detwinning) effects have been omitted for simplicity (Lagoudas et al., 1995). 

According to the second law of thermodynamics outlined by Coleman and Noll (1963), the local internal 

dissipation rate can be expressed as, 
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where 


  is the local dissipation rate without the entropy production rate due to heat conduction, the free energy 

rate 


G can be expressed as equation (A5) (Boyd and Lagoudas, 1996) and the “dot” above is a symbol that 

indicates the increment of the corresponding quantity, 
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Using equations (A1), (A2), (A3) and (A5), then the inequality (A4) can be rewritten as, 
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where 
t

ijij

te

ij    is the thermoelastic strain tensor, ij  is the total strain tensor,   is the mass density of the 

SMA and s  is the entropy per unit mass. 

Since ij  and T  are independent state variables, and G  is independent of 


ij  and 


T , then the 

thermoelastic strain tensor 
te

ij  and the entropy per unit mass s  can be defined as, 
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where  A
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M
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ij cccc   ,  

 AMA ssss 0000   . 

Using equations (A7) and (A8), the inequality (A6) can be simplified as, 
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and the effective stress 
eff

ij , acting as a thermodynamic force conjugate to 
t

ij , can be expressed as (Lagoudas 

et al., 1995), 
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then the inequality (A9) can be simplified as, 
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In this work, only transformation is considered, while reorientation of martensitic variants is disregarded, 

so the following assumptions can be introduced to simplify the formulation given above (Bondaryev and 

Wayman, 1988; Boyd and Lagoudas, 1996), 



  ij

t

ij                                                             (A12) 

 

 
















0  ,               

0  ,      
2

3

1

1 '





t

ij

t

eff

ij

eff

ij

H

H
                                       (A13) 

where ij  is the transformation tensor, H  is the maximum uniaxial transformation strain, 
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Using equation (A12), the inequality (A11) can be rewritten as, 
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where   is the thermodynamic force conjugate to  , and can be expressed as, 
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and 
A

ijkl

M

ijklijkl SSS  , 
A

ij

M

ijij   , 0TTT  , 
AM ccc  , 

AM sss 000  , 
AM uuu 000  .  

According to the inequality (A14), for the forward phase transformation (when 0


 ) the thermodynamic 

force   must be greater than zero, and for the reverse phase transformation (when 0


 )   must be less than 

zero. 

A.2 Martensitic volume fraction  

To obtain the evolution equation for the martensitic volume fraction  , a standard formalism of 

thermodynamic dissipation potentials is utilized (Edelen, 1974). Following Edelen’s formalism, a dissipation 

potential,  t

ijij T  ,,,; , can be introduced such that the evolution equation of the internal state variable, 

 , for the rate indepented case, is given by (Lagoudas et al., 1995) , 
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where   is the lame constant and should satisfy the Kuhn-Tucker conditions, 
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and Y  is a material parameter related to the dissipation rate of the system, and is assumed to be constant during 

phase transformation. A convex quadratic functional representation of the dissipation potential was assumed by 

Lagoudas et al. (1995), 
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During the phase transformation,   is always greater than zero. To satisfy the Kuhn-Tucker conditions,   

must be equal to Y , then the following equation can be obtained by using equation (A18), 

 YY22  ; YY 2
                                 (A19) 

where YY 2
 can be interpreted as the threshold value of the thermodynamic force   for the onset of the 



phase transformation. According to the inequality (A14), 
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In order to get the function  t

ijf  , , the following assumptions were put forwarded by Lagoudas et al. 

(1995), 

(1) f  is only dependent on   and is independent of 
t

ij , which means, 
 


f
Gmix  , 

(2) the SMA is stress free if no external mechanical loading is applied at the fully austenitic state, which means, 

  00 f , 

(3) the function  f  must be non-negative, which means   10   ,   0  f , 

(4) the function  f  must be continuous during the whole phase transformation. 

Applying the above constraints, a form for the function  f  can be selected as follows, 

 
 

 
















0    ,     

0    ,    






A

M

f

f
f                                               (A21) 

where 

        RMRA

R

MM ffff 



 00

1

1





                              (A22) 

        RARM

R

AA ffff 



 00                                  (A23) 

and 
R  is the martensitic volume fraction at the return point (a return point during the phase transformation is 

characterized by a change in the sign of 


 ). For the forward phase transformation, 1  R
, while 

R 0  for the reverse phase transformation. 

According to the research of Liang and Rogers (1990), functions  0Mf  and  0Af  can be expressed 

as, 
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, 

sM is the martensitic transformation start temperature, 
fM is the martensitic transformation finish temperature, 

sA  is the austenitic transformation start temperature, 
fA  is the austenitic transformation finish temperature. 

According to equation (A20), for the forward phase transformation ( 0


 ), 
*Y . Using equations 

(A15), (A21), (A22), (A23) and (A24), the following equation can be obtained, 
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where    sffssf AAMMsMAsY 

00
4

1

2

1
 (Boyd and lagoudas, 1996). For the case 

of a complete loading-unloading cycle, 0R , which means     00  RMRA ff  . And 0c  is 

assumed. After arrangement of equation (A25), the expresstion of   for the forward phase transformation can 

be obtained, 
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where the constant 
H

s
C M 0




 is the martensite stress influence coefficient. 

Similarly, using equations (A15), (A20), (A21), (A22), (A23) and (A24), the expresstion of   for the 

reverse phase transformation can be obtained, 
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