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WEB APPENDICES

A: Kernel Degree Selection

As described in the body of the paper, not all parameters of the Matérn kernel are

consistently estimable. Hence, we follow common practice and fix the degree parameter ⌫ to a

half-integer value, or to 1, which corresponds to the squared exponential kernel. By fixing ⌫ to a

half-integer, the functional form of the kernel reduces to a product of a polynomial term and an

exponential term, which facilitates computation, compared to the original Bessel function

formulation. Specifically, we consider the values ⌫ =

1
2 , 3

2 , 5
2 . This follows the advice of

Rasmussen and Williams (2005), who argue that values of ⌫ > 5
2 are difficult to distinguish from

1, given typical data sizes. In the GPDH settings, this lack of distinction is even more the case,

as the GPs are being specified several levels away from the data, as governing the parameters of a

latent utility (or the mean of those parameters).

The ⌫ parameter controls the level of differentiability of the function draws, as illustrated

in Figure 1. Thus, if a less smooth process is desired, or theorized a priori, the researcher may

choose to use a lower value ⌫ (e.g., ⌫ = 1/2). Alternatively, cross-validation may be used to set

the value of ⌫. In our Application I, we find little difference both in terms of fit and prediction

across different values of the degree parameter. As an example, we plot a comparison of fit and

forecasting accuracy across ⌫ values in Figure 2 for the Peanut Butter category. The value

⌫ = 3/2 does marginally better in forecasting tasks, and imposes less stringent assumptions on

smoothness, assuming only once differentiable function draws. Hence, we use ⌫ = 3/2 as our

primary specification throughout the paper.
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Figure 1: The impact of the choice of the degree parameter on the level of differentiability or “smoothness”
of the function draws.
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Figure 2: A comparison of the fit and forecasting ability of the GPDH-logit model across different values
of the kernel degree parameter ⌫, across all non-GP mean models, on the peanut butter data. We limit
consideration to non-GP mean models because of our assumption that, when using a GP mean, the degree
parameter is the same as in the GPDH kernel.
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B: Estimation Details

In this section, we give the explicit forms of the densities used in Equations 14 and 17 for

estimating the models in our two applications.

Application 1. The joint density for the full model given in Equation 14 is reproduced here:
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The GP heterogeneity specification is given by
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where t = {1, 2, . . . , T} represents the vector of time points on which the GP is defined. The

probabilistic representation for p(µ
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ARMA(1) specification, we have
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The last term, p(↵
p

), represents the prior over the parameters in the specific mean-model used.

We chose appropriate diffuse priors for these parameters.
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Application 2. The joint density is given by
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where t = {1, 2, . . . , T} represents the vector of time points on which the GP is defined. The GP

mean-model can be represented as
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We used independent PC priors for each of the hyperparametes of the different GPs. The last term

is given by p(⌫
d

) = Dirichlet(↵).
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C: Additional Choice Modeling Simulations

The simulations in the body of the paper assumed for simplicity that each individual

purchased the same number of times. Here, we consider the more realistic case where individuals

differ in the number of observations, with some spending often, and others very infrequently.

Specifically, we vary four aspects of the data-generating process: (1) the number of time periods

in the data; (2) the number of individuals in the data; (3) the minimum number of purchases

needed for an individual to be included in the data; and (4), the variance of the number of

purchases per person. We then study how the results of GPDH differ, in terms of fit, insights, and

computation time.

To investigate the performance of GPDH as a function of all of these inputs, we ran a

series of simulations, varying four aspects of the data generating process: the number of people

(N = 100, 200, 400), the number of time periods (T = 20, 40, 60), the minimum number of

spends per person (mmin = 1, 3, 5), and the variance of the number of spends per person over the

entire time window. We simulated the number of spends, m
i

, as m
i

= mmin + a
i

,

a
i

⇠ Round[Gamma(1, s)], where s is the scale parameter of the gamma, and varied

s = 2, 10, 20. As before, we assume that the true data generating process is a GPDH multinomial

logit with a GP mean model, and that there are three brands and a price variable.

Shrinkage Estimator. Just like all Bayesian approaches to modeling heterogeneity, GPDH can

be viewed as a shrinkage estimator, wherein individuals’ parameter trajectories are shrunk toward

the mean trajectory. For consumers with very few purchases, their estimated trajectories mirror

the mean function, in terms of both shape and magnitude, with large credible intervals. For

consumers with many purchases, their trajectories are estimated to be closer to the true,

data-generating trajectories. We illustrate this in Figure 3, for a simulation with 200 people, and a

minimum number of purchases of 3. Because of these shrinkage properties, GPDH can still

perform well, even when the number of purchases per person is small. In Table 1, we show that,

across all levels of simulated data sparsity, GPDH achieves superior in-sample hit rates, compared
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to the FO assumption.1

Computational Complexity. In the GP literature, it is well established that the computation time

for GP-based models scales at O(T 3
), where T is the number of unique inputs (Rasmussen and

Williams, 2005). In our applications, the number of inputs is always fixed at the number of

months in the data. In GPDH, there are two additional aspects of the data size, besides the

number of inputs, which may affect scalability: the number of individuals, and the number of

observations per individual.

Across these simulations, we found that mmin and s did not have a consistent effect on

computation time. We plot the effect of N and T in Figure 4. When the number of time periods is

small (T = 20), we see there is little difference in the computation time with respect to N .

However, for larger number of time periods, the increase in computation time from increasing N

becomes pronounced. Holding N fixed, we see that the increase in computation time from

changing T is non-linear, consistent with the O(T 3
) scaling of GPs generally.

1The full set of fit statistics is available from the authors upon request.
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Figure 3: Shrinkage properties of GPDH: at left is a person with only 3 spends; at right is a person with
60 spends. We see that Person 1’s estimated curves closely follow the mean function, while Person 2’s
estimated curves recover the truth, with some shrinkage toward the estimated mean function. The shaded
bands are 95% credible intervals around the estimated individual-level trajectory.

Min Spends (mmin) 1 3 5 Overall
Spend Variance (s) 2 10 20 2 10 20 2 10 20

FO .865 .849 .849 .870 .856 .842 .860 .848 .842 .853
GPDH .896 .901 .902 .915 .911 .899 .900 .902 .891 .902

Table 1: Hit rate as a function of data sparsity, comparing the GPDH and FO specifications.
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Figure 4: Average computation time, in seconds, for estimating GPDH on simulated data as a function of
the number of people in the data N (the line colors and patterns), and the number of time periods T in the
data (the x-axis). These results are averaged across mmin and s.
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D: Full Fit Statistics (Application 1)

In this section, we present more fit statistics. As a whole, all fit statistics imply that GPDH

significantly outperforms statistic heterogeneity, given the same mean model. In the main body of

the paper, we presented several representative fit statistics in Figure 7. In this appendix, we also

plot in Figure 5 the basic hit rates (accuracy) across specifications and data settings, and in

Figure 6 the Watanabe-Akaike Information Criterion (WAIC), which is a Bayesian measure that

measures model fit, penalizing for model complexity. We see that this measure again supports the

idea that dynamic heterogeneity, as captured through GPDH, better describes the data, even

taking into account the added complexity of the model. Interestingly, we find little difference in

fit across mean models, except for a noted decrease in fit for the restrictive parametric model.

We also include here the full set of fit statistics, averaged across mean models, for all

categories and heterogeneity specifications, in Table 2. Those statistics are based on the following

counts, for a given brand b: True positives (TP
b

) = the number of observations where the model

predicted the consumer would choose brand b, and the consumer chose brand b ; False positives

(FP
b

) = the number of observations where the model predicted the consumer would choose brand

b, but the consumer did not choose brand b; True negatives (TN
b

) = the number of observations

where the model did not predict the consumer would choose brand b, and the consumer did not

choose brand b; and False negatives (FN
b

) = the number of observations where the model did not

predict the consumer would choose brand b, but the consumer chose brand b. From these, we

compute the following statistics:

• Precision (Prec) - also called the hit rate, equal to TP
b

/(TP
b

+ FP
b

),

• Sensitivity (Sens) - also called recall or the true positive rate, equal to TP
b

/(TP
b

+ FN
b

),

• Specificity (Spec) - also called selectivity or the true negative rate, equal to

TN
b

/(TN
b

+ FN
b

),

• F1 - the harmonic mean of recall (Sensitivity) and precision.
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Finally, we average these across brands in the following ways:

• Macro average: the average of each of the above rates. Intuitively, this aggregation treats all

classes equally, ignoring potential class imbalance.

• Micro average: this aggregation computes the above statistics by summing over b at each

step. Intuitively, this takes into account class imbalance, at the risk of showing good

performance when one class dominates.

• Max: the max over b. Intuitively, this is the statistic for the class that was easiest to predict.

• Min: the min over b. Intuitively, this is the statistic for the class that was most difficult to

predict.
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In-sample

Macro Micro Max Min
Category Heterogeneity Prec Sens Spec Prec Sens Spec Prec Sens Spec Prec Sens Spec
Chips GPDH .695 .629 .882 .695 .695 .898 .709 .832 .978 .665 .484 .724
Chips FO .665 .599 .873 .671 .671 .890 .689 .817 .975 .631 .434 .706
Coffee GPDH .782 .754 .940 .780 .780 .945 .804 .844 .985 .756 .675 .879
Coffee FO .729 .696 .926 .726 .726 .931 .763 .805 .983 .673 .608 .854
Detergent GPDH .836 .813 .967 .843 .843 .969 .868 .918 .992 .796 .732 .927
Detergent FO .801 .774 .960 .811 .811 .962 .844 .905 .991 .717 .665 .913
Peanut Butter GPDH .832 .819 .956 .830 .830 .958 .874 .872 .984 .810 .749 .929
Peanut Butter FO .789 .776 .946 .792 .792 .948 .858 .843 .982 .717 .632 .911
Tissues GPDH .762 .751 .916 .761 .761 .920 .776 .788 .970 .741 .703 .866
Tissues FO .717 .704 .901 .718 .718 .906 .735 .752 .963 .701 .630 .840
Toilet Paper GPDH .791 .781 .957 .792 .792 .958 .818 .846 .984 .742 .710 .924
Toilet Paper FO .746 .736 .948 .750 .750 .950 .789 .818 .981 .709 .665 .911

Forecast
Macro Micro Max Min

Category Heterogeneity Prec Sens Spec Prec Sens Spec Prec Sens Spec Prec Sens Spec
Chips GPDH .646 .528 .865 .647 .647 .882 .777 .769 .991 .524 .182 .704
Chips FO .618 .527 .863 .643 .643 .881 .778 .758 .987 .434 .200 .708
Coffee GPDH .631 .629 .904 .652 .652 .913 .756 .718 .967 .522 .521 .812
Coffee FO .615 .607 .900 .634 .634 .909 .753 .699 .969 .492 .521 .810
Detergent GPDH .717 .618 .947 .764 .764 .953 .878 .931 .996 .453 .177 .858
Detergent FO .720 .611 .943 .751 .751 .950 .877 .910 .996 .502 .218 .833
Peanut Butter GPDH .519 .545 .886 .547 .547 .887 .752 .650 .950 .331 .332 .822
Peanut Butter FO .492 .520 .879 .526 .526 .882 .673 .643 .931 .312 .279 .820
Tissues GPDH .558 .559 .846 .545 .545 .848 .712 .735 .924 .459 .470 .768
Tissues FO .541 .539 .840 .529 .529 .843 .699 .706 .923 .445 .458 .759
Toilet Paper GPDH .588 .574 .920 .613 .613 .923 .747 .782 .978 .369 .239 .859
Toilet Paper FO .562 .550 .917 .598 .598 .920 .722 .813 .980 .304 .169 .852

Table 2: Fit statistics average across mean model. The statistics are described above.
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E: Average Elasticity Over Time

Similar to previous analyses of the Great Recession, our GPDH results can be used to

nonparametrically study how price elasticity, on average, changed during the Great Recession, by

simply averaging over individuals. Below, we present the full set of price elasticity plots over

time. In the detergent, chips, and toilet paper categories, we find many brands experienced

significant increases in average price elasticity. This is intuitive as the Great Recession negatively

affected many people’s earnings, which should lead to higher price sensitivity. Peanut butter and

coffee, on the other hand, do not appear to have been significantly impacted. Finally, tissues

appears to have behaved almost countercyclically during the recession: for all brands in tissues,

the average recession-era price elasticity was smaller than before and after. There are several

caveats to this population-level analysis, which may limit its interpretability or generalizability,

and which also limits its comparability to previous studies, e.g., Gordon et al. (2013).

Importantly, in this work, we only modeled choice conditional on the purchase decision, and do

not capture effects like stockpiling. We also use a relatively lenient rule for retaining consumers

in the panel, such that consumers that purchased at least five times were included. This means our

estimates of average price elasticities may be subject to panelist attrition.
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Figure 7: The average price elasticity of demand across detergent brands over time, as estimated by the
GPDH logit model. The recession era, as defined by NBER, is marked by the grey rectangle. Overlaid on
the estimated average price elasticities is a local linear smoothing (LOESS).
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Figure 8: The average price elasticity of demand across chips brands over time, as estimated by the GPDH
logit model. The recession era, as defined by NBER, is marked by the grey rectangle. Overlaid on the
estimated average price elasticities is a local linear smoothing (LOESS).
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Figure 9: The average price elasticity of demand across coffee brands over time, as estimated by the GPDH
logit model. The recession era, as defined by NBER, is marked by the grey rectangle. Overlaid on the
estimated average price elasticities is a local linear smoothing (LOESS).
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Figure 10: The average price elasticity of demand across peanut butter brands over time, as estimated by the
GPDH logit model. The recession era, as defined by NBER, is marked by the grey rectangle. Overlaid on
the estimated average price elasticities is a local linear smoothing (LOESS).
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Figure 11: The average price elasticity of demand across toilet paper brands over time, as estimated by the
GPDH logit model. The recession era, as defined by NBER, is marked by the grey rectangle. Overlaid on
the estimated average price elasticities is a local linear smoothing (LOESS).
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Figure 12: The average price elasticity of demand across tissue brands over time, as estimated by the GPDH
logit model. The recession era, as defined by NBER, is marked by the grey rectangle. Overlaid on the
estimated average price elasticities is a local linear smoothing (LOESS).
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F: Curve Timing Plots
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Figure 13: At left, the distribution of the timings of maximal slopes for individual-level curves in the deter-
gent category, with the recession bounded by the dashed lines. At right, the distribution of the timings of
crossovers in the chips category, again with the recession bounded by dashed lines.
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Figure 14: At left, the distribution of the timings of maximal slopes for individual-level curves in the peanut
butter category, with the recession bounded by the dashed lines. At right, the distribution of the timings of
crossovers in the coffee category, again with the recession bounded by dashed lines.
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Figure 15: At left, the distribution of the timings of maximal slopes for individual-level curves in the tis-
sues category, with the recession bounded by the dashed lines. At right, the distribution of the timings of
crossovers in the chips category, again with the recession bounded by dashed lines.
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Figure 16: At left, the distribution of the timings of maximal slopes for individual-level curves in the toilet
paper category, with the recession bounded by the dashed lines. At right, the distribution of the timings of
crossovers in the coffee category, again with the recession bounded by dashed lines.
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G: Computation Times

We report in Table 3 the computation times for each of the product categories from

Application 1, for each of the mean model specifications. There is a positive correlation between

the number of people, the number of purchases, and the computation time, although with only six

categories, it is difficult to make further claims about scalability. The average time across all of

the categories was 26 hours.

Category # People # Purchases ARMA GP Param RW Average

Chips 1552 36152 33.6 13.8 25.4 16.9 22.41
Coffee 912 14298 17.6 22.4 15.5 12.2 16.92
Detergent 1117 16784 37.6 40.7 46.6 41.3 41.56
Peanut Butter 1085 16212 18.9 10.7 19.8 16.2 16.40
Tissues 979 15005 18.2 22.1 25.6 21.6 21.89
Toilet Paper 1512 26958 34.6 69.1 27.3 19.2 37.52

Table 3: Computation time, in hours, across the categories and mean model specifications.
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H: Hyperparameter Estimates

Parameter Chips Coffee Detergent Peanut Butter Tissues Toilet Paper

Brand 2 ⌘ 1.18 2.29 3.18 1.86 2.01 2.05
 .02 .02 .02 .03 .03 .02

Brand 3 ⌘ 1.71 2.76 1.47 1.82 1.51 1.95
 .04 .02 .04 .03 .03 .02

Brand 4 ⌘ 1.15 2.53 1.24 1.40 1.43 2.96
 .04 .03 .01 .00 .07 .03

Brand 5 ⌘ 2.38 1.83 3.08 2.92
 .07 .03 .06 .02

Brand 6 ⌘ 2.06 1.24
 .08 .09

Ft/Dsp ⌘ .09 .27 .37 .28 .30 .41
 .04 .00 .01 .00 .01 .03

Price ⌘ .65 1.34 2.35 1.22 6.94 .86
 .03 .02 .02 .02 .02 .02

Table 4: Hyperparameter estimates for application 1, across all categories and coefficients.
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I: Stan Code

Here, we include the Stan code for the GPDH-ARMA choice model.

functions{
real maternk(real x1, real x2, real eta, real kappa, int type){

// NOTE ON THE TYPE INPUT:
// type 0: matern-1/2
// type 1: matern-3/2
// type 2: matern-5/2
// type 3: squared exponential (technically, should be type infinity)

real r = fabs(x1-x2);
real out;
if (type == 0) {out = etaˆ2 * exp(-kappa*r); }
if (type == 1) { out = etaˆ2 * (1+kappa*r) * exp(-kappa*r); }
if (type == 2) { out = etaˆ2 * (1 + kappa*r + pow(kappa*r, 2)/3.0) * exp(-kappa*r); }
if (type > 2) { out = etaˆ2 * exp(-pow(kappa*r, 2));}
return out;

}

matrix Kmat(int P, real eta, real kappa, int type, real jitter){
matrix[P, P] cov;

for(i in 1:P){
for(j in 1:P){

cov[i,j] = maternk(i, j, eta, kappa, type);
}
cov[i,i] = cov[i,i] + jitter;

}
return cov;

}

// Penalize complexity prior for the hyperparameters of a matern kernel,
// from Simpson et al., 2017
real pc_prior_lpdf(vector hypers, real ktype, real eta_upper, real alpha_eta, real rho_lower,

real alpha_rho){
real degree = ktype + 0.5;
real eta = hypers[1];
real kappa = hypers[2];
real lambda1 = -log(alpha_rho) * sqrt(rho_lower / sqrt(8.0*degree));
real lambda2 = -log(alpha_eta) / eta_upper;

return (log(0.5) + log(lambda1) - 0.5*log(kappa) - lambda1*sqrt(kappa) +log(lambda2) - lambda2*eta);
}

}

data{
int<lower=2> B; // no. goods
int<lower=1> N; // no. customers
int<lower=1> P; // no. periods per customer
int<lower=1> M; // no. total choices

int y[M]; // choice of customer on each choice occassion
matrix[M,B] price; // prices for each good at each choice occassion
matrix[M,B] ftdsp; // display/feature for each good at ...
int<lower=1,upper=N> id[M]; // person id
int<lower=1,upper=P> pd[M]; // period id
int ktype;
}

parameters{
// mean functions: ------------------------------------------------
vector[P] mu_icept[B-1];
vector[P] mu_price;



22

vector[P] mu_ftdsp;

// mf var parameters:
real<lower=0> tau_icept[B-1];
real<lower=0> tau_price;
real<lower=0> tau_ftdsp;

// mf arma parameters:
real m_icept[B-1];
real<lower = -1, upper = 1> phi_icept[B-1];
real<lower = -1, upper = 1> theta_icept[B-1];

real m_price;
real<lower = -1, upper = 1> phi_price;
real<lower = -1, upper = 1> theta_price;

real m_ftdsp;
real<lower = -1, upper = 1> phi_ftdsp;
real<lower = -1, upper = 1> theta_ftdsp;

// individual-specific GPs: ---------------------------------------
vector[P] z_icept[N,B-1];
vector[P] z_price[N];
vector[P] z_ftdsp[N];

// lower-level GP hyperparameters (shared across people):
vector<lower=0>[2] hypers_icept[B-1];
vector<lower=0>[2] hypers_price;
vector<lower=0>[2] hypers_ftdsp;
}

transformed parameters{
// individual-specific GPs: ---------------------------------------
vector[P] beta_icept[N,B-1];
vector[P] beta_price[N];
vector[P] beta_ftdsp[N];

// module to contain the covariance matrices:
{
// individual-level kernel matrices: ------------------------------
matrix[P,P] K[B-1];
matrix[P,P] L[B-1];
matrix[P,P] K_price;
matrix[P,P] L_price;
matrix[P,P] K_ftdsp;
matrix[P,P] L_ftdsp;

// IN THIS SECTION: use the user defined functions to create covariance matrices,
// then use the reparametrization of the normal distribution with the cholesky
// decomposition of the kernel to form the mean function and function values

// intercept kernels and function values:
for(b in 1:(B-1)){

K[b] = Kmat(P, hypers_icept[b,1], hypers_icept[b,2], ktype, 1e-8);
L[b] = cholesky_decompose(K[b]);
for(n in 1:N){
beta_icept[n,b] = mu_icept[b] + L[b] * z_icept[n,b];

}
}
K_price = Kmat(P, hypers_price[1], hypers_price[2], ktype, 1e-8);
L_price = cholesky_decompose(K_price);
for(n in 1:N){
beta_price[n] = mu_price + L_price * z_price[n];
}
K_ftdsp = Kmat(P, hypers_ftdsp[1], hypers_ftdsp[2], ktype, 1e-8);
L_ftdsp = cholesky_decompose(K_ftdsp);
for(n in 1:N){
beta_ftdsp[n] = mu_ftdsp + L_ftdsp * z_ftdsp[n];
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}
}
}
model{
// mean function:

vector[P] err_icept[B-1];
vector[P] err_price;
vector[P] err_ftdsp;

vector[P] nu_icept[B-1];
vector[P] nu_price;
vector[P] nu_ftdsp;

for(b in 1:(B-1)){
m_icept[b] ˜ normal(0,10);
phi_icept[b] ˜ normal(0,2);
theta_icept[b] ˜ normal(0,2);
tau_icept[b] ˜ normal(0,1);

nu_icept[b][1]=m_icept[b]+phi_icept[b]*m_icept[b];
mu_icept[b][1] ˜ normal(nu_icept[b][1], tau_icept[b]);
err_icept[b][1]=mu_icept[b][1]-nu_icept[b][1];

for(t in 2:P){
nu_icept[b][t]= m_icept[b]+phi_icept[b]*mu_icept[b][t-1]+theta_icept[b]*err_icept[b][t-1];
mu_icept[b][t] ˜ normal(nu_icept[b][t], tau_icept[b]);
err_icept[b][t] = mu_icept[b][t] - nu_icept[b][t];

}
}

m_price ˜ normal(0,10);
phi_price ˜ normal(0,2);
theta_price ˜ normal(0,2);
tau_price ˜ normal(0,1);
nu_price[1]=m_price+phi_price*m_price;
mu_price[1] ˜ normal(nu_price[1], tau_price);
err_price[1] = mu_price[1]-nu_price[1];

for(t in 2:P){
nu_price[t]=m_price+phi_price*mu_price[t-1]+theta_price*err_price[t-1];
mu_price[t] ˜ normal (nu_price[t], tau_price);
err_price[t]=mu_price[t] - nu_price[t];
}

m_ftdsp ˜ normal(0,10);
phi_ftdsp ˜ normal(0, 2);
theta_ftdsp ˜ normal(0,2);
tau_ftdsp ˜ normal(0,1);

nu_ftdsp[1] = m_ftdsp+phi_ftdsp*m_ftdsp;
mu_ftdsp[1] ˜ normal(nu_ftdsp[1], tau_ftdsp);
err_ftdsp[1] = mu_ftdsp[1]-nu_ftdsp[1];

for(t in 2:P){
nu_ftdsp[t]=m_ftdsp+phi_ftdsp*mu_ftdsp[t-1]+theta_ftdsp*err_ftdsp[t-1];
mu_ftdsp[t] ˜ normal (nu_ftdsp[t], tau_ftdsp);
err_ftdsp[t]=mu_ftdsp[t] - nu_ftdsp[t];
}

// lower-level hyperparameters (function values)
for(b in 1:(B-1)){
hypers_icept[b] ˜ pc_prior(ktype, 5.0, 0.01, 1.0, 0.001);
}
hypers_price ˜ pc_prior(ktype, 5.0, 0.01, 1.0, 0.001);
hypers_ftdsp ˜ pc_prior(ktype, 5.0, 0.01, 1.0, 0.001);

// individual-specific functions (reparametrization form, don’t save this)
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for(i in 1:N){
for(b in 1:(B-1)){
z_icept[i,b] ˜ normal(0,1);

}
z_price[i] ˜ normal(0,1);
z_ftdsp[i] ˜ normal(0,1);
}

// likelihood for each choice occassion:
for(m in 1:M){
vector[B] util;

// compute utility for each good; first good has util = 0
util[1] = beta_price[id[m]][pd[m]]*price[m,1] + beta_ftdsp[id[m]][pd[m]]*ftdsp[m,1];
for(b in 2:B){
util[b] = beta_icept[id[m],b-1][pd[m]] + beta_price[id[m]][pd[m]]*price[m,b] +
beta_ftdsp[id[m]][pd[m]]*ftdsp[m,b];

}
y[m] ˜ categorical_logit(util);
}
}
generated quantities{
vector[M] log_lik;

// compute observation-level log-likelihood for computing WAIC/LOO:
for(m in 1:M){

vector[B] util;

util[1] = beta_price[id[m]][pd[m]]*price[m,1]+beta_ftdsp[id[m]][pd[m]]*ftdsp[m,1];
for(b in 2:B){

util[b] = beta_icept[id[m],b-1][pd[m]]+beta_price[id[m]][pd[m]]*price[m,b]+
beta_ftdsp[id[m]][pd[m]]*ftdsp[m,b];

}
log_lik[m] = categorical_logit_lpmf(y[m] | util);

}
}
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Web Appendix J: Incorporating Drivers of Shifts

In the main body of the paper, we show how a GPDH specification can be used to capture individual-level
parameter dynamics. One critique is that GPDH may capture these trajectories, but it does not capture
drivers of these changes, which may shed light on why preferences are changing, or be used to predict when
preferences are likely to change again. In this note, we show how the GPDH mean function can be leveraged
to capture these drivers. In this case, GPDH then captures heterogeneity around these predicted shifts in
preferences. In particular, we will consider the case where a recession causes a decrease in price sensitivity.
This is a simple case, but conveys how the model could be modified to include drivers of shifts in preferences.

Required Packages:
library(mvtnorm)
library(rstan)

## Loading required package: ggplot2

## Registered S3 methods overwritten by �ggplot2�:
## method from
## [.quosures rlang
## c.quosures rlang
## print.quosures rlang

## Loading required package: StanHeaders

## rstan (Version 2.18.2, GitRev: 2e1f913d3ca3)

## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)

In our paper, we assess the impact of the recession nonparametrically. However, let’s assume we instead
wanted to model the recession as a driver of changes in price sensitivity. In the GPDH framework, this can
be accomplished by encoding the recession parametrically in the mean function:

µP rice(t) = “0 + “1Recessiont,

where Recessiont = 1 during the period of the recession and zero otherwise. Then, the rest of the GPDH
framework can be specified as normal. Below, we simulate data from this process: we assume there are 20
periods observed, and a recession occurs in periods 8-13.
x_recession = c(rep(0, 7), rep(1, 6), rep(0, 7))

For the rest of the data generating process, we assume a similar setup to our simulation studies, except with
just two brands for simplicity:
N = 200
min_m = 5
P = 20
K = 3
m_shape = 1
m_scale = 8
price_shape = 2
price_scale = 0.3
eta = c(2,2,5)

Here, we generate a GP mean model for the intercept, and the parametric mean model specified above for
the recession:
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set.seed(7926)
source("gp.R")

icept_mf_cov = make.cov(1:P, matern.kern, c(2, P/2, 3/2))
icept_mf = c(rmvnorm(1, sigma = icept_mf_cov))

price_mf = -10 - 5*x_recession

matplot(cbind(icept_mf, price_mf), type = "l", xlab="Period", ylab="Mean Function")
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Next, we generate the individual-level parameters, assuming GPDH:
set.seed(7926)
beta_icept = rmvnorm(N, mean = icept_mf, sigma = make.cov(1:P, matern.kern, c(2, P/2, 3/2)))
beta_price = rmvnorm(N, mean = price_mf, sigma = make.cov(1:P, matern.kern, c(5, P/2, 3/2)))

par(mfrow=c(2,1))
colpal = RColorBrewer::brewer.pal(5, "Spectral")
matplot(t(beta_icept[1:15,]), type = "l", xlab="Period", ylab="Beta (Intercept)", col=colpal, lty=c(1,2,3))
matplot(t(beta_price[1:15,]), type = "l", xlab="Period", ylab="Beta (Price)", col=colpal, lty=c(1,2,3))
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In the price sensitivity plot, we can see a distinct recession e�ect for most individuals, although we also notice
that the individuals nonparametrically deviate from the piecewise flat mean function.

Now, we simulate choice data using these individual-level parameters:
set.seed(7926)
m = round(rgamma(N, shape=m_shape, scale=m_scale)) + min_m

pd = list()
price = list()
y = list()
for(i in 1:N){
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pd[[i]] = sort(sample(1:P, m[i], replace=T), decreasing=F)
price[[i]] = matrix(1+rgamma(m[i]*K, shape = price_shape, scale = price_scale), nrow=m[i], ncol=K)
y[[i]] = rep(0, length(pd[[i]]))
for(p in seq_along(pd[[i]])){

month = pd[[i]][p]
util = c(0,0)
util[1] = beta_price[i,month]*price[[i]][p,1]
util[2] = beta_icept[i,month]+beta_price[i,month]*price[[i]][p,2]
choice_probs = exp(util)/sum(exp(util))
y[[i]][p] = sample(1:2, size = 1, prob = choice_probs)

}
}

To estimate this in Stan, we can adapt the Stan code from the full model:
recession_model = "

functions{
real maternk(real x1, real x2, real eta, real kappa, int type){

// NOTE ON THE TYPE INPUT:
// type 0: matern-1/2
// type 1: matern-3/2
// type 2: matern-5/2
// type 3: squared exponential (technically, should be type infinity)

real r = fabs(x1-x2);
real out;

if (type == 0) {
out = eta^2 * exp(-kappa*r);

}

if (type == 1) {
out = eta^2 * (1+kappa*r) * exp(-kappa*r);

}

if (type == 2) {
out = eta^2 * (1 + kappa*r + pow(kappa*r, 2)/3.0) * exp(-kappa*r);

}

if (type > 2) {
out = eta^2 * exp(-pow(kappa*r, 2));

}

return out;
}

matrix Kmat(int P, real eta, real kappa, int type, real jitter){
matrix[P, P] cov;

for(i in 1:P){
for(j in 1:P){

cov[i,j] = maternk(i, j, eta, kappa, type);
}
cov[i,i] = cov[i,i] + jitter;
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}

return cov;
}

// Penalize complexity prior for the hyperparameters of a matern kernel,
// from Simpson et al., 2017
real pc_prior_lpdf(vector hypers, real ktype, real eta_upper, real alpha_eta, real rho_lower, real alpha_rho){

real degree = ktype + 0.5;
real eta = hypers[1];
real kappa = hypers[2];
real lambda1 = -log(alpha_rho) * sqrt(rho_lower / sqrt(8.0*degree));
real lambda2 = -log(alpha_eta) / eta_upper;

return log(0.5) + log(lambda1) - 0.5*log(kappa) - lambda1*sqrt(kappa) + log(lambda2) - lambda2*eta;
}

}

data{
int<lower=2> B; // no. goods
int<lower=1> N; // no. customers
int<lower=1> P; // no. periods per customer
int<lower=1> M; // no. total choices

int y[M]; // choice of customer on each choice occassion
matrix[M,B] price; // prices for each good at each choice occassion

vector[P] x_recession; // indicator variable for the periods of the recession

int<lower=1,upper=N> id[M]; // person id
int<lower=1,upper=P> pd[M]; // period id

int ktype;
}

parameters{
// constant hypermeans: -------------------------------------------
real lambda_icept[B-1];
real gamma0;
real gamma1;

// mean functions: ------------------------------------------------
vector[P] mu_icept[B-1];

// mf GP hyperparameters:
vector<lower=0>[2] hypers0_icept[B-1];

// individual-specific GPs: ---------------------------------------
vector[P] z_icept[N,B-1];
vector[P] z_price[N];

// lower-level GP hyperparameters (shared across people):
vector<lower=0>[2] hypers_icept[B-1];
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vector<lower=0>[2] hypers_price;
}

transformed parameters{
vector[P] mu_price;

// individual-specific GPs: ---------------------------------------
vector[P] beta_icept[N,B-1];
vector[P] beta_price[N];

mu_price = gamma0 + gamma1 * x_recession;

// module to contain the covariance matrices:
{

// individual-level kernel matrices: ------------------------------
matrix[P,P] K_icept[B-1];
matrix[P,P] L_icept[B-1];
matrix[P,P] K_price;
matrix[P,P] L_price;

// IN THIS SECTION: use the user defined functions to create covariance matrices,
// then use the reparametrization of the normal distribution with the cholesky
// decomposition of the kernel to form the mean function and function values

// intercept kernels and function values:
for(b in 1:(B-1)){

K_icept[b] = Kmat(P, hypers_icept[b,1], hypers_icept[b,2], ktype, 1e-8);
L_icept[b] = cholesky_decompose(K_icept[b]);

for(n in 1:N){
beta_icept[n,b] = mu_icept[b] + L_icept[b] * z_icept[n,b];

}
}

// price kernels and function values:
K_price = Kmat(P, hypers_price[1], hypers_price[2], ktype, 1e-8);
L_price = cholesky_decompose(K_price);

for(n in 1:N){
beta_price[n] = mu_price + L_price * z_price[n];

}

}
}
model{

// mean functions kernel matrices: --------------------------------
matrix[P,P] K0_icept[B-1];
matrix[P,P] L0_icept[B-1];

// mean function hyperparameters, constant mean, and repar z values:
for(b in 1:(B-1)){

lambda_icept[b] ~ normal(0,5);
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hypers0_icept[b] ~ pc_prior(ktype, 5.0, 0.01, 0.2*P, 0.001);

K0_icept[b] = Kmat(P, hypers0_icept[b,1], hypers0_icept[b,2], ktype, 1e-8);
L0_icept[b] = cholesky_decompose(K0_icept[b]);

mu_icept[b] ~ multi_normal_cholesky(rep_vector(lambda_icept[b], P), L0_icept[b]) ;
}

gamma0 ~ normal(0,10);
gamma1 ~ normal(0,10);

// lower-level hyperparameters (function values)
for(b in 1:(B-1)){

hypers_icept[b] ~ pc_prior(ktype, 5.0, 0.01, 1.0, 0.001);
}

hypers_price ~ pc_prior(ktype, 5.0, 0.01, 1.0, 0.001);

// individual-specific functions (reparametrization form, don�t save this)
for(i in 1:N){

for(b in 1:(B-1)){
z_icept[i,b] ~ normal(0,1);

}
z_price[i] ~ normal(0,1);

}

// likelihood for each choice occassion:
for(m in 1:M){

vector[B] util;

// compute utility for each good; first good has intercept = 0
util[1] = beta_price[id[m]][pd[m]]*price[m,1];
for(b in 2:B)

util[b] = beta_icept[id[m],b-1][pd[m]] + beta_price[id[m]][pd[m]]*price[m,b];

y[m] ~ categorical_logit(util);
}

}
"

set.seed(7926)
dl = list(

B = K,
N = N,
P = P,
M = sum(m),
y = do.call(c, y),
price = do.call(rbind, price),
id = rep(1:N, times = m),
pd = do.call(c, pd),
ktype = 1,
x_recession = x_recession

)
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stanout = stan(model_code = recession_model, data = dl, iter = 400, chains = 1,
control = list(adapt_delta=0.95, max_treedepth=20), seed=7926)

##
## SAMPLING FOR MODEL �8b7ca14e22f00287680585c04e01741d� NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.006262 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 62.62 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 400 [ 0%] (Warmup)
## Chain 1: Iteration: 40 / 400 [ 10%] (Warmup)
## Chain 1: Iteration: 80 / 400 [ 20%] (Warmup)
## Chain 1: Iteration: 120 / 400 [ 30%] (Warmup)
## Chain 1: Iteration: 160 / 400 [ 40%] (Warmup)
## Chain 1: Iteration: 200 / 400 [ 50%] (Warmup)
## Chain 1: Iteration: 201 / 400 [ 50%] (Sampling)
## Chain 1: Iteration: 240 / 400 [ 60%] (Sampling)
## Chain 1: Iteration: 280 / 400 [ 70%] (Sampling)
## Chain 1: Iteration: 320 / 400 [ 80%] (Sampling)
## Chain 1: Iteration: 360 / 400 [ 90%] (Sampling)
## Chain 1: Iteration: 400 / 400 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 727.859 seconds (Warm-up)
## Chain 1: 641.125 seconds (Sampling)
## Chain 1: 1368.98 seconds (Total)
## Chain 1:

## Warning: There were 13 divergent transitions after warmup. Increasing adapt_delta above 0.95 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup

## Warning: Examine the pairs() plot to diagnose sampling problems

fl = extract(stanout)

hist(fl$gamma0, xlab="Gamma0 Samples", main=paste("Mean =", round(mean(fl$gamma0)),1))
abline(v=mean(fl$gamma0), lwd=2, col=2, lty=2)
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hist(fl$gamma1, xlab="Gamma1 Samples", main=paste("Mean =", round(mean(fl$gamma1)),1))
abline(v=mean(fl$gamma1), lwd=2, col=2, lty=2)
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We see that the correct coe�cients are recovered.
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