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Abstract 

Recently Perera, et. al.1 introduced two new binocular accuracy measures to evaluate diagnostic tests 

for paired organs. They adopted the Gaussian copula model to account for correlation between fellow 

eyes. As the measures are functions of several joint probabilities and due to the nature of the joint 

models, variations of the estimates for the two new measures were assessed via bootstrapping.  

We provide a different approach to inference about the two interesting and innovative measures. 

In our opinion, when patients are independent, the binomial models suffice for inference about the 

parameters of interest. Inference becomes simple and straightforward. We perform numerical studies 

and analyze the data set as of Perera, et. al.1 for illustration. Also, we investigate thru simulations the 

issue of robustness of the GC and the binomial models under model misspecification. 
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1 Introduction 

Sensitivity and specificity are two typical accuracy measures for evaluating how well diagnostic 

procedures provide correct diagnosis for diseases. Sensitivity is the probability that the diagnostic 

test signals the presence of disease when the gold standard shows that disease is indeed present. 

Specificity is the probability that the test gives correct disease free diagnosis as the gold standard.  

Medical research in Ophthalmology very often takes observations from fellow eyes. The value of 

a medical device for the Ophthalmological diseases diagnosis is usually gauged via pairs of eyes. 

Paired organs are valuable homogeneous units for biomedical researches with which one could draw 

conclusions less contaminated by the between-subject heterogeneity. Nevertheless, pairing introduces 

correlation between fellow organs. One would have to deal with correlation parametrically in order 

to draw likelihood inference.  

In Ophthalmology studies, de Leon et al.2 proposed using the common correlation model to cope 

with the correlation between fellow eyes. They incorporated random effects that follow beta 

distributions to induce correlations. As a result, three correlation coefficients emerge, one for the two 

diagnostic responses, one for the two disease statuses and one for the diagnoses and disease statuses. 

Numerical integration is then required to derive the marginal bivariate distribution. Other schemes 

for modeling correlation can be found in de Leon et al.2 

In order to jointly evaluate the effectiveness of the diagnostic procedures in such binocular 

settings, Perera, et. al.1 proposed two new accuracy measures, the binocular sensitivity, bsen, and the 

binocular specificity, bsp. The former is the probability that the test gives at least one diseased organ 

correct prediction, given that at least one organ is truly diseased. In other words,  

at least one organ is diagnosed at least one organ is 
|

correctly as diseased truly diseased
bsen P

 
  

 
. 

While, bsp is the probability of correct diagnosis for both non-diseased organs, given that both 

organs are indeed disease free, namely, 

both organs are diagnosed both organs are
|

correctly as non-diseased truly non-diseased
bsp P

 
  

 
. 
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In order to account for correlation between fellow organs, they used the extended common 

correlation model (ECCM) as the joint model in the case of exchangeability, where two organs are 

indistinguishable. For non-exchangeable organs, the Gaussian copula (GC) is entertained to describe 

the joint probabilities. Inference using ECCM or Gaussian copula requires less pleasant computation 

tasks, such as numerical integration and bootstrapping. 

 Here, we provide another viewpoint about how to make inference about the parameters of 

interest. Our view is that, basically, correlation/joint probabilities are not directly relevant for 

inference about the two new measures. This suggests that one might not need to deal with the joint 

distribution whose intricate feature attributes only to the correlation. This may sound dubious, as 

bsen and bsp are functions of joint probabilities that depend on correlation. However, bear in mind 

that the units for estimation of bsen and bsp are “patients”, instead of “eye/eyes”. Consider 

estimating bsen for exemplification. By definition, bsen is a conditional probability with the 

conditioning event being the population that includes patients with at least one diseased eye, and the 

numerator of bsen concerns the patients who have at least one diseased eye that is also correctly 

diagnosed. This clearly reveals that the estimation of bsen uses the numbers of patients, not the 

numbers of eyes. The same applies to the estimation of bsp as well.  

The fact is that joint probabilities govern how marginal probabilities are distributed into 

combinations of responses from fellow eyes. Yet, it is the numbers of eligible patients contributing to 

the estimation of the new measures. Therefore, our view is that correlations or joint probabilities play 

no or lesser roles in inference for bsen and bsp. 

In this paper, we intend to clarify the facts just alleged and propose that, if patients are 

independent, two separate simple binomial models will suffice for the inference about the two 

binocular accuracy measures. In so doing, one can apply familiar statistical procedures for inference 

without resorting to models for which one would have to undergo numerical integration and 

bootstrapping. 

2 Binocular sensitivity and binocular specificity  

We distinguish the responses from the left and the right eyes with subscripts L (left) and R (right) and 
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let 1iLY l and 1iRY r , 1 1, 0,1l r  denote the diagnosis results (0: negative, 1: positive). Denote 

by 2iL l  and 2iR r  , 2 2, 0,1l r  , the true disease statuses (0: absence, 1: presence) of the left and the 

right eyes. We use
1 1 2 2l r l rn to denote the number of patients with diagnoses 1 1,l r and disease statuses 

2 2,l r on fellow eyes, respectively. Similarly,
1 1 2 2l r l rp denotes the joint probability for a patient to have 

responses 1 1 2, ,l r l and 2r at the corresponding eyes. The sensitivities of the left and right eyes are 

1 1 1/Lsen p p    and 1 1 1/Rsen p p   , respectively; specificities of the two eyes are 

0 0 0/Lsp p p    and 0 0 0/Rsp p p   , where “+” indicates summing over the subscript that it 

replaces. The marginal characteristics are denoted by 1 ( 1)L iLP Y   , 1 ( 1)R iRP Y   , 

2 ( 1)L iLP   and 2 ( 1)R iRP   .  

Recall that
1 1 2 2 1 1 2 2 1 1 2 2( , , , ), , , , 0,1l r l r iL iR iL iRp P Y l Y r l r l r l r       . Hence, 

1111 1011 0111 1010 0101 1110 1101 11 10 01( ) / ( )bsen p p p p p p p p p p           . 

Notice that 1011 1010 1110 1 1 1111p p p p p     and 0111 0101 1101 1 1 1111p p p p p     . Therefore, 

1111 1 1 1111 1 1 1111 1 1 1 1 1111

11 10 01 11 10 01

p p p p p p p p
bsen

p p p p p p
       

     

     
 

   
. (1) 

Since 1 1 1( 1 | 1) /L iL iLsen P Y p p        and 1 1 1( 1 | 1) /R iR iRsen P Y p p       , 

1 1 1111

11 10 01

L Rsen p sen p p
bsen

p p p
  

  

 


 
. 

Notice that 1111p is to be subtracted out of 1 1 1 1p p    in the numerator. But, equations (6) and (8) of 

Perera, et. al.1 have a plus sign in front of 1111p that might not be correct. The binocular specificity is 

simply 0000 00/p p . 

 Perera, et. al.1 studied the properties of the two new binocular measures under the cases of 

exchangeability, namely,
1 1 2 2 1 1 2 2l r l r r l r lp p and non-exchangeability. For the former, they adopted the 

ECCM that was espoused in de Leon et. al.2 and formed estimates 

          
1111 1011 0111 1010 0101 1110 1101 11 10 01( ) / ( )bsen p p p p p p p p p p            

and 

  
0000 00/bsp p p  
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by plugging in the moment estimates 
1 1 2 2l r l rp . The variabilities of the two estimates were then 

evaluated by resorting to bootstrapping.  

For the case of non-exchangeability Perera, et. al.1 used Gaussian copula (GC) as the model and 

derived the ML estimates for
1 1 2 2l r l rp . The plug-in estimates for the binocular measures were 

correspondingly formed and their variations similarly assessed. They found that ECCM and Gaussian 

copula provide satisfactory estimates for the binocular measures in terms of bias and efficiency in the 

exchangeable and non-exchangeable scenarios, respectively.  

Notice that de Leon et al.2 employed moment estimates, namely, the sample proportions as the 

estimates for the joint probabilities (page 840, de Leon et al.2) The resulting plug-in estimatesbsen  

andbsp are simply sample proportions that are the ML estimates based on our proposed binomial 

models (see Appendix). It is also worthy of mentioning that the correlation estimates under ECCM 

are meaningful or legitimate only if the distributional assumptions underlying the adopted joint 

model, such as the beta assumption, are correct.  

3 Binomial models for bsen and bsp 

Consider the binomial model for inference about bsen 

1 1
(1 )1

1

{ (1 ) } (1 ) , 1, ,
N N

i i i ii i i i i

N
z zz z

i

bsen bsen bsen bsen i N
   





      , 

where 1i  if the ith patient has at least one diseased eye, and 1iz  if the ith patient has at least one  

diseased eye correctly diagnosed. The score function for bsen is 

1 1 1

1

N N N

i i i i ii i i
z z

bsen bsen

  
  





  

 

that gives rise to 11 1
/ /

N N

i i i bseni i
bsen z mm 

 
   as the ML estimate for bsen, where  

1 00m N n  and 1 1001 0001 0110 0010 0011( )bsenm m n n n n n      . It is clear that the number of patients 

who contribute to inference about bsen is 00 11

N

ii
N n m 

   . Note that 1m is the number of  

patients with at least one diseased eye and bsenm is the number of patients, out of 1m , having at least  

one diseased eye correctly diagnosed. By taking expectation of minus the derivative of the score  
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function, one obtains the Fisher information 

1 1 1
2 2(1 )

N N N

i i i i ii i i
z z

E
bsen bsen

  
  

      

  
. 

Now ( ) ( | 1) ( 1) ( | 0) ( 0)i i i i i i i iE z E z P E z P          . Note that ( | 1)i iE z bsen   and 

( | 0) 0i iE z    , so that ( ) ( 1)i i iE z bsenP   , where ( 1) ( )i iP E   . Hence, the Fisher  

Information equals  

2 2

( 1) (1 ) ( 1) ( 1)

(1 ) (1 )
i i iNbsenP N bsen P NP

bsen bsen bsen bsen

     
 

 
. 

Note that ( 1)iP   is the probability that a patient has at least one diseased eye that is estimable  

by  1( 1) /iP m N   . Consequently, one has available the variance estimate forbsen ,  

  (1 ) / { ( 1) }ibsen bsen P N  , where ( 1)iP N  is simply 1m . Now, it is conceivable that the above  

binomial model is equivalent to 1(1 )bsen bsenm m mbsen bsen  . 

 By the same token, let 2 00m n and 0000bspm n then the model for inference about bsp is  

simply 2( )(1 )bsp bspm m mbsp bsp  . If patients are independent, the binomial models are legitimate.  

Therefore, 0000 00/bs n np  and its variance estimate is 
00(1 ) /bsp bsp n . 

Evidently, the binomial models apply to both the cases of exchangeability and 

non-exchangeability as well. Again, exchangeable or not, eventually, it is the patients that 

contribute to the information for inference about the two binocular accuracy measures. The joint 

models, such as the ECCM and the Gaussian copula, prescribe how fellow eyes are correlated. In 

the end, when it comes to inference about bsen and bsp, only the numbers of eligible patients are 

included for estimation and inference. 

Here, we take a detour to comment on the contrast between our binomial model and the 

so-called marginal model. A marginal model might be one that incorporates the correlation (for 

example by integrating out the random effects common to a cluster) or ignores the correlation. 

Anyhow, the idea underlying the marginal approach is that any one of the correlated responses 

contributes to inference about the parameter of interest. This, however, is not the case we are 
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dealing with. Statuses of two eyes of a patient form the unit for information about bsen and bsp. 

Observations from one single eye do not provide information for the parameter of interest. Hence, 

our binomial model is not a marginal model in the sense commonly perceived. 

4 Simulations  

Obviously, if one adopts binomial models inference for the binocular measures becomes that about 

the success probabilities with independent and identically distributed Bernoulli responses. It becomes 

a straightforward and easy procedure and bootstrapping is definitely not needed.  

We first intended to reconstruct Table II of Perera, et. al.1 by using exactly the same parameter 

setting including the same values of 1 , 2 , , 1 , 2 and their joint model (11). Here, 

1 1p  , 2 1p   , is the correlation between iL iRY Y and iL iR  , 1 is the correlation 

between iLY and iRY , and 2 is the correlation between iL and iR . It turns out that we are able to derive 

exactly the same sen and sp as they did, except the two parameters of interest bsen and bsp. As a 

reminder, we calculate bsen according to our formula (1). Recall that sen and sp are the common 

sensitivity and common specificity under exchangeability. Table 1 shows the discrepancy between 

the true bsen and bsp values we derived and those in Table II of Perera, et. al.1  

<Table 1> 

Next, data conforming ECCM with the above parameter settings are simulated. Two thousand 

simulation runs with sample sizes 100N  and 200 are executed. Empirical statistics resulting from 

the binomial models are tabulated in Tables 2.1 to 2.3. The relative bias (RB) is defined as 

{average( ) } /RB     , where is the true value of the parameter of interest. Unlike that 

calculated via bootstrapping in Perera, et. al.1, our exhibited ( )SE  is   * 1/2{ (1 ) / }N  that is easily 

calculable from binomial, where *N is either 00N n or 00n as explained earlier. We also display the 

sample variance of all  from simulation repeats, denoted by ( )SD  . The empirical 95% confidence 

interval is constrcuted and CI (the average lower and upper bounds), AW (the average width) and CP 

(the empirical coverage probability) are tabulated. Recall that estimates from both ECCM and binomial 

model are identical; hence, results from ECCM are not reported. 
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<Tables 2.1-2.3> 

Tables 3.1 and 3.2 show results of our analysis for the nonexchangeable data generated from the 

GC model. The following three different parameter settings are considered:  

Case I:  1 1 2 2, , ,L R L R     (0.4, 0.36, 0.32, 0.36),  1 2 3 4, , ,     (0.65, 0.37, 0.28, 0.17); 

Case II:  1 1 2 2, , ,L R L R     (0.35, 0.44, 0.33, 0.38),  1 2 3 4, , ,     (0.7, 0.5, 0.15, 0.2) and  

Case III:  1 1 2 2, , ,L R L R     (0.35, 0.44, 0.27, 0.38),  1 2 3 4, , ,     (0.7, 0.52, 0.12, 0.21). 

Note that 1 , 2 , 3 and 4 are elements of the correlation matrix D of the GC model (Perera, et. al.1) In 

order to implement the GC model, one thousand bootstrapping for each of the one thousand 

simulation repeats are carried out. 

<Tables 3.1-3.2> 

The contents of Table 3.1 indicate that the ML estimate ofbsen from the binomial model, a 

sample proportion, in general, has a slightly larger bias compared to the ML estimate from the GC 

model. It appears that the standard error/standard deviation estimate ofbsen from GC is smaller. This 

is anticipated since the data are generated from the GC model. The ideal situation warrants higher 

efficiency for inference from the method of maximum likelihood. In light of the empirical coverage 

probability of the confidence intervals from the two models, the binomial approach is a legitimate 

alternative for inference for bsen . Bear in mind, however, that the statistics are straightward and 

easily obtainable from binomial. One needs to perform numerical maximization of the GC likelihood 

and further bootstrapping for variation assessment. Findings for bsp from Table 3.2 are similar.  

 Contrasts between the GC and the binomial models in situations where the nonexchangeable 

data do not conform to the GC assumption are also provided. We generate the paired data from the t 

copula (TC) with 4v  degrees of freedom. We use the same notation as of Perera, et. al.1 

letting 1~ ( )iL LY Bernoulli  , 2~ ( )iL LBernoulli  , 1~ ( )iR RY Bernoulli  and 2~ ( )iR RBernoulli  . The t 

copula probit model (Demarta and McNell5) gives rise to 
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4
1 21

1 1 2 2

1 2 3 4 3 4

1 1
1 1 1 1

1 14

, 1 1
0 0 0 0 2 2

( ) , ( ) ,
( 1)

( ) , ( )
hh

L j R jj

l r l r
j j j j L j R j

T u T u
p F

T u T u

 


 



 


  
   

    
 
 

    . 

Here , ( )F   is the multivariate t cumulative distribution function, is the correlation matrix and  

1( )T
  denotes the quantile function of the univariate t distribution, where is the degrees of freedom.  

One can consult Kotz et. al.6 for the properties of the multivariate t distribution. Definitions of 

hmkju , 1, 2m  , ,k L R , 0,1hj  and 1, 2,3, 4h  , the cumulative probabilities of the diagnositc results  

and the disease statuses of the fellow organs can be found in Perera, et. al.1  

We sample the TC data with three settings that incorporate the same 1 1 2, ,L R L   and 2R values 

as of Tables 3.1 and 3.2 but with nonzero values 5 and 6 as the (1,4)th and the (2,3)th entries of the 

correlation matrix . In so doing, one might have a glimpse of the impact of the misspecification of 

D of the GC model. More specifically, the settings of include 

Case I:  1 2 3 4 5 6, , , , ,       (0.65, 0.37, 0.28, 0.17, 0.65, 0.37); 

Case II:  1 2 3 4 5 6, , , , ,       (0.7, 0.5, 0.15, 0.2, 0.7, -0.3) and 

Case III:  1 2 3 4 5 6, , , , ,       (0.7, 0.52, 0.12, 0.21, 0.7, -0.3).  

<Tables 4.1-4.2> 

Tables 4.1 and 4.2 show results of the binomial and the GC models. Notice that the GC model 

employs ML estimates under the assumption that 5 and 6 are both zero. Table 4.1 suggests that the 

ML estimate of bsen from the binomial model has a much smaller bias than the ML estimate from the 

GC model. As a reminder, the GC likelihood is now no longer valid for the data. Still,bsen from GC 

is less variable compared to that from binomial. However, the empirical coverage probability of the 

confidence interval from GC is way below the 95% nominal level. Obviously, inference for bsen 

drawn from the GC model is mistaken if the GC assumption is false. Similarly, when the GC 

assumption fails, deviation of inference for bsp from the required nominal standard is also clearly 

manifested in Table 4.2. In contrast, our proposed binomial model is able to deliver satisfactory 

statistics for inference for the binocular measures. The advantage of the simple binomial model being 
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robust against the specification of the underlying joint distribution is quite evident. 

5 Examples 

We use as illustrative examples the data analyzed by Tsou4 for assessing the value of the screening 

device high-resolution stereoscopic digital photography. Those diagnosed as “positive” with clinical 

conditions could be eligible for early treatment of diabetic Retinopathy. The presence/absence of the 

abnormal conditions diagnosed by the contact len biomicroscopy (CLBM) is taken as the gold 

standard. Hence, the outcome of CLBM is labeled as the disease status. We analyze the data on 104 

patients with complete information on the two conditions mascular oedema and hard exudate for 

illustration. Detailed about the study could be found in Rudnisky, et al.3 

Example 1 

Table 5 contains the macular oedema data and Table 6 exhibits estimates and their standard errors 

  1/2
1{ (1 ) / }bsen bsen m (SEs) using the binomial model. Note that macular oedema pertains to the 

thickening and swelling of the eye’s macula due to fluid and protein deposits. In addition to the 

statistics for the binocular parameters, we also present estimates and their standard errors 

for 1L , 1R , 2L , 2R , Lsen , Rsen , Lsp and Rsp . The statistics for all parameters are ML estimates based 

on the binomial model with the success probability, such as 1p  for 1L and 1 1/p p   for Rsen , 

respectively. Hence, the estimate of 1L is 1 /n N and that of Rsen equals 1 1/n n   , and their 

standard errors are, respectively, 3 1/2
1 1{ ( ) / }n N n N  and 3 1/2

1 1 1 1 1 1{ ( ) / }n n n n      . 

<Table 5> 

<Table 6> 

Example 2  

The hard exudate data are displayed in Table 7 and results are also provided in Table 6. Hard exudate 

involves the leakage of fluid and lipoprotein into the retina of the eyes.  

<Table 7> 

As a reminder, one can easily construct confidence intervals and perform hypothesis testing using the 

binomial likelihood functions for bsen and bsp, respectively. For likelihood inference about 
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sensitivity and specificity in paired scenario, readers are referred to Tsou.4 

6. Conclusion  

Pairing introduces correlation that makes likelihood inference more challenging. However, there are 

situations where a full probability structure that incorporates all joint probabilities might not be 

necessary. Inference for the binocular measures, in our opinion, is a scenario that a full joint 

distribution is not required.  

Our theory is founded upon the fact that correlation might affect the tendency of joint 

occurrences of diseases/diagnostics of fellow organs. Nevertheless, when it comes to estimations of 

the two parameters, it is the numbers of patients, not the counts of eyes, which contribute to 

inference. When patients are independent, binomial models suffice for inference about bsen and bsp.  

The applicability of our simpler binomial approaches is, certainly, confined to inference about 

bsen and bsp. The joint distributions such as ECCM and the Gaussian copula provide a full 

description of the joint probability structure of the data. The full models enable one to draw inference 

for a variety of scientific questions of interest in addition to bsen and bsp that are the sole targets for 

the binomial models. Obviously, the effective sample sizes, such as 00N n and 00n that we employ 

need to be large to the extent in accord with the binomial model.  
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Appendix 

In the paper of de Leon et. al.,2 notation , , 0,1,2xyn x y  denotes the number of patients having x eyes 

diagnosed as positive and y diseased eyes. Note that
2 2

0 0 xyn N  . Also, they defined 

( , )xy iL iR iL iRp p Y Y x y      . It is easy to establish the relationship between their xyp and 

1 1 2 2l r l rp : 00 0000p p , 10 1000 0100p p p  , 20 1100p p , 01 0010 0001p p p  , 11 1010 1001 0110 0101p p p p p    ,

21 1110 1101p p p  , 02 0011p p , 12 0111 1011p p p  and 22 1111p p . By assuming exchangeability, namely, 

1 1 2 2 1 1 2 2l r l r r l r lp p , we have 01 0010 00012 2p p p  , 11 1010 1001 0110 01014 4 4 4p p p p p    , 

10 1000 01002 2p p p  , 21 1110 11012 2p p p  and 12 0111 10112 2p p p  . 

 The moment estimates for xyp are sample proportions  / , , 0,1,2xy xyp n N x y  . These estimates 

were then used to get estimates for the three correlation estimates, see p. 840 of de Leon et al.2 One 

can easily establish the correspondence between the two sets of moment estimates  xyp and 
1 1 2 2l r l rp . For 

example,      
01 11 21 10 01 102p p p p p p       ,    

02 12 22 11p p p p   and  
22 1111p p . This confirms 

the fact thatbsen andbsp depend on sample proportions only. The three correlation estimates de Leon 

et al2 derived by plug-in estimates  xyp are irrelevant for inference about bsen and bsp.  

 


